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Groundwater flow anomalies due to an
oblate spheroid

M. Hvoždara
Geophysical Institute of the Slovak Academy of Sciences1

Abs t r a c t : The paper presents exact analytical solution of the potential problem

of groundwater steady flow around the oblate spheroid, buried in the uniform porous

medium. The diffusity coefficients of the spheroid and surrounding medium are different.

The solution is expressed in the form of general spherical harmonics in oblate spheroidal

co-ordinate system. The solution for unbounded medium can be also transformed into

similar problem concerning the half-spheroidal (dish-like) syncline at the surface of the

Earth. There is also possible calculation of the heat flow anomaly due to disturbed

groundwater flow.

Key words: groundwater flow, potential due to spheroidal obstacle, geo-
thermal anomalies at geosynclines

1. Introduction

Regardless of the progress in finite-difference or finite-element methods
in solving geophysical potential problems, there are still interesting exact
analytical solutions for calculation of anomalous fields due to bodies which
approximate lateral inhomogeneities in the earth. One of interesting and
illustrative bodies is the oblate spheroid in the unbounded space, and also
half-spheroidal anomalous body at the surface of the earth.
There were presented some solutions for the D.C. geoelectric potential

field (Cook and Nostrand, 1954; Wait, 1982). The magnetic field anomalies
can be easily calculated by the modifications of static-electricity problems
treated in (Smythe, 1968). We shall apply similar treatment to the ground-
water flow problem.

1 Dúbravská cesta 9, 845 28 Bratislava, Slovak Republic; e-mail: geofhvoz@savba.sk
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2. Formulation of the problem

The oblate spheroid we consider to be bounded by rotation of the ellipse
with semiaxes a, b (a > b) around the z axis which prolongates the shorter
semiaxis b downwards to the earth. Then the section of the spheroid by
horizontal plane (x, y) is the circle x2 + y2 = a2. The (x, z) section of the
spheroid is depicted in Fig. 1, where flow lines of the unperturbed uniform
horizontal velocity field far from the spheroid are schematically depicted.
Let the coefficient of filtration of the spheroid be κT , and in the unbounded
medium κ1. According to the steady groundwater flow theory (Bear and
Verruijt, 1987) the velocity V of the flow is obtained as the gradient of the
potential U :

V = − gradU. (1)

The surface density of the water flow is

F = κV, [F ] = (m3/s) ·m−2 = m/s. (2)

It gives volume of the groundwater which is transported in 1 second across
the 1m2 area. In such treatment the filtration coefficients κ1, κT are di-
mensionless. The bulk volume of the fluid transported across some finite
area S is:

Π =

∫

S

F · dS. (3)

κ1 κT
x

z

a
b

f−f

Fig. 1. The (x, z) plane section of the spheroidal body (gray) in uniform unbounded space.
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The velocity field V for the steady flow of the groundwater obeys the equa-
tion of continuity in the form:

divV = 0, (4)

so the potential U satisfies the Laplace equation:

∇2U = 0. (5)

The potential of unperturbed uniform velocity field V0 ≡ (V0, 0, 0) far from
the spheroid is:

U0(x, y, z) = −V0 · x. (6)

The presence of the spheroid causes perturbation outside the spheroid of
the potential U ∗

1 (x, y, z) which also obeys Laplace’s equation:

∇2U∗

1 (x, y, z) = 0. (7)

The flow potential in the interior of the spheroid is UT (x, y, z), which is
also the harmonic function. On the surface Γ of the spheroid we must have
continuity of the potentials and normal flow density:

[U0 + U∗

1 ]Γ = [UT ]Γ , (8)

κ1∂ [U0 + U∗

1 ] /∂n|
Γ
= κT [∂UT /∂n]

Γ
. (9)

The methods of mathematical physics (Morse and Feschbach, 1953; Arfken,
1966) give very effective tools for solutions of the above potential problem
using the methods of separation of variables for the oblate spheroidal coor-
dinate system (α, β, ϕ). These are linked to our Carthesian system (x, y, z):

x = f chα sinβ cosϕ, y = f chα sinβ sinϕ, z = f shα cos β, (10)

(Madelung, 1957; Lebedev, 1963). The coordinates α, β, ϕ are from intervals
α ∈ 〈0,+∞), β ∈ 〈0, π〉, ϕ ∈ 〈0, 2π〉 and f is the oblatness parameter
(f =

√
a2 − b2).

