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Abstract: A generalized mathematical model of the Earth’s density structure is pre-

sented in this study. This model is defined based on applying the spectral expressions for

a 3-D density distribution within the arbitrary volumetric mass layers. The 3-D density

model is then converted into a form which describes the Earth’s density structure by means

of the density-contrast interfaces between the volumetric mass layers while additional cor-

rection terms are applied to account for radial density changes. The applied numerical

schemes utilize methods for a spherical harmonic analysis and synthesis of the global

density structure models. The developed the Earth’s density models are then defined in

terms of the spherical density and density-contrast functions. We also demonstrate how

these Earth’s density models can be applied in the gravimetric forward modeling and

discuss some practical aspects of representing mathematically density structures within

particular components of the Earth’s interior.
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1. Introduction

Several Earth’s synthetic models of seismic velocities and/or mass den-
sity distribution were developed based on analysis of available seismic data
and additional geophysical constraints. Dziewonski et al. (1975) introduced
the Parametric Earth Models (PEMs) consisting of piece-wise continuous
analytical functions of the radial density and velocity variations defined in-
dividually for the oceanic (PEM-O) and continental (PEM-C) lithosphere
down to a depth of 420 km while below this depth these two models are
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identical. They also provided an averaged function for the whole lithosphere
(PEM-A). Dziewonski and Anderson (1981) later presented the Preliminary
Reference Earth Model (PREM) which provides information on the seismic
velocities and the density structure within the whole Earth’s interior (includ-
ing the core and mantle) by means of spherically homogenous stratigraphic
layers. Kennett and Engdahl (1991) compiled the parameterized velocity
model IASP91 that summarized travel time characteristics of main seismic
phases. Kennett et al. (1995) compiled the AK135-f model by augmenting
the AK135 velocity model with the density and Q-model of Montagner and
Kennett (1995). Van der Lee and Nolet (1997) prepared the 1-D averaged
model MC35 based on the PEM-C while replacing the high- and low-velocity
zones of the PEM-C by a constant S-wave velocity of 4.5 km s−1 within the
upper mantle down to a depth of 210 km. Kustowski et al. (2008b) derived
the transversely isotropic reference Earth model STW105. More recently,
Simmons et al. (2010) developed the GyPSuM tomographic model of the
mantle (P and S) seismic velocities and density through a simultaneous
inversion of seismic body-wave travel times and geodynamic observables in-
cluding the free-air gravity anomalies, tectonic plate divergence, dynamic
surface topography and the excess ellipticity of the core-mantle boundary.
They also incorporated mineral physics constraints in order to link seismic
velocities and wave speeds with an underlying hypothesis that temperature
is a principal cause of heterogeneities in the non-cratonic mantle. In addi-
tion to these studies several other global and regional seismic velocity models
were developed. For more details we refer readers to studies, for instance, by
Grand et al. (1997), Mégnin and Romanowicz (2000), Grand (2002), Gung
and Romanowicz (2004), van der Lee and Frederiksen (2005), Panning and
Romanowicz (2006), Houser et al. (2008), Kustowski et al. (2008a, 2008b),
Bedle and van der Lee (2009), Panning et al. (2010), Obrebski et al. (2010,
2011), Porritt et al. (2011), James et al. (2011), Lekic and Romanowicz
(2011) and Simmons et al. (2012). Summary of these models can also be
found in Trabant et al. (2012).

The PEM and PREM models provide 1-D density information only. The
Earth’s interior is obviously represented more realistically by synthetic mod-
els consisting of stratigraphic layers with a variable depth, thickness and
density distribution. Currently available global models provide information
on a 3-D density structure only within the crust and upper mantle. Nataf
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and Ricard (1996) derived a global model of the crust and upper mantle den-
sity structure based on analysis of seismic data and additional constrains
such as heat flow and chemical composition. Mooney et al. (1998) compiled
the global crustal model with a 5×5 arc-deg spatial resolution. The updated
global crustal model CRUST2.0 was compiled with a 2×2 arc-deg spatial
resolution (Bassin et al., 2000). Both models were compiled based on seis-
mic data published until 1995 and a detailed compilation of the ice and
sediment thickness. The CRUST1.0 is the most recent version complied
globally with a 1×1 arc-deg spatial resolution (Laske et al., 2012). The
CRUST1.0 consists of the ice, water, (upper, middle and lower) sediments
and (upper, middle and lower) consolidated (crystalline) crustal layers. In
addition, the lateral density structure of the upper mantle was incorporated
into the CRUST2.0 and CRUST1.0 models. The globally averaged data
from active seismic methods and deep drilling profiles were used to predict
the sediment and crustal structure where no seismic measurements were
available (most of Africa, South America, Greenland and large parts of the
oceanic lithosphere) by a generalization to similar geological and tectonic
settings. Despite the density distribution within deeper crustal structure
over large parts of the world is not yet known with a sufficient resolution
and accuracy, there are several global datasets which provide more detailed
information on the density distribution within shallower crustal structures.
Chen and Tenzer (2015) used such datasets for a compilation of the Earth’s
Spectral Crustal Model (ESCM180) with a spectral resolution complete to
a spherical harmonic degree of 180 by incorporating more detailed informa-
tion on the topography, bathymetry, polar ice sheets and geoid surface into
the CRUST1.0 model.

