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The effect of a radial magnetic field
on thermal convection in a rotating
cylindrical annulus

M. Revallo
Geophysical Institute of the Slovak Academy of Sciences'

Abstract: The problem of rotating magnetoconvection in a cylindrical annulus in
the presence of a radial magnetic field is considered. Previous studies show that convective
instability has the form of waves travelling in azimuthal direction. Due to the applied
magnetic field the dispersion curve for the Rayleigh number possesses two local minima.
Here we explore this feature in dependence on the system parameters. We also find
conditions for the two local minima existence.
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1. Introduction

The principal convective structure inside planetary cores is believed to
have a form of rolls directed along the rotation axis and propagating in
the azimuthal direction (see Fig. 1). The model of a rotating cylindrical
annulus has been set up by Busse (see e.g. Busse et al., 1997 or Schnaubelt
and Busse, 1997), as a prototype for theoretical modelling and experimental
studies. Assuming the annular radius be large, planar approximation can be
made which enables the use of Cartesian geometry. As a result, an infinite
duct model (Fig. 2) is obtained.

Current study is based on the model considered by it Busse and Finocchi
(1993), where homogeneous basic magnetic field has been imposed. Linear
stability analysis has been performed for various magnetic field orientations.
The convective instability has been found to be oscillatory, having the form
of waves travelling in azimuthal direction. An interesting feature of the
applied magnetic field is that dispersion curve for the Rayleigh number
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Fig. 1. Convection in a rotating annulus (Busse et al., 1997).

exhibits two local minima. In later study by Revallo and Sevéovic (2002) the
two minima phenomenon has been focused on. The condition for the mode
resonance has been computed in dependence on the system parameters. As
such, the local minima emerge at the same value of the Rayleigh number and
can be identified as the two convective modes. Their linear and nonlinear
stability has been explored.

In this paper we pursue the study by Busse and Finocchi (1993) for
the special case of a radial basic magnetic field. We study the dispersion
equation in a more detail for various system parameters choice. This study
is focused on the question of the two mode formation and the condition
for their existence. The paper is organised as follows. In Section 2 we
describe the mathematical model according to Busse and Finocchi (1993).
In Section 3 we outline derivation of the dispersion equation and analyse its
properties. Section 4 summarises the main results.

2. Mathematical formulation

Upon the local Cartesian approximation, the model considered is an in-
finite horizontal duct (Fig. 2), containing an electrically conducting Boussi-
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Fig. 2. Convection in a rotating duct (Revallo and Sevéovic, 2002).

nesq fluid. The duct rotates about the vertical axis and is permeated by
a homogeneous horizontal magnetic field perpendicular to the sidewalls.
Clearly, such configuration corresponds to the radial magnetic field in terms
of the annulus model. The buoyancy is provided by the centrifugal force.
The duct is exposed to the unstable temperature gradient which is directed
opposite to the centrifugal force. The fluid is subjected to a convective in-
stability occurring when heating measured by the Rayleigh number is strong
enough. Convection in the underlying model can be described in terms of
two scalar functions, the velocity potential ¢ and temperature . We do not
derive the mathematical formulation in this paper, for reference see Busse
and Finocchi (1993).

The governing equations (those of Busse and Finocchi, 1993, Egs. 6a, 6b)
are as follows:
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where Ay is the two dimensional Laplacian, Ay = 82, 4+ 2,. The dimen-
sionless parameters in the above equations are the Rayleigh number R, the
Prandt]l number P, the rotation parameter n and the Chandrasekhar num-
ber @) obeying the following definitions

R:'y(TQ—Tl)QQTOD3 p_V n:4QD3tanX :B§D2
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Dimensional parameters in (3) are the angular velocity €2, the basic applied
magnetic field By, the temperature difference T — 71, the kinematic viscos-
ity of the fluid v, the thermal diffusivity , the magnetic diffusivity A, the
density p, the coefficient of thermal expansion v and the magnetic perme-
ability . The other dimensional parameters in (3) relate to the geometry
of the original model in (Fig. 1), namely the height of the annulus L, the
annular radius rg, the thickness of the annular convective zone D and finally
the angle y measures inclination of the annular conical ends.

The sidewalls of the model are supposed to be stress-free and perfectly
thermally conductive, i.e. in terms of the potentials we have

2

Wy 0) = Sl t) = 0y ) =0 at w= ()

3. Properties of the dispersion equation

The linear stability problem will be considered in this study. A solution
satisfying boundary conditions (4) can be sought in the form

Y(z,y,t) = (Piw +m?7? + o?) sin [mn(z + 1/2)] expliay + iwt] (5)
0(z,y,t) = (—ia) sin [mm(z + 1/2)] explioy + iwt], (6)
where m is the radial wavenumber, « is the azimuthal wavenumber and w
is the frequency. Inserting the ansatz (5, 6) into the linearized equations (1,

2), the dispersion equation is obtained
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(Pz'w+m27r2+a2) X
X {(iw+m27r2+a2)(m27r2+042)+Qm27r2+77ia} = Ro?. (7)

Solving the real and imaginary parts of dispersion equation (7) yields
the analytical expressions for the relations R = R(«) and w = w(a). In
Figs. 3.1-3.3 illustrative plots of dispersion curves R = R(«a) and w = w(«)
are shown for various dimensionless parameters P, Q and 7. Especially,
the function R = R(«) is of interest, where two local minima emerge for
sufficiently high values of @ (see Fig. 3.1a) and P (see Fig. 3.2a). The
necessary condition for the left local minimum formation is the presence of
the magnetic field. Inspecting the dispersion curves behaviour shows that
relative position of the local minima and their function value varies with
change of the model parameters.

