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Abstract: Transformation based on downward continuation of potential fields is an im-

portant tool in their interpretation – depths of shallowest important sources can be deter-

mined by means of stable downward continuation algorithms. We analyse here selected

properties of one from these algorithms (based on Tikhonov’s regularization approach)

from the scope of two most important discretization parameters – dimensions of the areal

coverage of the interpreted field and the sampling interval size. Estimation of the source

depth is based on the analysis of computed LP-norms for various continuation depths.

A typical local minimum of these norms disappears at the source depth. We show on

several synthetic bodies (sphere, horizontal cylinder, vertical rod) and also real-world

data-sets (results from a magnetic survey for unexploded ordnance detection) that there

is a need for relatively large surroundings around the interpreted anomalies. Beside of this

also the sampling step plays its important role – grids with finer sampling steps give better

interpretation results, when using this downward continuation method. From this point

of view, this method is more suitable for the interpretation of objects in near surface and

mining geophysics (anomalies from cavities, unexploded ordnance objects and ore bodies).

Anomalies should be well developed and separable, and densely sampled. When this is

not valid, several algorithms of interpolation and extrapolation (grid padding methods)

can improve the interpretation properties of studied downward continuation method.
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1. Introduction

Transformations of potential fields in applied geophysics (magnetic, grav-
ity) belong among important tools in their processing and interpretation.
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These transformations, in general, do not directly determine field sources,
but they can often provide insights that help to understand the natures of
sources (Blakely, 1995, p. 311). Analytical continuation in source free area
is one of the most important procedures among them. In general, we usually
speak about upward continuation (UC, in direction away from the sources)
and downward continuation (DC, in the direction closer to the sources).
Downward continuation is an important procedure in potential fields in-
terpretation – it can be utilized for two main purposes (Mudretsova and
Veselov, 1990a, p. 328) approximation of the interpreted field on: a) depth
level, which is closer to the sources and b) estimation of the sources posi-
tions/depths. On the other hand, it is an instable operation (amplifying
noise and errors in data) and it must be treated in a special way.

This contribution is focused on the DC transformation as a tool for
sources depths estimation in applied geophysics. It tries to present some
of important properties of DC method from the aspect of its practical ap-
plication. From the theoretical point of view, potential fields described by
continuous functions and defined on domains with infinity dimensions, can
be continued in the source free area down to the upper boundary of the
shallowest source (Baranov 1975, p. 32–33). But in the real world these two
important conditions are not valid: our data are not continuous (we work
with discrete digital datasets) and they are not defined on areas with infi-
nite dimensions (our exploration areas are always limited). Accepting this,
we should analyse the properties of stable DC algorithms from the scope
of two most important discretization parameters – dimensions of the areal
coverage of the interpreted field and the sampling interval size. This is valid
for profile data and also areal data-sets (grids). We show the important role
of these two parameters on the results of used DC algorithm (focused on
source depth estimation), presented on several synthetic model studies and
real-world datasets interpretation (magnetic survey for UneXploded Ord-
nance detection). Together with our analysis we present here a software
solution of all the discussed aspects – a Matlab script REGCONT2, which
is an upgrade of our previously published program REGCONT (Pašteka et
al., 2012). It can be used for an effective determination of sources depths in
applied gravimetry and magnetometry (Matlab script is free for academic
and scientific use).
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2. Tikhonov’s regularization approach in stable downward
continuation

Downward continuation of potential fields is an instable operation due to its
inherent properties as a high-pass filter (in Fourier domain the spectral char-
acteristic of this operation is an exponential function of the wave-number).
From practical point of view it means that any error and/or noise (in the
original data) will be strongly boosted during this transformation. This is
valid also for the edge effect (Gibb’s phenomenon), which then often flows
into strong artificial oscillations in the DC data-sets (see e.g. the Fig. 1 in
Pašteka et al., 2012). These disturbances (oscillations) can even mask the
field anomalies itself. There have been published several interesting meth-
ods for finding a stable solution of this problem (e.g. Fedi and Florio, 2002;
Trompat et al., 2003; Cooper, 2004) and during the last years there can
be followed something like a “boom” in this scientific area (e.g. Ma et al.,
2013; Zeng et al., 2013; Zhang H. et al., 2013; Abedi et al., 2014; Zeng et
al., 2014; Zeng et al., 2015; Zhang Y. et al., 2016, Zhou et al., 2018; Florio
and Fedi, 2018; Zhang et al., 2018).