In this study a mathematical formalism is developed for describing the
Earth’s density structure by means of a 3-D density distribution within
stratigraphic mass layers. This description is then modified by means of the
density-contrast interfaces. Both formulations are presented in a frequency
domain in terms of the spherical density and density-contrast functions.
The spectral expressions for describing the Earth’s density structure (given
in Sections 2 and 3) are applied in gravimetric forward modeling in Section
4. Some practical aspects of representing the Earth’s lithospheric structures
are discussed in Section 5. Summary and concluding remarks are given in
Section 6.
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2. 2-D Earth’s density model

To begin with we first assume only a lateral density distribution. This
density model is applied to describe the geometry and density distribution
within an arbitrary volumetric mass layer in a frequency domain. We then
present 2-D Earth’s density models described using this spectral represen-
tation of the volumetric mass density layers and respective density-contrast
interfaces.

2.1. 2-D density layers

The Earth’s density structure is represented by a finite number of volu-
metric mass layers defined by sets of geometric and density parameters.
Adopting the spherical approximation of the Earth, the geometry of each
volumetric layer is defined by the heights U and L of the upper and lower
bounds respectively, where these heights are stipulated with respect to the
Earth’s mean radius R. For the upper and lower bounds located below the
geoid surface (approximated by the sphere of radius R), the parameters U
and L become negative. It is worth mentioning that a relative error due to
applying the spherical (instead of ellipsoidal) approximation of the Earth is
about 0.3% (e.g., Heiskanen and Moritz, 1967).

For the q-th volumetric mass layer, a lateral density distribution is de-
fined by:

ρq (r,Ω) ∼= ρq (Uq,Ω) for R+ Uq (Ω) ≥ r > R+ Lq (Ω) q = 1, 2, ..., Q , (1)

where ρ (U,Ω) is a (nominal) lateral density stipulated at an upper bound
U and a location Ω, and Q is a total number of volumetric mass layers
applied to describe the Earth’s density structure. A 3-D position is defined
in the spherical coordinate system (r,Ω); where r is the geocentric radius,
and Ω = (φ, λ) denotes the geocentric direction with the spherical latitude
φ and longitude λ.

Taking into consideration two successive volumetric mass layers q and
q + 1, the density contrast at their interface is given by:

Δρq+1,q (Lq,Ω) ≡ Δρq+1,q (Uq+1,Ω) = ρq+1 (Uq+1,Ω)− ρq (Uq,Ω) ,

Lq ≡ Uq+1 q = 1, 2, ..., Q − 1 .
(2)
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If we neglect the atmospheric density, the density contrast between the
Earth’s atmosphere and the first Earth’s inner density layer (q = 1) are
approximately equal: Δρ1,0(U1,Ω) ≈ ρ1(U1,Ω). The upper bound is U1 =
H on land and U1 = 0 offshore, where H denotes the topographic height.

2.2. Spherical 2-D density and density-contrast functions

Applying methods for a spherical harmonic analysis of the density structure
the combined information on the geometry and density distribution within
a volumetric mass layer is described by the spherical lower- and upper-
bound density functions. These functions including their higher-order terms
{ q(ρL)

(k)
n , q(ρU)(k)n : k = 1, 2, ...; q = 1, 2, ..., Q} are computed based on

applying a numerical discretization to the following integral convolutions:

q(ρL)
(k)
n =

2n+ 1

4π

∫∫
Φ

ρq
(
Uq,Ω

′) Lk
q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q(ρL)

(k)
n,m Yn,m(Ω) ,

(3)

and

q(ρU)(k)n =
2n+ 1

4π

∫∫
Φ

ρq
(
Uq,Ω

′) Uk
q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q(ρU)(k)n,m Yn,m(Ω) ,

(4)

where Yn,m are the (fully-normalized) spherical harmonics of degree n and
order m. The Legendre polynomials Pn in Eqs. (3) and (4) are comput-
ed for the argument of cosine of the spherical distance ψ between two
points (r,Ω) and (r′,Ω′). The infinitesimal surface element on the unit
sphere is denoted as dΩ′ = cosφ′ dφ′ dλ′, and Φ = {Ω′ = (φ′, λ′) : φ′ ∈
[−π/2, π/2]∧λ′ ∈ [0, 2π)} is the full spatial angle. The numerical coefficients

{q(ρL)(k)n,m , q(ρU)(k)n,m : k = 1, 2, ...; q = 1, 2, ..., Q} are generated to a certain
degree of spherical harmonics using discrete data of density, height/depth
and thickness of a particular structural component of the Earth’s interior.

Substituting Eqs. (3) and (4) to Eq. (2), the spherical density-contrast

functions and their higher-order terms {q+1,q(ΔρL)(k)n : k = 1, 2, ...; q =
1, 2, ..., Q − 1} are introduced by:
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q+1,q(ΔρL)(k)n =

=
2n+ 1

4π

∫∫
Φ

[
ρq+1

(
Uq+1,Ω

′)− ρq
(
Uq,Ω

′)]Lk
q

(
Ω′)Pn(cosψ) dΩ

′ =

=
2n+ 1

4π

∫∫
Φ

Δρq+1,q
(
Lq,Ω

′) Lk
q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q+1,q(ΔρL)(k)n,m Yn,m(Ω) , (5)

where the coefficients {q+1,q(ΔρL)(k)n,m : k = 1, 2, ...; q = 1, 2, ..., Q − 1} are
generated from discrete data of lateral density contrast and height/depth of
each density interface. Alternatively, these coefficients can directly be gen-
erated from the coefficients q(ρL)

(k)
n,m and q+1(ρU)(k)n,m by using the following

relation:

q+1,q(ΔρL)(k)n,m = q+1(ρU)(k)n,m − q(ρL)
(k)
n,m . (6)

As seen in Eq. (5), the spherical density-contrast functions are defined at
the lower bounds {Lq : q = 1, 2, ..., Q − 1} of volumetric mass layers. The
density contrast at each interface is then computed as the difference between
the lateral density values within underlying and overlying layers q + 1 and
q, where the lateral densities are (formally) referenced to the upper bounds
{Uq, Uq+1 : q = 1, 2, ..., Q − 1} of these layers (see Eq. 1).