From transformation equations (10) it can be derived that the coordinate
surfaces α = const are oblate rotational ellipsoids

x2 + y2

f2 ch2 α
+

z2

f2 sh2 α
= 1, or

r2

f2 ch2 α
+

z2

f2 sh2 α
= 1, (11)
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where r =
√

x2 + y2 is distance from z axis. The equation of generating the
ellipse in the (x, z) plane for our spheroid is:

x2

a2
+

z2

b2
= 1. (12)

This is matched to the spheroid α = α0 of the sets of spheroids (11) if we
put:

a2 = f2 ch2α0, b2 = f2 sh2α0. (13)

We know that there holds

ch2α0 − sh2α0 = 1, (14)

so we easily find:

f2 = a2 − b2, f =
√

a2 − b2, (15)

which means that f is numerical excentricity of the generating ellipse. The
polar axis for the angle β; is z ∈ 〈0,+∞) it corresponds to β = 0. The
coordinate surfaces β = const are obtained from (10) by excluding chα and
shα by using (14). These are confocal rotational hyperboloids (see Fig. 2):

r2

f2 sin2 β
− z2

f2 cos2 β
= 1. (16)

It is necessary to note, that the plane z = 0 corresponds to the surface
α = 0, and the circle x2 + y2 = f2 is the focal circle. From relations (13)
we also obtain:

eα0 = (a+ b)/f, α0 = ln[(a+ b)/f ]. (17)

In this manner we can link spheroidal coordinate system (α, β, ϕ) with the
generating ellipse. We add that Lame’s metrical parameters are as follows:

hα = f
√

ch2α − sin2 β, hβ = hα, hϕ = f chα sinβ, (18)

(see e.g. Madelung, 1957). The particular solution of the Laplace equation
in the system (α, β, ϕ) can be found e.g. in (Lebedev, 1963 ) in the form:
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Fig. 2. The (x, z) section of coordinate surfaces α = const (ellipses), and β = const
(hyperboles).

Umn(α, β, ϕ) = [Mmn cosmϕ+Nmn sinmϕ]

{

Pm
n (i shα)

Qm
n (i shα)

}

Pm
n (cos β), (19)

where i =
√
−1 is imaginary unit and P m

n (i shα), Qm
n (i shα) are associated

Legendre functions of degree n, order m; pure imaginary argument i shα.
The P m

n (cos β) is known as associated Legendre function of real argument
cos β. The transformation of the unperturbed potential (6) into spheroidal
system is:

U0(α, β, ϕ) = −V0f chα sinβ cosϕ. (20)

The dependence on ϕ is given by cosϕ, so we must take in (19) the order
number m = 1 also in potentials U ∗

1 and UT (α, β, ϕ). This is guaranteed
by the orthogonality of goniometric functions cosmϕ and sinmϕ on the
interval ϕ ∈ 〈0, 2π). Similarly, the dependence on β in (20) is via sinβ ≡
P 11 (cos β). The orthogonality of Legendre functions P m

n (cos β) implicates
this dependence on β in both potential U ∗

1 and UT , so we will have the
degree number n = 1. In the theory of general associated spherical functions
(Smythe, 1968 ), there is a proof that we can calculate it as:
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P 11 (i ξ) =
√

1 + ξ2, (21)

Q11(i ξ) =
−ξ

√

1 + ξ2
+

√

1 + ξ2 arctg(1/ξ), (22)

where we must substitute ξ = shα. It can be found that P 11 (i shα1) =
(1 + sh2α)1/2 = chα. This function is bounded for α → 0, but tends to
infinity for α → ∞. So, only this function must be used for the interior
of the spheroid α ∈ 〈0, α0). The function of the second kind Q11(i ξ) has
singular derivative dQ11(i ξ)/∂ξ for ξ = shα → 0, which would give infinite
gradient of potential which is physically inacceptable, since there are no
sources of the field. In (Smythe, 1968 ) we can also find the more suitable
expression for Q11(i ξ), namely for ξ >> 1:

Q11(i ξ) = 2
√

1 + ξ2
∞
∑

k=0

(−1)k(k + 1)
(2k + 3)

1

ξ2k+3
. (23)

It is clear that lim
α→∞

Q11(i shα) = 0.

