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Cylindrically anisotropic tubular
stalactite with mirror symmetry of
displacement under spatially constant
body force loading – a finite element
model

M. Bednárik, I. Kohút
Geophysical Institute of the Slovak Academy of Sciences1

Abs t r a c t : The calcite crystals of the wall of tubular stalactites (soda straws) grow,

typically, with their c-axis parallel to the axis of the stalactite. With the direction of

the c-axis given, the question is whether the rotation angle with respect to the c-axis is

somehow determined, too. Although monocrystalline soda straws have been reported, we

will here investigate the properties of hypothetical, but far more interesting, cylindrically

anisotropic soda straws.

It will be demonstrated that under the action of spatially constant body force, a cylin-

drically anisotropic axially symmetric tubular stalactite can, for some special angles of

rotation, exhibit mirror symmetry of displacements, typical for isotropic or transversely

isotropic tubes.

For various loading modes, we will also address the question of the cylindrically aniso-

tropic configuration optimal with regard to the strain energy.
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1. Introduction

The speleothems, especially the worldwide standardized calcite tubular
stalactites – soda straws, present some of the few windows into the tec-
tonic and seismic past and shall be dealt with due attention – not only
by statistic methods (Lacave et al., 2002) or using very rough approxima-
tions (Cadorin et al., 2001), but taking into account their geometric and
structural complexity and individuality of individual specimens. Nowadays,
the factor limiting the realism of speleothem stress field modelling, is not
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the lack of computing power, but far more the lack of knowledge about
the speleothems themselves. The (outer surface) geometry could be mea-
sured with 3D laser scanners (Godin et al., 2002) or by other means, but
the data of inner crystalline structure is simply inaccessible because of the
unacceptable invasiveness of our methods. The situation resembles that one
in other earth sciences, where the direct access to the studied structures is
impossible, too.

What to do in this situation? To think hard about non-invasive methods;
to develop the model to the grade that it is prepared for the moment when
we are able to feed it with data. And in the meantime, to enjoy the lack of
information and speculate as freely as possible.

Therefore, this paper will be quite speculative about how the calcite sin-
gle crystals of the tubular stalactite may be organized. We will modestly join
the common trend of search for “isotropically behaving” anisotropic solids
(He, 2004; Ting, 2005) by presenting a cylindrically anisotropic speleothem
behaving as transversely isotropic.

Our main working tool will be the finite element method. We are well
aware of the geometric simplicity of our problem, which could tempt one
to try analytical methods and present the exact solutions. For us, however,
the way is not our goal and we do not want to obscure simple things by
using heavy tools.

2. Elastic constants of calcite single crystal

Let us have the Hooke’s law written as τ = c ε, where

ε = (εxx, εyy, εzz, 2εyz , 2εxz, 2εxy)
T τ = (τxx, τyy, τzz, τyz, τxz, τxy)

T (1)

are the Voigt 6× 1 strain and stress vectors, respectively, and c is the 6× 6
elastic coefficient matrix.

The general form of the elastic coefficient matrix for trigonal crystals can
be found e.g. in Obetková et al. (1990), p. 381:
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where, as the matrix is symmetric, only the coefficients on and above the
diagonal are given.
For calcite, Chen et al. (2001), give the following values of elastic con-

stants (in GPa, in parentheses is the standard deviation in the units of the
last digit) – Tab. 1:

Table 1. Elastic constants of calcite (in GPa)

c11 c33 c44 c12 c13 c14
149.4(7) 85.2(18) 34.1(5) 57.9(11) 53.5(9) −20.0(2)

The constants are given for the axes setting as in Fig. 1.

3. Transformation of elastic constants

An elastic body is cylindrically anisotropic (with respect to the z-axis),
if the elastic coefficient matrix ccyl describing the Hooke’s law in cylindrical
coordinates is constant throughout the body. As our implementation of
finite element method is formulated in Cartesian coordinates, we have to find
out, how the elastic constants of the Hooke’s law in Cartesian coordinates
change from one point of the cylindrically anisotropic body to another.
At point A on the x-axis (Fig. 2), let us have the values of the elastic

coefficient matrix c(A) given with respect to the Cartesian coordinates, as
it is usual. In Fig. 2 we can see that unit vectors of the unprimed Cartesian
coordinates and cylindrical coordinates at point A are parallel (the unit
vector of the z-axis points perpendicularly to the Fig. 2 plane towards the
reader), therefore (provided the order of components is canonical in both
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Fig. 1. Cleavage rhomb pseudocell of calcite with trigonal (T), hexagonal (H) and Carte-
sian axes (after Chen et al., 2001).