2.3. Earth’s lateral density structure

We now apply the (first-order) spherical density functions (ρL)n ≡ (ρL)(1)n

and (ρU)n ≡ (ρU)(1)n to describe the Earth’s density structure. From Eqs.
(3) and (4), we have:

Q∑
q=1

[
q(ρU)n − q(ρL)n

]
=

2n+ 1

4π

∫∫
Φ

ρ1
(
U1,Ω

′) U1

(
Ω′)Pn(cosψ) dΩ

′+

+
2n+ 1

4π

∫∫
Φ

[
ρ2
(
U2,Ω

′)− ρ1
(
U1,Ω

′)]L1

(
Ω′)Pn(cosψ) dΩ

′+
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+
2n+ 1

4π

∫∫
Φ

[
ρ3
(
U3,Ω

′)− ρ2
(
U2,Ω

′)]L2
(
Ω′)Pn(cosψ) dΩ

′+

...

+
2n+ 1

4π

∫∫
Φ

[
ρQ

(
UQ,Ω

′)− ρQ−1
(
UQ−1,Ω

′)]LQ−1
(
Ω′)Pn(cosψ) dΩ

′−

− 2n+ 1

4π

∫∫
Φ

ρQ
(
UQ,Ω

′)LQ
(
Ω′)Pn(cosψ) dΩ

′ . (7)

Substituting from Eq. (2) to Eq. (7), we get:

Q∑
q=1

[
q(ρU)n − q(ρL)n

]
=

2n+ 1

4π

∫∫
Φ

ρ1
(
U1,Ω

′) U1
(
Ω′)Pn(cosψ) dΩ

′+

+
2n+ 1

4π

∫∫
Φ

Δρ2,1
(
L1,Ω

′) L1
(
Ω′)Pn(cosψ) dΩ

′+

+
2n+ 1

4π

∫∫
Φ

Δρ3,2
(
L2,Ω

′) L2
(
Ω′)Pn(cosψ) dΩ

′+

...

+
2n+ 1

4π

∫∫
Φ

ΔρQ,Q−1
(
LQ−1,Ω

′) LQ−1
(
Ω′)Pn(cosψ) dΩ

′−

− 2n+ 1

4π

∫∫
Φ

ρQ
(
UQ,Ω

′)LQ
(
Ω′)Pn(cosψ) dΩ

′ . (8)

Taking into consideration definitions of the spherical density and density-
contrast functions in Eqs. (3-5), the summation in Eq. (8) becomes:

Q∑
q=1

[
q(ρU)n − q(ρL)n

]
=

n∑
m=−n

1(ρU)n,m Yn,m(Ω)−

−
n∑

m=−n
Q(ρL)n,m Yn,m(Ω) +

Q−1∑
q=1

n∑
m=−n

q+1,q(ΔρL)n,m Yn,m(Ω) .

(9)
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The Earth’s density model in Eq. (9) is defined in terms of the spher-
ical density-contrast coefficients {q+1,q(ΔρL)n,m : q = 1, 2, ..., Q − 1} of
all interfaces where the (lateral) density contrasts are defined. Moreover,
this description also incorporates the coefficients q=1(ρU)n,m of the upper
bound of the first volumetric layer (q = 1) and the coefficients q=Q(ρL)n,m
of the lower bound of the last volumetric layer (q = Q). As seen in Eq. (9),
the description of the Earth’s density structure utilizes only the first-order
spherical harmonics (ρL)(1)n , (ρU)(1)n and (ΔρL)(1)n . The higher-order terms
of these spherical harmonics (for k = 2, 3, ...) are applied in expressions for
the gravimetric forward modeling of the Earth’s density structure. A dis-
cussion of this subject is postponed until Section 4.

We note that if the density structure is described down to the mass center
of the Earth, i.e.

∑n

m=−n Q(ρL)n,m Yn,m(Ω) = 0, the model in Eq. (9)

reduces to:

Q∑
q=1

[
q(ρU)n − q(ρL)n

]
=

n∑
m=−n

1(ρU)n,m Yn,m(Ω)+

+
Q−1∑
q=1

n∑
m=−n

q+1,q(ΔρL)n,m Yn,m(Ω) .

(9a)

3. 3-D Earth’s density model

The definitions given in Section 2 are extended here for a more general-
ized description of the Earth’s density structure by means of a 3-D density
distribution function defined for each volumetric mass layer and respective
density contrast interfaces. These generalized descriptions are then applied
in deriving the 3-D Earth’s density model.