In our contribution we work with the classical approach from Tikhonov et
al. (1968), using the regularization approach in Fourier wavenumber domain
(exact derivation of the spectral characteristics of the regularized downward
continuation is given in the Appendix). Some authors use for this approach
the abbreviation TRDC method (Tikhonov Regularized Downward Contin-
uation; Zhang H. et al. 2013) or simply TR method (Tikhonov Regulariza-
tion; Zhang Y. et al., 2016). Main idea of this approach is to use a special
filter form (Eq. A.6) in the wavenumber domain, which combines the clas-
sical downward continuation spectral characteristics (exponential function)
multiplied with a low-pass filter. Properties of this low-pass filter are con-
trolled by the value of regularization parameter α, where the lower values
mean lower role of regularization, higher values cause intensive damping
of the high spectral content of the downward continued data. The classical
challenge (as in other regularization methods) is to find an optimum value of
the regularization parameter α, for which some kind of equilibrium between
the original nature of the transformation (DC) and the smoothing effect of
the low-pass filter occurs. In the traditional Tikhonov’s method, C-norms
of the solutions for different values of regularization parameter α have been
constructed and interpreted (Tikhonov et al., 1968; Glasko et al., 1970).
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From functional analysis we know that the C-norm is equal to L∞-norm.
These norms compare two adjacent solutions (obtained for two adjacent
values of regularization parameter) and plot their distance (C-norm) as a
function of the regularization parameter α. This is plotted as a log-log graph
with the regularization parameter α on the horizontal axis and the C-norm
value on the vertical axis. These norms have always been constructed for
a large interval of regularization parameter α. In most of the cases are the
values of α ranging from 10−20 to 10+20 m−1, in a geometrical sequence with
usual factor of 1.1. Their typical shape is convex and positive with the exis-
tence of a local minimum in the vicinity of their global maximum. This local
minimum reports on the occurrence of the mentioned equilibrium and the
optimum regularization parameter value is bound to this local minimum.
This idea is very close to the concept of L-curve (Lawson and Hanson, 1974;
Hansen, 2007), which is used in many regularization methods in mathe-
matical physics. Appearance and disappearance of the local minimum can
be used for the source depth estimation in the TRDC method – vanishing
of this local minimum during downward continuation to larger depth lev-
els points to the depth of the source (e.g. Tikhonov et al., 1968; Glasko et
al., 1970; Pašteka et al., 2011, 2012). We can say in other words: when
we enter with the continuation depth into a non-harmonic space (into the
sources), method cannot find a correct solution (local minimum vanishes).
Of course that the source depth depends in this method on the source shape
– for vertically elongated bodies it is the top, for isometric bodies it is the
centre. Our small contribution to the classical TRDC method was the way
that we construct beside the classical C-norm also other LP-norms (Pašteka
et al., 2012). We usually calculate L2-norms, L1-norms and L0.5-norms and
then we select that type of norm, where the local minima are well developed
(with sharper side parts of curves). It is interesting that in some situations
give these other LP-norms better results than the classical C-norms. At
the moment, we are not able to scientifically explain the reason, why some
kinds of norms work better in some situations – we simply try all of them
and then we select the best one.