In view of the properties P 11 (i shα) and Q11(i shα) the potential in the inte-
rior of the spheroid will be:

UT (α, β, ϕ) = −V0B1f chα sinβ cosϕ. (24)

The perturbing potential outside of the spheroid will be:

U∗

1 (α, β, ϕ) = −V0fA1Q
1
1(i shα) sin β cosϕ, (25)

since P 11 (cos β) = sinβ. The total potential outside of spheroid is:

U1(α, β, ϕ) = −V0f
[

chα+A1Q
1
1(i shα)

]

sinβ cosϕ. (26)

The coefficients A1B1 which determine the change of the potentials of the
velocity are determined from boundary conditions on the surface of the
spheroid, where α = α0 and κ∂U/∂n = κnα · gradU = κh−1

α ∂U/∂α. Then
the boundary conditions (8), (9) are transformed into the form:

[UT ]α0 = [U1]α0 , (27)
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κT [∂UT /∂α]α0 = κ1 [∂U1/∂α]α0 . (28)

After substituting (24) and (26) taking into account the continuity of surface
harmonics sinβ cosϕ, we obtain two linear equations for A1, B1:

chα0 +A1Q
1
1(i shα0) = B1 chα0,

shα0 +A1 i chα0Q
1
1

′

(i shα0) = (κT /κ1)B1 shα0. (29)

The solution will give:

A1 =
(κT /κ1 − 1) shα0 chα0

i(chα0)2Q11
′
(i shα0)− (κT /κ1) shα0Q11(i shα0)

, (30)

B1 = 1 +A1Q
1
1(i shα0)/ chα0. (31)

In this manner we can calculate the necessary potentials and their gradients
velocity field.

3. Numerical calculations for the spheroid in unbounded

medium

Now we pay our attention to the calculations of the potential and ve-
locity field in Carthesian coordinates. The expression (24) of the inte-
rior potential can be easily transformed, since according to (10) we have
x = f chα sinβ cosϕ. Then:

UT (x, y, z) = −V0B1 · x. (32)

It corresponds to the uniform, x-oriented velocity field VT ≡ (V0 · B1, 0, 0)
in the Carthesian system. The potential U1(α, β, ϕ) outside of the spheroid
is the sum of the unperturbed potential U0(α, β, ϕ) and the perturbing po-
tential U ∗

1 (α, β, ϕ). We wish to calculate this perturbing potential and its
gradient in a network of (x, y, z) variables, so we must calculate proper
spheroidal coordinates (α, β, ϕ). We can calculate the values of chα, shα
by using the transformation relations (10) and the properties of confocal el-
lipses. We know that the coordinate line α = const is an ellipse of equation
(11) in (r, z) plane; their foci are in points r = ±f in the plane z = 0, major
semiaxis is f chα and minor semiaxis is f shα. For every (r, z) point of this
ellipse it is the sum of distances from the first and second focus equal to the
doubled value of major semiaxis which is 2f chα. There must hold:
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[

(r − f)2 + z2
]1/2
+

[

(r + f)2 + z2
]1/2
= 2f chα, (33)

where r =
√

x2 + y2. From this equation we can determine the value chα,
since f =

√
a2 − b2 is a constant given by the contour ellipse of the spheroid

which creates whole family of confocal ellipses α = const. From known
value of chα we can determine shα as

shα =
[

ch2α − 1
]1/2

, (34)

and eα = chα+ shα. (35)

Then we can easily determine also the value of coordinate β, using (10),
which gives:

cos β = z/(f shα) (36)

for z = 0 and r > f these relation holds also true (there we have chα = r/f
and β = π/2). Inside of focal circle z = 0, r < f we must be more careful.
The value of α is zero and from (33) we have:

2f chα = |r − f |+ |r + f | = f − r + r + f = 2f, (37)

so we obtain chα = 1, shα = 0. But inside this circle the value of coordinate
β is changing as follows from the equation of confocal hyperboloids (16),
where we put z = 0 an then

sinβ = r/f. (38)

For the azimuthal angle ϕ we have:

tgϕ = y/x. (39)