3.1. 3-D density layers

Here we approximated the actual density within an arbitrary volumetric
mass layer by a laterally-distributed radial density variation model using
the following polynomial function (for each lateral column):
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ρq(r,Ω) ∼= ρq(Uq,Ω) + qβ(Ω)

Iq∑
i=1

qαi(Ω) (r −R)i

for R+ Uq (Ω) ≥ r > R+ Lq(Ω) q = 1, 2, ..., Q ,

(10)

where ρq(Uq,Ω) defines again (see Eq. 1) a nominal value of the lateral
density stipulated at an upper bound Uq and a location Ω. The radial
density change with respect to this nominal density ρq(Uq,Ω) is described
by the parameters qβ and {qαi : i = 1, 2, ..., Iq}, where Iq is a maximum
order of the radial-density function used to describe a radial density change
within a particular volumetric mass layer q. Note that the radial density
change within each volumetric mass layer is generally described to a different
order of Iq. The linear density change, for instance, requires radial-density
terms up to the first order while higher-order terms take into consideration
also non-linear changes in radial density distribution.

3.2. Spherical 3-D density and density-contrast functions

For the 3-D density distribution model in Eq. (10) the spherical lower-
and upper-bound density functions and their higher-order terms { q(ρL)

k+i
n ,

q(ρU )k+i
n : k = 1, 2, ...; i = 0, 1, ..., Iq ; q = 1, 2, ..., Q in Eqs. (3) and (4) are

further modified into the following form (Tenzer et al., 2012a):

q(ρL)
(k+i)
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n+ 1

4π

∫∫
Φ

ρq
(
Uq,Ω

′) Lk
q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q(ρL)

(k)
n,m Yn,m(Ω) i = 0

2n+ 1

4π

∫∫
Φ

qβ
(
Ω′)

qαi

(
Ω′) Lk+i

q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q(ρL)

(k+i)
n,m Yn,m(Ω) i = 1, 2, ..., Iq

(11)

and
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q(ρU )(k+i)
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n+ 1

4π

∫∫
Φ

qρ
(
Uq,Ω

′) Uk
q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q(ρU )(k)n,m Yn,m(Ω) i = 0

2n+ 1

4π

∫∫
Φ

qβ
(
Ω′)

qαi

(
Ω′) Uk+i

q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q(ρU)(k+i)

n,m Yn,m(Ω) i = 1, 2, ..., Iq .

(12)

From Eqs. (11) and (12), the respective spherical density-contrast functions

and their higher-order terms {q+1,q(ΔρL)(k+i)
n : k = 1, 2, ...; i = 0, 1, ..., Iq ;

q = 1, 2, ..., Q− 1} are found to be:

q+1,q(ΔρL)(k+i)
n = q+1(ρU )(k+i)

n − q(ρL)
(k+i)
n =

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2n + 1

4π

∫∫
Φ

q+1,qΔρ
(
Lk
q ,Ω

′)Lk
q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q+1,q(ΔρL)(k)n,m Yn,m(Ω) i = 0

2n + 1

4π

∫∫
Φ

q+1,qΔβ
(
Ω′)

q+1,qΔαi

(
Ω′)Lk+i

q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q+1,q(ΔρL)(k+i)

n,m Yn,m(Ω) i = 1, 2, ..., Iq .

(13)

For i = 0, the coefficients {q+1,q(ΔρL)(k)n,m : k = 1, 2, ...; q = 1, 2, ..., Q−1} are
computed according to Eq. (6). The radial density change of two successive
volumetric mass layers is then described by the parameters Δβ and {Δαi :
i = 1, 2, ..., Iq} in Eq. (13) as follows:
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q+1,qΔβ
(
Ω′) = q+1β

(
Ω′)− qβ

(
Ω′) q = 1, 2, ..., Q− 1 , (14)

and

q+1,qΔαi(Ω
′) = q+1Δαi(Ω

′)− qΔαi(Ω
′) i = 1, 2, ..., Iq ;

q = 1, 2, ..., Q − 1 .
(15)

The spherical density-contrast functions in Eq. (13) are defined by means
of comparing respective spherical density functions of two successive volu-
metric mass layers. Since it is assumed that these layers have radially-
changing densities, this definition does not refer to a density contrast di-
rectly at the interface between these two layers, but it describes the radial
density changes through two successive layers. We could also define the
density contrast directly at the interface. The spherical density-contrast
functions then comprise a radial density change within the overlying layer
q while an additional term is applied to describe a radial density change
within the underlying layer q+1. In this case, the density contrast at the
interface is defined as:

Δρq+1,q(Lq,Ω) = ρq+1(Uq+1,Ω)− ρq(Uq,Ω)−q β(Ω)

Iq∑
i=1

qαi(Ω) (r −R)i

q = 1, 2, ...Q − 1 .
(16)

Alternatively, we can also treat the lateral and radial density changes
separately. The density contrast at the interface is then defined according
to Eq. (2) by taking into account lateral density variations while radial
density changes within the overlying and underlying layers q and q + 1 are
defined individually by the radial-density terms δρq and δρq+1. The radial
density terms {δρq : q = 1, 2, ..., Q} read:

δρq =q β(Ω)

Iq∑
i=1

qαi(Ω) (r −R)i q = 1, 2, ..., Q . (17)

The spherical density-contrast functions (in Eq. 13) then become:

q+1,q(ΔρL)(k+i)
n = q+1,q(ΔρL)(k)n + q+1δρ

(k+i)
n − qδρ

(k+i)
qn , (18)

where the coefficients q+1,q(ΔρL)(k)n read:
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q+1,q(ΔρL)(k)n =
2n + 1

4π

∫∫
Φ

q+1,qΔρ
(
Lk
q ,Ω

′)Lk
q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q+1,q(ΔρL)(k)n,m Yn,m(Ω) .

(19)

As seen in Eqs. (5) and (19), these definitions are identical.