Changing the magnetic field in terms of () while keeping P, n fixed, for
example, reveals the qualitative change in R = R(«) behaviour as shown
in Fig. 4a. Note that only the global minimum of R = R(«) corresponds
to the convective mode. The symbols A and B will be used to denote the
convective modes. Depending on the value of @ (see Fig. 4a) the single
modes A or B arise. At certain critical value of (). both minima possess
the same value of R, corresponding to the double mode A — B convection.
This resonance property was studied in (Revallo and Sevéovié, 2002) where
the asymptotic expression for the critical value of Q). was derived.

Here we explore the two local minima formation more systematically for
the geophysically relevant parameter ranges of P, () and n. Note that the
minimization of R = R(«) for general choice of the model parameters can
only be performed numerically using the Newton method. The modes A and
B possessing m = 1 have been proved to be the most unstable ones. We have
computed the boundaries between domains of single minimum and two local
minima of R = R(«). The representative results are shown in Figs. 5a,b.
For small values of P and @ only single minimum of R = R(«) is possible
(below the dashed curves). We have also identified domains of the modes A
and B preference (divided by the solid curves). The principal observation
is that increasing the rotation rate n enlarges the domain marked by A in
Figs. 5a,b. Thus making 7 larger favours the two local minima formation
and the A mode preference. With growing 7, stronger magnetic field in
terms of large () is needed to keep the mode B preferred.
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Fig. 3.1 a,b. Dispersion curves R = R(«) and w = w(«) for the modes m =1 and m = 2
(dashed curve) for P = 10, n = 10*. The curves R = R(«) (top to bottom) and w = w(«)
(bottom to top) correspond to Q = 0, 200, 400, 600.
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Fig. 3.2 a,b. Dispersion curves R = R(a) and w = w(a) for the modes m = 1 and
m = 2 (dashed curve) for n = 10*, Q = 500. The curves R = R(a) (bottom to top) and
w = w(a) (bottom to top) correspond to P = 0.01, 0.1, 1, 10.
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Fig. 3.3 a,b. Dispersion curves R = R(a) and w = w(«) for the modes m =1 and m = 2
(dashed curve) for P = 10, Q = 500. The curves R = R(«) (bottom to top) and w = w(a)
(top to bottom) correspond to n = 10*, 2 x 10, 3 x 10*, 4 x 10*.
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Fig. 4 a,b. Dependencies of R = R(a) and w = w(a) for P = 10, n = 10*, for the critical
value Q. and other two values of Q. The two local minima of R = R(«a) at Q. = 325.5
correspond to the two most unstable modes A and B (Revallo and Sevcovié, 2002). The
symbol B identifies the mode which is due to the magnetic field.
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Fig. 5 a,b. Domains of existence of the A and B modes in the P — Q plane for a) n = 10*
and b) n = 10°. The dashed curves divide the domains of single minimum (below) and
two local minima existence. The solid curves correspond to the A — B mode resonance.

4. Conclusions

The two minima dispersion curve phenomenon was explored in depen-
dence on the system parameters, the rotation rate 7, the Chandrasekhar
number ) and the Prandtl number P. Playing with real and imaginary
parts of the dispersion equation was the key analysis tool to obtain the
results in Section 3. The plots of dispersion curves in Figs. 3.1-3.3 show
that the Rayleigh number R dependence on the azimuthal wavenumber « is
rather sensitive to the choice of the system parameters combinations. The
radial mode m = 1 is sufficient to be considered, as it was proved to be
the most unstable one. The number of local minima of R = R(«) and the
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preference of convective modes depend on the system parameters as shown
in Figs. ba,b.

Acknowledgments. The author is grateful to the Slovak Scientific Grant Agency
(grants No. 2/0043/08, 2/0023/08 and 2/6045/27) for the partial support of this work.

References

Busse F. H., Clever R. M., Petry M., 1997: Convection in fluid layers heated from below
in the presence of homogeneous magnetic fields. In: J.Brestensky and S.Sevéik
(eds.), Stellar and Planetary Magnetoconvection. Acta Astron. et Geophys. Univ.
Comenianae, 19, 179-194.

Busse F. H., Finocchi F., 1993: The onset of thermal convection in a rotating cylindrical
annulus in the presence of a magnetic field. Phys. Earth Planet. Inter., 80, 13-23.

Revallo M., Sevéovié D., 2002: On the Ginzburg-Landau system of complex modulation
equations for a rotating annulus with radial magnetic field. Physica D: Nonlinear
Phenomena, 161, 1-19.

Schnaubelt M., Busse F. H., 1997: Thermal convection in the rotating cylindrical annulus.
In: J.Brestensky and S.Sevéik (eds.), Stellar and Planetary Magnetoconvection.
Acta Astron. et Geophys. Univ. Comenianae, 19, 63-78.

60