In Fig. 1 we have displayed results for the depth estimation of two sim-
ple synthetic models – a 2D horizontal cylinder with circular cross-section
(depth of the cylinder centre is 1000 m) and a sphere (depth of the sphere
centre is 5 m). The step in DC was for the case with horizontal cylinder
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200 m and in the case with sphere 1m. In the graphs of displayed C-norms
(Fig. 1b and 1e), a nicely developed local minima are visible (with sharp
side parts of curves) and detected local minimum disappear exactly at cor-
responding DC depths, where the most important source points of both
bodies are positioned (centres of them). In Fig. 1c and f it is shown (with
a detailed step in DC) that the disappearance occurs on depths, which are
very close to the source position – method can focus on these details in
a very detailed way – any reasonable small step of the depth change can
be selected. But to speak here about some kind of the depth resolution is
not appropriate, because the precision of the method depends on discretiza-
tion parameters of the interpreted field (as it will be given later). This
example belongs to the so-called “text-book” cases – everything works per-
fectly here. Why? Because the interpreted synthetic fields were evaluated

Fig. 1. Results of depth estimation for 2D horizontal cylinder and sphere. a) Synthetic
vertical component of gravitational acceleration field (Vz) for the horizontal cylinder in the
depth of 1000 m, b) C-norms obtained from the depth estimation of horizontal cylinder
depth (depths from 600 to 1400 m, step = 200 m), c) C-norms for depths close to the
source position (depths from 960 to 1040 m, step = 20 m), d) synthetic vert. component
of gravitational acceleration field (Vz) for the sphere in the depth of 5 m, e) C-norms
obtained from the depth estimation of sphere depth (depths from 3 to 7m, step = 1m), f)
C-norms for depths close to the source position (depths from 4.6 to 5.4 m, step = 0.2 m).
Sampling steps of the input grids are in the case of the cylinder: Δx = Δy = 100 m, in
the case of the sphere: Δx = Δy = 0.5 m. Density of the 2D cylinder: +1000 kgm−3,
density of the sphere: –1000 kgm−3.
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on an area with satisfactory large dimensions (its length in both directions
is 5 times the source depth) and the anomalous field is properly sampled
(anomaly half-width is given by tens of grid points). But what will happen,
when these two important aspects (anomalous field areal dimensions and
sampling step) will not have such “ideal” values? We can see a represen-
tative example in Fig. 2 (slightly inclined sub-vertical rod with the top in
10 m depth): in the case of under-sampled data with small areal dimensions
(Fig. 2c and 2d) the estimated source depth is incorrect – it is too shallow

Fig. 2. Results of depth estimation for an inclined sub-vertical rod with the top in the
depth of 10 m – a “good and bad” example: a) Synthetic vertical component of grav-
itational acceleration field (Vz), calculated on larger area (50 × 50 m size) with small
sampling step: Δx = Δy = 0.5m, b) corresponding C-norms obtained from the depth es-
timation, c) synthetic vert. component of gravitational acceleration field (Vz), calculated
on small area (10×10m size) with large sampling step: Δx = Δy = 2 m, b) corresponding
C-norms obtained from the depth estimation. Density of the inclined sub-vertical rod:
–2000 kgm−3.
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(6m instead of correct 10m). Shapes of the C-norms in Fig. 2d are not well
developed and these graphs do not possess the necessary sharp minima in
their shapes. For a comparison we give also a result for well sampled field
with large dimensions (Fig. 2a and 2b) – here the corresponding C-norms
are well developed and the source depth (10 m) is correctly estimated.

We had experienced not well developed C-norms and other LP-norms in
various situations and were wondering what could be the reason of that.
Therefore, we started a set of experiments with these two important pa-
rameters – dimensions of the field area and its sampling steps. Results of
these experiments will be shown later in this paper.