The spherical radial-density functions of two successive volumetric mass
layers q and q + 1 in Eq. (18) are given by:

qδρ
(k+i)
n =

2n+ 1

4π

∫∫
Φ

qβ
(
Ω′)

qαi
(
Ω′)Lk+i

q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
qδρ

(k+i)
n,m Yn,m (Ω) i = 1, 2, ..., Iq ,

(20)

and

q+1δρ
(k+i)
n =

2n+ 1

4π

∫∫
Φ

q+1β
(
Ω′)

q+1αi
(
Ω′)Lk+i

q

(
Ω′)Pn(cosψ) dΩ

′ =

=
n∑

m=−n
q+1δρ

(k+i)
n,m Yn,m (Ω) i = 1, 2, ..., Iq+1 .

(21)

3.3. 3-D Earth’s density structure

We now apply the spherical density functions defined in Eqs. (11) and (12)
to describe the 3-D Earth’s density structure. Hence:

Q∑
q=1

[
q(ρU)(i)n − q(ρL)

(i)
n

]
=

=
Q∑

q=1

[
q(ρU)n − q(ρL)n

]
+

Q∑
q=1

Iq∑
i=1

[
q (ρU)(i)n − q (ρL)

(i)
n

]
=

=
2n+ 1

4π

Q∑
q=1

∫∫
Φ

ρq
(
Uq,Ω

′)Uq
(
Ω′)Pn(cosψ) dΩ

′−
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− 2n+ 1

4π

Q∑
q=1

∫∫
Φ

ρq
(
Uq,Ω

′)Lq
(
Ω′)Pn(cosψ) dΩ

′+

+
2n+ 1

4π

Q∑
q=1

Iq∑
i=1

∫∫
Φ

qβ
(
Ω′)

qαi

(
Ω′)U i

q

(
Ω′)Pn(cosψ) dΩ

′−

− 2n+ 1

4π

Q∑
q=1

Iq∑
i=1

∫∫
Φ

qβ
(
Ω′)

qαi
(
Ω′) Li

q

(
Ω′)Pn (cosψ) dΩ′ . (22)

We further rearrange the 3-D Earth’s density model in Eq. (22) into a
form which utilizes the spherical density-contrast functions (Eq. 19) and
the spherical radial-density functions (Eqs. 20 and 21). We then write:

Q∑
q=1

[
q(ρU)(i)n − q(ρL)

(i)
n

]
=

=
2n+ 1

4π

∫∫
Φ

ρ1
(
U1,Ω

′)U1
(
Ω′)Pn(cosψ) dΩ

′+

+
2n+ 1

4π

I1∑
i=1

∫∫
Φ

1β
(
Ω′)

1αi

(
Ω′)U i

1

(
Ω′)Pn(cosψ) dΩ

′+

+
2n+ 1

4π

Q−1∑
q=1

∫∫
Φ

q+1,qΔρ
(
Lq,Ω

′)Lq
(
Ω′)Pn(cosψ) dΩ

′+

+
2n+ 1

4π

Q−1∑
q=1

Iq∑
i=1

∫∫
Φ

q+1β
(
Ω′)

q+1αi
(
Ω′)Li

q

(
Ω′)Pn(cosψ) dΩ

′−

− 2n+ 1

4π

Q−1∑
q=1

Iq∑
i=1

∫∫
Φ

qβ
(
Ω′)

qαi
(
Ω′)Li

q

(
Ω′)Pn(cosψ) dΩ

′−

− 2n+ 1

4π

∫∫
Φ

ρQ
(
UQ,Ω

′)LQ
(
Ω′)Pn(cosψ) dΩ

′−

− 2n+ 1

4π

IQ∑
i=1

∫∫
Φ

Qβ
(
Ω′)

Qαi
(
Ω′)Li

Q

(
Ω′)Pn(cosψ) dΩ

′ . (23)
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Substituting from Eqs. (19–21) to Eq. (22), we arrive at:

Q∑
q=1

[
q(ρU)(i)n − q(ρL)

(i)
n

]
=

I1∑
i=0

n∑
m=−n

1(ρU)(i)n,m Yn,m(Ω) −

−
IQ∑
i=0

n∑
m=−n

Q(ρL)
(i)
n,m Yn,m(Ω) +

Q−1∑
q=1

n∑
m=−n

q+1,q(ΔρL)n,m Yn,m(Ω) +

+
Q−1∑
q=1

Iq∑
i=1

n∑
m=−n

(
q+1δρ

(i)
n,m − qδρ

(i)
n,m

)
Yn,m(Ω) . (24)

The 3-D Earth’s density model in Eq. (24) is described in terms of

the upper-bound density coefficients 1(ρU)(i)n,m of the first volumetric layer

(q = 1), the lower-bound density coefficients Q (ρL)(i)n,m of the last volu-
metric layer (q = Q), the density-contrast coefficients q+1,q (ΔρL)n,m and

the differences of the radial-density coefficients q+1δρ
(i)
n,m − qδρ

(i)
n,m of two

successive volumetric mass layers q + 1 and q.