Using these formulae we can assign to each x, y, z point its spheroidal coor-
dinates (α, β, ϕ) and calculate the perturbing potential:

U∗

1 (α, β, ϕ) = −V0 f A1Q
1
1(i shα) sin β cosϕ, (40)

and also components of the velocity:

V ∗(α, β, ϕ) = − gradU ∗

1 (α, β, ϕ),
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a, b, f = 10.00, 4.00, 9.17, m
prof : yc, zp = .00, 2.00, m
V0 = 1.0 m/s, α0 = .424, κ1 = 1.000, κT = 5.000

x/a

z/a

Fig. 3a. Equipotential lines U(x, 0, z) in [m2/s], (full lines) and velocity arrows inside and
around the spheroid for κT /κ1 = 5.

V ∗

α = − 1
hα

∂U∗

1

∂α
, V ∗

β = − 1
hβ

∂U∗

1

∂β
, V ∗

ϕ = − 1
hϕ

∂U∗

1

∂ϕ
. (41)

These derivatives can be easily calculated, but we need to transform these
spheroidal vector components into Carthesian ones. We can use the relations
given in (Madelung, 1957 ) with proper changes of the spheroidal coordinates
notation:

V ∗

x = V ∗

r cosϕ − V ∗

ϕ sinϕ,

V ∗

y = V ∗

r sinϕ − V ∗

ϕ cosϕ,

V ∗

z =
[

−V ∗

β sinβ shα+ V ∗

α chα cos β
]

·
[

ch2α − sin2 β
]

−1/2
, (42)

where

V ∗

r =
[

−V ∗

α sinβ shα+ V ∗

β chα cos β
]

·
[

ch2α − sin2 β
]

−1/2

is the radial velocity component in x, y plane.
For our numerical calculations have chosen various parameters of the

spheroid. In order to reduce the number of figures we present here isoline
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V0 = 1.0 m/s, α0 = .424, κ1 = 1.000, κT = 5.000
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zp/a = 0.20

Fig. 3b. The equipotential lines of the perturbing potential U∗(x, yc, z) in [m
2/s], inside

and around the spheroid for κT /κ1 = 5, and its profile curve for zp/a = 0.2.

and profile curves for the spheroid with dimensions a = 10m, b = 4m,
which gives f = (a2 − b2)1/2 = 9.165m and the parameter α0 according
to (17) is α0 = 0.424. We put filtration ratio κT /κ1 = 5, which means
that the spheroidal body is highly porous (penetrable) in comparison with
the surrounding medium. We put the unperturbed velocity V0 = 1m/s,
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prof : yc, zp = .00, 2.00, m
V0 = 1.0 m/s, α0 = .424, κ1 = 1.000, κT = 5.000

x/a

100 ∗ Vx(x, yc, zp)/V0

zp/a = 0.20

Fig. 3c. The isolines of the horizontal Vx-component of the flow velocity, inside and around
the high porosive spheroid κT /κ1 = 5. The profile curve shows more detailed course of
Vx along the line yc = 0, zp/a = 0.2.

which is unusually high for real groundwater, but the presented results can
be easily matched to smaller values of V0, e.g. V0 = 0.01m/s. In series of
Figs. 3a–d we present isoline results for the central plane yc = 0, and profile
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Fig. 3d. The same as in Fig. 3c, but for the vertical component Vz.

curves are plotted for the depth zp = b/2 (2m), which corresponds to some
z-shifted plane in the spheroid. In Fig. 3a we can see isolines of total poten-
tial U(x, 0, z) around and inside of spheroid (full lines), and vector around
the velocity field (gray arrows). The length of velocity arrows was restricted
to some interval, but their directions are true. We can see that far from
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a, b, f = 10.00, 4.00, 9.17, m
depth : z = .00, m
V0 = 1.0 m/s, α0 = .424, κ1 = 1.000, κT = 5.000

x/a

y/a U (x, y, z) and V isolines

Fig. 4a. Equipotential lines U(x, y, 0) in [m2/s], (full lines) and velocity arrows inside and
around the spheroid for κT /κ1 = 5. The gray circle is the cross-section of the spheroid
by the plane z = 0.