3. Software realization of TRDC method for source depths
estimation – Matlab script REGCONT2

For the practical use of the proposed TRDC algorithm we have developed
a Matlab script REGCONT, which was published together with our paper
Pašteka et al. (2012). This script is suitable for UC and DC transformation
of profile and grid potential data, but it is quite cumbersome for source
depth estimation – user had to evaluate the corresponding LP-norms for
each depth of continuation and then plot all these output norms separately
in some another software (or in Matlab) with the aim to detect the contin-
uation depth, where the local minimum in analysed LP-norms disappears.
From this reason, we have decided to develop a new feature called “Source
Depth Estimation” tool (SDE), which became part of the new version REG-
CONT2. Beside this, we have updated the main computational core of the
script into a vector form, which significantly speed up the script. User can
choose within the SDE tool the type of used LP-norm (C-norm, L2-norm, L1-
norm or L0.5-norm) and parameters of the downward continuation process:
minimal depth, maximal depth and the step of depth change (see Fig. 3).
After the realization of all calculations, selected norms are plotted for all
continuation depth levels and in the norm graphs local minima are automat-
ically detected and marked by a red circle. Position of the local minimum
is determined by means of a simple 3-point operator, which starts on each
plotted norm from the left-hand edge of the graph. Proposed Matlab script
REGCONT2 is free for academic and scientific use and it can be down-
loaded together with supporting files and a user manual from the server:
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http://www.kaeg.sk/vyskum/projekt-vega-2014/project-vega-1-0462-16/.
In the next part of our paper we analyse on a simple synthetic model (a

sphere) discussed important numerical aspects of interpreted fields (anoma-
lous field areal dimensions and sampling step size) and give also suggestions,
how to solve problems in cases, when these parameters are not sufficient.
Further we present few experiences with real world data-sets (magnetic sur-
veys for UneXploded Ordnance detection).

Fig. 3. Working environment of the “Source depth estimation” tool application in the
frame of REGCON2 Matlab script. a) Selection of LP-norms and continuation depths,
b) displayed L2-norms, c) displayed C-norms. Small circles in graphs of displayed norms
represent automatically detected local minima in their shapes.

4. Synthetic model – sphere in gravimetry

We demonstrate the discussed properties of the classical Tikhonov’s regular-
ized downward continuation (TRDC) algorithm on the anomalous gravita-
tional field of a sphere (depth of its centre = 1000m, radius = 200m, density
contrast = 1000 kgm−3) for various dimensions and sampling intervals of
the downward continued fields. Our first trials were focused on the influence
of the sampling size of the grid element (this is valid also for profile step). In
general, it is valid that interpreted anomalies have to be well sampled – at
least with 10 (and more) points within the half-width of the anomaly. We
can see in Fig. 4a and 4b that for small sampling steps (Δx = Δy = 100m,
Δx = Δy = 200m), displayed C-norms have very well developed sharp local
minima, which disappear at the correct depth = 1000 m. This is not the
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case for larger sampling steps (Δx = Δy = 250 m, Δx = Δy = 500 m) in
Fig. 4c and 4d – local minima are not well developed and cannot be there-
fore used for depth estimation. Such a behaviour was realized also in the
case of other simple geometrical shapes, as horizontal cylinder and vertical
rod (not shown in this paper). It seems that this could be “a deep hit” to
the TRDC method, but there exist a relatively easy solution (numerical) for
this problem – interpolation. With relatively simple interpolation methods,
offered in used commercial software (e.g. Golden Software Surfer, Matlab)
we can re-grid the original dataset to a more dense grid and try to apply
the TRDC method anew (with displaying several types of LP-norms). From
our experiences, the well-known Kriging (Cressie, 1991) and Minimum Cur-
vature methods (Smith and Wessel, 1990) give the best results. In Fig. 5
we can see results from an experiment, where we took the grid from Fig. 4d
(with parameters Δx = Δy = 500 m) and have re-gridded it to new grids

Fig. 4. Graphs of evaluated C-norms for the sphere model (grid dimensions for all cases:
5 × 5 km) calculated for different sampling steps: a) Δx = Δy = 100 m, b) Δx = Δy =
200 m, c) Δx = Δy = 250 m, d) Δx = Δy = 500 m. Density of the sphere model:
+1000 kgm−3.
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with parameters Δx = Δy = 200m and Δx = Δy = 100m, using two typical
interpolation methods: Kriging and Minimum Curvature. We can see that
results for the Kriging method give results with quite well developed local
minima in L1-norms (Fig. 5a and 5c), which can be used for source depth
estimation (local minima are not so sharp as in Fig. 4a and 4b, but can be
detected by the simple automatic 3-point operator). Second interpolation
method (Minimum Curvature) did not work so well in this case (Fig. 5b
and 5d).