If we disregard radial density changes, the expressions in Eq. (24) and (9)
become identical. Moreover, considering only a uniform density distribution
within each volumetric mass layer, the Earth’s density model in Eq. (9) is
further simplified to a following form:

Q∑
q=1

[
q(ρU)n − q(ρL)n

]
= ρ1

n∑
m=−n

1Un,mYn,m(Ω) −

− ρQ

n∑
m=−n

QLn,mYn,m(Ω) +
Q−1∑
q=1

q+1,qΔρ
n∑

m=−n
qLn,mYn,m (Ω) ,

(25)

where {ρq : q = 1, 2, ..., Q} are the constant density values of volumetric
mass layers, and {q+1,qΔρ = ρq+1 − ρq : q = 1, 2, ..., Q − 1} are the constant
values of respective density contrasts. The spherical upper- and lower-bound
functions qUn and qLn in Eq. (25) comprise only the geometric information.
Hence, we have:

qUn =
2n+ 1

4π

∫∫
Φ

Uq
(
Ω′)Pn(cosψ) dΩ

′ =
n∑

m=−n

qUn,mYn,m(Ω) , (26)
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and

qLn =
2n+ 1

4π

∫∫
Φ

Lq

(
Ω′)Pn(cosψ) dΩ

′ =
n∑

m=−n
qLn,mYn,m (Ω) . (27)

Furthermore, for a uniform density of a spherically symmetric layers
(such as PREM), we obtain the 1-D Earth’s density model in the following
simple form:

Q∑
q=1

[
q(ρU)n − q(ρL)n

]
= ρ1U1 − ρQLQ +

Q−1∑
q=1

q+1,qΔρLq , (28)

where {Uq = const, Lq = const : q = 1, 2, ..., Q} are constant values of
the upper and lower bounds. For the density model of the whole Earth,
LQ = 0.

4. Applications in gravimetric forward modeling

The coefficients {q(ρL)(k+i)
n,m , q(ρU )(k+i)

n,m : k = 1, 2, ...; i = 0, 1, ..., Iq ; q = 1,
2, ..., Q} defined in Eq. (11) and (12) can be applied in the gravimetric for-
ward modeling. According to the method developed by Tenzer et al. (2012a,
2012b) the gravitational potential V and attraction g ∼= −∂V/∂r at a point
(r,Ω), for r ≥ R, are computed using the following expressions:

V (r,Ω) =
GM

R

Q∑
q=1

n̄∑
n=0

(
R

r

)n+1 n∑
m=−n

qVn,mYn,m (Ω) , (29)

and

g (r,Ω) =
GM

R2

Q∑
q=1

n̄∑
n=0

(
R

r

)n+2

(n+ 1)
n∑

m=−n
qVn,mYn,m (Ω) , (30)

where ρ̄Earth = 5500 kgm−3 is the Earth’s mean density, n̄ is a maximum
degree of spherical harmonics, and the potential coefficients {qVn,m : q =
1, 2, ..., Q} read:
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qVn,m =
3

2n+ 1

1

ρ̄Earth

Iq∑
i=0

(
qFu(i)n,m − qFl(i)n,m

)
. (31)

The numerical coefficients {qFu(i)
n,m, qFl(i)n,m : i = 0, 1, ..., Iq ; q = 1, 2, ..., Q}

in Eq. (31) are given by:

qFu(i)n,m =
n+2∑
k=1

(
n+ 2

k − 1

)
(−1)k−1

k + i
q(ρU)(k+i)

n,m

Rk
, (32)

and

qFl(i)n,m =
n+2∑
k=1

(
n+ 2

k − 1

)
(−1)k−1

k + i
q(ρL)

(k+i)
n,m

Rk
, (33)

As seen in Eqs. (29–33), the gravitational field quantities are computed

from the spherical density coefficients q(ρU )(k+i)
n,m and q(ρL)

(k+i)
n,m of volu-

metric mass layers. Alternatively, this computation can be done using the
spherical density-contrast coefficients. With reference to a conversion be-
tween the spherical density and density-contrast functions in Eq. (24), the
expression for computing the gravitational potential in Eq. (29) is intro-
duced in the following form:

V (r,Ω) =
GM

R

n̄∑
n=0

(
R

r

)n+1 n∑
m=−n

⎡
⎣
1V

ρU
n,m − QV

ρL
n,m +

+
Q−1∑
q=1

(
q+1,qV

ΔρL
n,m + q+1,qV

δρ
n,m

)⎤⎦Yn,m (Ω) .

(34)

Similarly, the gravitational attraction in Eq. (30) becomes:

g(r,Ω) =
GM

R2

n̄∑
n=0

(
R

r

)n+2

(n+ 1)
n∑

m=−n

⎡
⎣
1V

ρU
n,m − QV

ρL
n,m +

+
Q−1∑
q=1

(
q+1,qV

ΔρL
n,m + q+1,qV

δρ
n,m

)⎤⎦Yn,m (Ω) .

(35)

The potential coefficients 1V
ρU
n,m, QV

ρL
n,m and {q+1,qV

ΔρL
n,m , q+1,qV

δρ
n,m : q =

1, 2, ..., Q − 1} in Eqs. (34) and (35) are defined by:
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1V
ρU
n,m =

3

2n+ 1

1

ρ̄Earth

I1∑
i=0

1Fu(i)n,m , (36)

QV
ρL
n,m =

3

2n+ 1

1

ρ̄Earth

IQ∑
i=0

QFl(i)n,m , (37)

q+1,qV
ΔρL
n,m =

3

2n+ 1

1

ρ̄Earth q+1,qFΔρln,m , (38)

and

q+1,qV
δρ
n,m =

3

2n+ 1

1

ρ̄Earth

Iq∑
i=0

(
q+1Fδρ(i)n,m − qFδρ(i)n,m

)
. (39)