the spheroid there is velocity field uniform, x-directed, but the spheroid
with high filtration coefficient (κT /κ1) = 5 attracts the velocity arrows to
its surface. Inside of the spheroid the velocity field is again uniform, and
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a, b, f = 10.00, 4.00, 9.17, m
depth : z = .00, m
V0 = 1.0 m/s, α0 = .424, κ1 = 1.000, κT = .200

x/a

y/a U (x, y, z) and V isolines

Fig. 4b. The same as in Fig. 4a, but for the spheroid with κT /κ1 = 0.2.

x-directed in agreement with potential (32). Although the velocity values
inside of the spheroid are low (shown in Fig. 3b), the continuity of normal
flow on the spheroid boundary is preserved according the boundary condi-
tion (28). In Fig. 3b we present isolines of anomalous potential U ∗ in the
central plane (yc = 0) inside and around the spheroid, and in addition its
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Fig. 5a. Equipotential lines U(x, 0, z) in [m2/s], (full lines) and velocity arrows inside and
around the half spheroid for κT /κ1 = 5.

profile curve along the line yc = 0, zp/a = 0.2. Figs. 3c and 3d present
calculated values of Vx/V0, and Vz/V0 in isoline maps and also along the
selected profile line mentioned above. The Vy component of velocity is not
presented, since it is zero in all the plane yc = 0. Note, that Vz is zero inside
of the spheroid, since gradUT has zero value of its z-component, as follows
from the formula (32). The Vx values are also decreased inside the spheroid
because of high κT /κ1 value, but the continuity of normal water flow n · F
on the surface of spheroid is preserved. In order to study the velocity field
in the plane z = 0 we present Figs. 4a,b for two cases of κT /κ1 = 5 or
0.2. We can see total potential isolines and also directions of the flow in
horizontal x, y plane, where the cross-section of the spheroid is the circle of
radius a. When κT /κ1 = 5, the velocity lines tend to flow into high porous
spheroid (Fig. 4a), but if κT /κ1 = 0.2, they avoid this region.
The solution of our problem can be easily used as a solution for the

half-spheroidal body (syncline) at the surface of the earth. On the pla-
nar surface z = 0 we must have zero value of vertical velocity component.
This boundary condition is guaranteed by the property [∂U/∂z]z=0 = 0,
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Fig. 5b. Equipotential lines U(x, 0, z) in [m2/s], (full lines) and velocity arrows inside and
around the half spheroid for κT /κ1 = 0.2.

which is satisfied, because the potentials U0, U
∗

1 (α, βϕ), UT (α, β, ϕ) satisfy
the boundary condition h−1

β [∂U/∂β]β=π/2 = 0. Their β-dependence is via
sinβ and surface β = π/2 is identical with z = 0, where d sinβ/d β = 0.
According to formulae (42) the perturbation part of velocity V ∗

z attains zero
value clearly, because V ∗

α is multiplied by cos β. Figures 5a,b show potential
lines and velocity arrows for the yc = 0 for both ratios of κT /κ1 (=5 or 0.2).
Comparing the part z > 0 of Fig. 3a with 5a we see their identity.
For the geothermal water flow we can also obtain some knowledge in

a similar way as in our previous paper (Hvoždara, 2005) for the cylindri-
cal obstacle in the halfspace. It has been proved that the convective heat
transfer is controlled by the vertical component of velocity, the heat flow
density is qcn = −Cvρ T Vz, where Cv is the specific volume heat, ρ is the
water density, T is temperature. The negative sign in this formula is due to
our orientation of z-axis, down into earth. Although we did not calculate
some model for the temperature perturbation due to the spheroid, we can
obtain some qualitative results considering the groundwater flow velocity
field. From Fig. 3d we can see that the convective heat transport to the
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earth’s surface is positive in the region outside of the left quarter of the
spheroid (x < 0, z > 0), where Vz is negative. The profile curve for the
depth zp/a = 0.2 shows that the disturbance in Vz can attain up to 70% of
V0. Similar qualitative guess can be obtained also from Fig. 5a for the half-
spheroidal body. If the spheroid is not permeable (κT /κ1 = 0.2), the region
with Vz < 0 and qcn > 0 is in the right quarter of the spheroid as can be
seen from Fig. 5b. More precise calculation of the refraction and convective
heat flow anomaly (Hvoždara, 2005) will be the subject of a separate paper
in preparation.
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