Fig. 2. Relationships between coordinate systems.
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coordinate systems, i.e., x, y, z and r, ϕ, z, respectively) the values of the
coefficients in cylindrical coordinates in A are equal to c(A):

c(A) = ccyl(A). (3)

From the definition of cylindrical anisotropy,

ccyl(A) = ccyl(B). (4)

The rotated (primed) Cartesian unit vectors are parallel with the unit vec-
tors of cylindrical coordinates at point B, therefore

ccyl(B) = c′(B), (5)

where c′(B) is given with respect to the primed coordinate system. (3) –
(5) put together,

c(A) = c′(B). (6)

What we need, however, is c(B) with respect to unprimed Cartesian
coordinates. We transform c′(B) to c(B) in the way proposed byMehrabadi
et al. (1995). Their general expressions yield for our simple case of rotation
around c-axis (pointing in the direction of z coordinate axis – Fig. 1)

c(B) =






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c11 c13 −c14 · K c14 · M 0

c33 0 0 0

c44 0 c14 · M

c44 c14 · K
c11 − c12
2

























, (7)

where K = (2 cos 2β − 1) cos β, L = (1 − 4 cos2 β) sin β, M = (2 cos 2β +
1) sin β. Here, β = α+ ϕ, ϕ = ϕ(B)− ϕ(A) = β − α, and α is the “initial”
rotation angle of the material at point A (Fig. 2). It is important to find
out whether the angle in the used transformation formula is the angle by
which the piece of continuum is rotated, whereas the coordinate axes stand
still, or the opposite – the meaning changes the sign, and misunderstanding
can lead to modelling a structure like in Fig. 3. The rightness of the sign
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Fig. 3. The soda straw cross-section: structure according to the opposite sign of angle in
(7). Arrows indicate the directions of a1(H) axes.

can be verified by a simple numerical test – the structure (Fig. 5) is and
shall behave as axially symmetric, unlike the structure (Fig. 3).
It is very important to have in mind that the matrix of elastic constants

(2) is given and the formula (7) is derived for the standard definition of Voigt
6× 1 strain and stress vectors (1), while some incompatible definitions can
be encountered – mainly where anisotropy is not addressed, e.g. in Kaiser
et al. (1990), p. 200.

4. Problem formulation

Let us have an axially symmetric, cylindrically anisotropic tubular calcite
stalactite of the length L limited by two coaxial cylindrical surfaces – the
outer one with radius R2 and the inner one with radius R1, attached by its
upper end to the planar ceiling of the cave, whereby the ceiling plane and the
plane limiting the stalactite from the lower end are perpendicular to its axis.
The cave behind the ceiling can be considered as an isotropic halfspace. For
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an easier orientation, let us turn the stalactite with the cave upside down
and let us introduce Cartesian (having in mind the finite element method
will be used to solve the problem) coordinate system (Fig. 4).
For the tubular stalactite only, let us consider the case of cylindrical

anisotropy with the matrix of elastic constants independent (in cylindrical
coordinates) of r, ϕ, and z (Fig. 5).
We shall find for which angles of rotation α of single crystals the stalactite

will show mirror symmetry of displacement field under action of a spatially
constant body force.

5. Cylindrically anisotropic ring – a finite element model

For the purpose of finding the angles of mirror symmetry, it will be just
enough to model a stalactite stump with R2 = 0.0028 m, R1 = 0.0024 m,

Fig. 4. Tubular stalactite and the axes’ setting.
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L = R2 − R1 = 0.0004 m, regularly divided into one layer of 64 hexahedral
bilinear finite elements, with their upper base firmly attached (zero displace-
ments prescribed) to the cave ceiling. Let us load the model with spatially
constant body force ρ~g, ~g = (gx, 0, 0), gx = 10 m s

−2, ρ = 2712 kgm−3.

In Fig. 6, the displacement component uy at pointA as the function of
the rotation angle α is shown. For angles where uy(A) = 0, the displace-
ment field is mirror symmetric with respect to the plane M given by ~g and
the axis of the tubular stalactite (cf. Fig. 4), as if the soda straw were
(transversely) isotropic. As the stalactite is cylindrically symmetric, the
computed function uy(α) is valid for any other direction of ~g, provided the
coordinate axes are arranged appropriately. Please note the dotted line of
cos 3α (shown only on interval 〈0, 5π/6〉), enabling us to see that the slopes
|duy/dα| around the roots α1 =

π
6
+m2 π

3
, m ∈ {0, 1, 2} are not equal to

the slopes in the vicinity of α2 =
π
2
+n2 π

3
, n ∈ {0, 1, 2}, which reflects the

different quality of the two sets of roots (to be addressed later).