The coefficients 1Fu
(i)
n,m (for q = 1) and QFl(i)n,m (for q = Q) are computed

according to the expression given in Eqs. (32) and (33). The coefficients
{q+1,qFΔρln,m : q = 1, 2, ..., Q − 1} in Eq. (38) are given by:

q+1,qFΔρln,m =
n+2∑
k=1

(
n+ 2

k − 1

)
(−1)k−1

k
q+1,q(ΔρL)(k)n,m

Rk
. (40)

Finally, the coefficients {qFδρ(i)n,m : q = 1, 2, ..., Q−1} are generated using
the following expression:

qFδρ(i)n,m =
n+2∑
k=1

(
n+ 2

k − 1

)
(−1)k−1

k + i
qδρ

(k+i)
n,m

Rk
. (41)

5. Discussion

The expressions for the gravimetric forward modeling presented in Eqs. (34–

41) utilize for types of the spherical coefficients. The coefficients 1Fu
(i)
n,m

and QFl(i)n,m define the density distribution at the uppermost and low-
ermost surfaces which enclose the whole volumetric body for which the
gravitational effect is evaluated. If the inner structure does not comprise
any density contrasts or changes in radial density distribution, these two
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types of coefficients uniquely describe the density within whole investigated
volumetric mass body similarly to that used for a particular volumetric
mass layer. For more complex density structures, consisting of volumet-
ric mass layers with a lateral density distribution, the gravitational ef-
fect is evaluated from the expressions which include also the coefficients
{q+1,qFΔρln,m : q = 1, 2, ..., Q − 1} (see Eq. 40). These coefficients define
the lateral density contrasts of all interfaces within the investigated volumet-
ric mass body. In the most generalized case, the complex density structures
are described by 3-D density models of volumetric mass layers. The gravi-
tational effect is then computed using the expressions which comprise also
the radial-density coefficients {qFδρ(i)n,m : q = 1, 2, ..., Q − 1} (see Eq. 41).
These coefficients describe radial density changes within every individual
volumetric mass layers. Obviously, depending on the density structure ap-
proximated by a particular volumetric mass layer the density parameters of
these layers might differ significantly.

To give particular examples, we assume that the Earth’s structure is
divided into several layers which closely resemble major geological struc-
tures. This is particularly illustrative for the upper lithosphere structure.
As mentioned before, the gravitational effect of atmosphere is typically ne-
glected in geophysical studies while it might be considered in more accurate
geodetic applications for the gravimetric geoid determination. In this case,
the density distribution of the atmosphere can be defined using the stan-
dard model of the static atmosphere (ISO 2533:1975). Several different
atmospheric density models were developed and applied in the gravimetric
forward modeling. Among them we can mention studies by Sjöberg (1993,
1998, 2006), Sjöberg and Nahavandchi (1999, 2000), Nahavandchi (2004),
Novák and Grafarend (2006) and Tenzer et al. (2006, 2009b).

The Earth’s crustal structure is typically divided into density compo-
nents of polar ice sheets including mountain glaciers, continental water bod-
ies (lakes), ocean seawater, marine and continental sediments and bedrock
(i.e., the consolidated crystalline crust). These density structures have very
distinctive density distributions which can be represented by specific den-
sity models. Moreover, density interfaces between these crustal structures
are typically well pronounced and represent maxima of density contrasts,
particularly between ice (and lakes) and underlying sediments or bedrock
layers. The fresh water can be very accurately approximated by a uniform
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density model. Similarly also the ice density can accurately be approxi-
mated by a constant density of the consolidated glacial ice of 917 kgm−3

(Cutnell and Kenneth, 1995), because the layers of snow and firn ice are
much thinner (e.g. van den Broeke, 2008). The actual seawater density dis-
tribution can be approximated by a depth-dependent density model (Tenzer
et al., 2012c). This empirical density model was developed by Gladkikh and
Tenzer (2011) based on the analysis of oceanographic data of the World
Ocean Atlas 2009 (Johnson et al., 2009) and the World Ocean Circulation
Experiment 2004 (Gouretski and Koltermann, 2004).

Similarly, the increasing sediment density with depth due to compaction
and further lithification could be described by applying a depth-dependent
density model. Artemjev et al. (1994), for instance, applied a depth-depen-
dent sediment density model in the gravimetric study of the sub-crustal den-
sity inhomogeneities of the Northern Eurasia. They used several different
depth-dependent density models for approximating the sediment structure
of major continental sedimentary basins in the Northern Eurasia obtained
based on the published results of drilling and seismic studies. Hamilton
(1976) investigated how the density and porosity of deep-sea sediments
vary with depth and established the depth-dependent density models of
four types of sediments, namely calcareous and siliceous oozes, pelagic clay
and terrigenous sediments. Cowie and Karner (1990) established an expo-
nential function of porosity to describe the depth-dependent density change
due to compaction based on the analysis of the regional sediment data from
the North Sea and the Rhine Graben. Tenzer and Gladkikh (2014) derived
the 3-D density model of marine sediments (as a function of ocean and sed-
iment depths) based on the analysis of global samples of marine sediments
recorded in the NOAA‘s National Geophysical Data Center (NGDC). These
records were prepared from core data collected during the Deep Sea Drilling
Project.