6. Back to the single crystal

We have seen that there are 6 solutions of our problem on the interval
〈0 , 2π). We wonder whether we can provide, on the level of a single crystal,
some insight into the number and position of the solution points.

First, let us have a closer look at the strain tensor at point A in the
case of mirror symmetry of displacements. As uy is an odd function of y,
uy(x, 0, z) = 0 everywhere on the plane xz (i.e. M). Therefore, both
uy,x(xA, 0, zA) = 0 and uy,z(xA, 0, zA) = 0. As ux and uz are even
in y, their ∂/∂y derivatives must be odd in y, and ux,y(xA, 0, zA) = 0,
uz,y(xA, 0, zA) = 0. Consequently, εxy(A) = εyx(A) = (ux,y + uy,x)/2 = 0
and εyz(A) = εzy(A) = (uy,z+uz,y)/2 = 0. Thus, the strain tensor will have
the form







εxx 0 εxz

0 εyy 0

εzx 0 εzz






, (8)

where only εxx, εyy, εzz and εxz = εzx can be non-zero.
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Fig. 5. The soda straw cross-section: cylindrically anisotropic structure. Arrows indicate
the directions of a1(H) axes (c-axes are normal to the section plane). The figure is drawn
for the case α = 0.

Fig. 6. The displacement uy(α) at point A (full line) and the function cos 3α (dotted
line).
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In the case εxz 6= 0, eigenvectors of the matrix (8) – principal strain axes
– are

(0, 1, 0) ,
(

εxx − εzz −
√

(εxx − εzz)
2 + 4ε2xz, 0, 2εxz

)

, and (9)
(

εxx − εzz +
√

(εxx − εzz)
2 + 4ε2xz, 0, 2εxz

)

.

The case εxz = 0 is trivial. In both cases (with exception of states when
the principal strain directions are undefined), one of the principal strain
directions is perpendicular to the plane of mirror symmetry M and the
other two lie in it.

Second, let us realize that the displacement field is an outcome of the bal-
ance of forces of action – body forces – and of the reaction – the elastic forces.
To achieve a mirror symmetric displacement field, with one of its causes –
the body force – being spatially constant and thus, mirror symmetric, the
other cause – the elastic forces – inevitably must be mirror symmetric, as
well. Therefore, the stress tensor at point A will have a similar structure
as the strain tensor (8) corresponding to mirror symmetry of displacements
– its shearing components, except of τxz and τzx, will be zero. Thus, one
principal axis of stress is perpendicular to M and identical with one of the
principal axes of strain, and the other two coplanar with M , nevertheless,
generally not identical with the principal strain axes which lie within M .

The general conditions of strain and stress having (at least) one common
principal axis (0, 1, 0)

εxy = 0, εyz = 0, τxy = 0, and τyz = 0, (10)

yield, for the calcite single crystal rotated by angle α around its c-axis
pointing in the direction of z coordinate axis, two equations, which are, as
for α, identical:

τxy = 2 c14εxz (−1 + 2 cos 2α) cosα = 0, (11a)

τyz = c14(εxx − εyy) (−1 + 2 cos 2α) cosα = 0. (11b)

It can be easily shown that

324



Contributions to Geophysics and Geodesy Vol. 37/4, 2007

(−1 + 2 cos 2α) cosα = cos 3α. (11c)

Therefore, all the solutions of (11a, b) on the interval 〈0 , 2π) can be
expressed as

α =
π

6
+ k

π

3
, k ∈ {0, 1, 2, 3, 4, 5}. (12)

This set can be split into two subsets:

α1 =
π

6
+m
2 π

3
, m ∈ {0, 1, 2}, (13)

and

α2 =
π

2
+ n
2 π

3
, n ∈ {0, 1, 2}. (14)

The purpose of this splitting will be clarified in the next section.

7. Energetically optimal cylindrically anisotropic soda straws

We have shown that displacement-mirror-symmetric cylindrically aniso-
tropic calcite soda straws are conceivable. Another question is, whether
they can occur in the nature. To address this question, one would need to
describe the crystal growth (and, possibly, later recrystallization) process
on the tip of the soda straw in very fine details, which, as we have to admit
fairly, is beyond our competence.

Therefore, we will rather base our considerations upon the dependence
of total strain energy of the ring of crystals (the dimensions are the same as
in the section 5) on their angle of rotation α for some loading modes, which
come into question as promoters of crystal orientation in the growth phase.

The strain energy of a small-strain deformation of an elastic body can
be expressed as

E =
1

2

∫

V

εij τij dV , (15)
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where i, j ∈ {1, 2, 3}, and 1, 2, 3 stands for x, y, z, accordingly, and the
double index summation convention is used. In our model, the integral is
approximated by replacing the functions εij and τij within each element by
their central values.