Large density variations and complex geological structures of the Earth’s
lithosphere were confirmed from drilling profiles and seismic studies. The
most pronounced feature is the difference between typically heavier oceanic
lithosphere compared to continental crustal structures. The average den-
sity of 2670 kgm−3 is typically attributed to the upper continental crust in
geological and gravity surveys, geophysical explorations, gravimetric geoid
modeling, compilation of regional gravity maps, and other applications. Al-
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though this density value is widely used, its origin remains unclear. Woollard
(1966) suggested that this density was used for the first time by Hayford
and Bowie (1912). In reviewing several studies seeking a representative
mean density from various rock type formations, Hinze (2003) argued that
this value was used earlier by Hayford (1909) for the gravity reduction.
Hayford (1909) referred to Harkness (1891) who averaged five published
values of surface rock density. The value of Harkness (1891) of 2670 kgm−3

was confirmed later, for instance, by Gibb (1968) who estimated the mean
density of the surface rocks in a significant portion of the Canadian Pre-
cambrian shield from over 2000 individual measurements. Woollard (1962)
examined more than 1000 rock samples and estimated that the mean base-
ment (crystalline) rock density is about 2740 kgm−3. Subrahmanyam and
Verma (1981) determined that crystalline rocks in low-grade metamorphic
terranes in India have the mean density of 2750 kgm−3, while 2850 kgm−3

in high-grade metamorphic terranes.
The oceanic lithosphere density is mainly controlled by thermal cooling

due to mantle convection. The formation process of the oceanic lithosphere
at the mid-ocean ridges, further spreading and subduction underneath the
oceanic or continental lithosphere along the oceanic subduction zones is
directly linked with the thickness and density changes of the oceanic litho-
sphere. The conductive cooling, which converts hot asthenosphere into litho-
spheric mantle at the mid-ocean ridges, causes the oceanic lithosphere to
become increasingly thick and dense with age. At the early stage up to a
few tens of millions of years the oceanic lithosphere is less dense than the
asthenosphere. Its density then increases causing its subduction and re-
assimilation into the asthenosphere. The ocean-floor spreading hypothesis
was proposed by Hess (1962) and its mechanism was explained later by the
mantle convection theory of Walter (1971). The currently most complete
data of the oceanic lithosphere age were derived from marine magnetic sur-
veys (e.g. Müller et al., 2008). The principle of dating the ocean lithosphere
is based on the comparison of marine magnetic anomalies with the events of
magnetic reversals measured on land (e.g. Vine and Matthews, 1963). These
data show that the oldest ocean floor is about 180 Myr (corresponding the
late Jurassic geological period), while parts of the continental lithosphere
are billions of years old. These data were validated using the age dating of
ocean-floor rock samples.
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The current knowledge of the density distribution within the astheno-
sphere, including the core-mantle boundary zone, is still very limited due to
the fact that there is no direct link between the seismic velocity and den-
sity while gravimetric inversion solutions applied for a recovery of density
structures are non-unique (i.e. infinitely many density configurations can be
attributed to the observed gravity field). In practical applications, there-
fore, the density structure within the whole mantle and core is typically
approximated by using only a spherically-symmetric density model such as
PREM (Dziewonski and Anderson, 1981). Note that despite Simmons et al.
(2010) derived a 3-D density structure within the whole mantle, these data
were not yet released publically. Alternatively, in gravimetric methods the
deep mantle density heterogeneities are often treated by means of subtract-
ing the long-wavelength part of the gravitational spectrum.

6. Summary and concluding remarks

Two types of models describing the Earth’s density structure were devel-
oped and presented. Dividing the Earth’s interior into particular volumetric
mass layers, the actual density distribution within each individual layer was
approximated by the laterally-distributed radial density variation model. In
the spectral domain, this density distribution was defined in terms of the
spherical density functions of the upper- and lower-bounds of volumetric
mass layer. An alternative description of the Earth’s density model was
then given by means of the density contrast interfaces. In this case, the
spherical density-contrast functions were applied to define the lateral den-
sity contrast between two successive layers while additional radial-density
terms were applied to define the radial density changes within these lay-
ers. The Earth’s density structure is then described by sets of coefficients
for each volumetric mass layer or density interface. These coefficients are
generated from discrete data by applying methods for a spherical harmonic
analysis of the Earth’s density structure.

The expressions for gravimetric forward modeling of the Earth’s den-
sity structures were further derived in terms of the spherical density and
density-contrast coefficients. These coefficients can be used to evaluate the
gravitational effect of a particular mass density structure within the Earth’s
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interior based on applying the spherical harmonic synthesis (e.g. Tsoulis
2004a, 2004b; Tenzer et al. 2009, 2012a, 2012b, and reference herein).
The expressions for the spherical harmonic synthesis derived in this study
are fully compatible with the spectral representation of the Earth’s gravity
models by means of Stokes’ coefficients (cf. Heiskanen and Moritz, 1967).

The description of the Earth’s inner density structure in terms of the
spherical density coefficients is typically used for computing the global grav-
ity corrections due to known density structures. One example can be given
by the computation of the refined Bouguer gravity anomalies/disturbances.
In this case, the topographic coefficients are used to evaluate the topographic
correction. The description of the Earth’s density structure in terms of the
spherical density-contrast coefficients is, on the other hand, more conve-
nient in using inverse methods for a gravimetric interpretation of density
contrast interfaces. Such methods are used, for instance, in predicting the
ocean-floor topography from satellite-altimetry measurements. Since large
parts of marine areas have not yet been covered by sounding reflection sur-
veys (i.e. the multi-beam echo sounders), marine gravity data are primarily
used to determine bathymetric depths. Another possible application is a
mapping of the sediment basement topography using gravity observations,
because seismic data are often absent.
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