One of the promoters of crystal orientation could be the vertical force of
gravity, with ~g = (0, 0, gz), gz = 10 m s

−2. The plot of the angle depen-
dence Eg(α) of the strain energy of a cylindrically anisotropic ring loaded
only by gravity is shown in Fig. 7. As uy(α), the E(α) for all presented
loading modes is periodic with the period 2π

3
. We show only one period of

this function on the interval
〈

π
6
, 5π
6

〉

(Fig. 7).

The other possible promoter could be some (a little bit hypothetic) radial
body force. To allow for comparison of its effects with those of the gravity,
we set its magnitude to the same value as gravity, gr = 10 m s

−2 (Fig. 8).
The corresponding angle dependence will be denoted Er(α).

To complete the list, let us realize that during the (re)crystallization,
there could occur tangential forces due to the expansion of growing domains.
Let us model this loading mode by an equal division of the ring into 64 larger
domains without body forces, alternated by 64 couples of small domains
with (almost) opposite body forces (indicated by black arrows in Fig. 9 –
the number of elements is smaller for better legibility). The proportions
of angular widths of the elements with and without body forces are 1:1:30,
respectively.

For this model configuration, it is not easy to find the way the body
force should be scaled to gravity to allow the quantitative comparison with
other loading modes, so we will show only relative variations of the angle
dependence of the strain energy Et(α) in Fig. 10. An interesting feature are
the extra valleys at π

2
+ n2π

3
, n ∈ {0, 1, 2} and the strain energy maxima

attained at “insignificant” angles.

With this exception, the other maxima and minima for these loading
modes follow the rule valid for the single crystal: the condition of occurrence
of strain energy extrema is the coaxiality of stress and strain tensors (Norris,
2006; Rovati and Taliercio, 2003a; Rovati and Taliercio, 2003b). Thus, it
is not surprising that the energetically extremal configuration is achieved
for the same rotation angles as the angles (12) of partial coaxiality of stress
and strain tensors, ergo the angles of displacement mirror symmetry.

Worth noting are the flat lines of E(α) corresponding to the monocrys-
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Fig. 7. Angle dependence Eg(α) of the strain energy for vertical gravity loading.

Fig. 8. Angle dependence Er(α) of the strain energy for radial body force loading.
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Fig. 9. Cross-section of the model of tangential loading. White arrows indicate the a1(H)
axes of the crystals, black arrows directions of the forces.

Fig. 10. Angle dependence Et(α) of the strain energy for tangential loading.
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talline soda straw (replace β by α in (7)). Obviously, monocrystalline soda
straws are not optimal with regard to the strain energy.

Nevertheless, the relative variations of E(α) in cylindrically anisotropic
straws (with the exception of Er(α)) are quite small and thus unlikely to
favour an energetically optimal growth over the growth with random angle
(resulting to transversal isotropy) or growth dictated by the orientation of
one dominant domain (resulting to the whole ring (or even the whole soda
straw) being a single crystal).

In the superposition of gravity and radial or tangential body forces, their
relative magnitudes are important to judge their importance. Unfortu-
nately, we can well quantify only the gravity – the force with the smallest
influence on the orientation (Fig. 7). If the gravity is much bigger than the
other two, then these latter forces are insignificant for the orientation of the
crystals, in spite of the bigger sensitivity of Er(α) or Et(α) alone to α. Inter-
esting is the fact that radial force (independently of its sign) favours angles
(14) (Fig. 8), whereas gravity (independently of its sign) favours angles (13)
(Fig. 7). With tangential loading, all angles (12) of mirror symmetry are
“almost equally” optimal: the small difference between energy levels for an-
gles (13) and (14) – cf. Fig. 10 – probably converges to zero with increasing
number of finite elements.

8. Comments and conclusion

As we were dealing with a rather canonical than realistic model of the
cylindrically anisotropic tubular stalactite, it made no sense to chase a high
computation accuracy by increasing the number of elements or the degree
of their shape function. We neither made any error estimates, except of a
simple testing of the sensitivity of the results to the number of elements,
which brought no bad surprises to us. Thus, we are quite confident that
the presented results are good estimates of the orders of magnitudes of the
studied quantities. If the orders of displacements and strain energies appear
too small to the reader, we make him aware that a ring of calcite with the
dimensions given in section 5 weights just 7.1 · 10−6 kg.

With very simple tools of numerical mathematics, we gained some valu-
able insights into the problem of tubular stalactite crystalline structure –
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the more valuable the harder it is to find a cylindrically anisotropic soda
straw in the nature.
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