Next trials work with the areal dimensions of interpreted grids (this is
valid also for profile lengths). In general, it is valid (e.g. from the total nor-
malized gradient method, Elysseiva and Pašteka, 2009) that in DC methods
the dimension of the grid should be 5 to 10 times larger than the expected

Fig. 5. Graphs of evaluated L1-norms for the sphere model (grid dimensions for all cases:
5 × 5 km) calculated for different sampling steps and different interpolation methods,
used for re-gridding the original data: a) Δx = Δy = 200 m (Kriging method), b)
Δx = Δy = 200 m (Minimum Curvature method), c) Δx = Δy = 100 m (Kriging
method), d) Δx = Δy = 100 m (Minimum Curvature method). Density of the sphere
model: +1000 kgm−3.
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source depth. This is a quite large size and we cannot usually separate
isolated anomalies with such a large (anomaly free) surroundings. But also
here, there exist a solution, which helps sometimes. But let us start with
our experiment results. In Fig. 6 we can see results for grids with 3 different
areal dimensions: 2× 2 km, 3 × 3 km and 4× 4 km (sampling step is quite
detailed and identical for all of them: Δx = Δy = 100 m). For smaller
grid dimensions, the TRDC method works not well (Fig. 6b and 6d), local
minima can be found almost on each depth level and the interpreted depth
is over-estimated. For larger dimension, the method gives correct result
(Fig. 6f) (here we can see that it was enough, when the grid size was 4
times larger than the source depth). Situation with small grid sizes can be
quite hard for an unexperienced user, but the best way is to try several grid
sizes and compare the results. Enlargement (expansion) of the grid can be
realized by means of various extrapolation (padding) methods. We have
tested few methods for the extrapolation of smaller grids to larger dimen-
sions. We have realized that traditional interpolation methods (Kriging,
Minimum Curvature, Radial Basis Functions, Inverse Distance method) are
not suitable for larger expansions of grids (Fig. 7c and 7d), because there
occurs always some kind of data deformation in the expanded grid. Also
the well-known and used extrapolation approach – the cosine-taper padding
method do not work properly for such large extrapolation of data (Fig. 7e).
We have found a very interesting approach introducing 5 different numerical
methods, coming from sparse linear algebra, which is used for interpolation
and extrapolation of 2D digital data-sets (D’Errico, 2012; also published
on Mathworks File Exchange). This approach can use various methods of
approximation yielding a system of linear equations, solved then by means
of sparse linear algebra methods (D’Errico, 2018, personal communication).
User has to try several methods and then visually check, which is giving the
best results. During performing experiments with data sets in the frame
of this paper, we had best experiences with method nr. 3, which is based
on partial differential equation approximation, using finite difference ap-
proximation. As we can see, extrapolated grid in Fig. 7f is in a very good
agreement with the synthetic data, evaluated for the same area (Fig. 7b) –
here we have also used the mentioned third method. In Fig. 8 we can see two
examples with expanded grids TRDC interpretation, when using again the
third method (extrapolation to dimensions 3×3km and 4×4km). Obtained
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results are very similar to that from synthetic data experiments (Fig. 6d and
6f). We can see that also here an acceptable result was obtained for the
grid with larger dimensions (4× 4 km) – displayed C-norms show vanishing
of the local minimum for the correct depth = 1000 m (Fig. 8d).

Fig. 6. Grids and graphs of evaluated C-norms for the sphere model (sampling steps for
all cases: Δx = Δy = 100 m) calculated for different dimensions of interpreted grids: a)
2× 2 km, b) corresponding C-norms, c) 3× 3 km, d) corresponding C-norms, e) 4× 4 km,
f) corresponding C-norms. Density of the sphere model: +1000 kgm−3.
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Fig. 7. Examples of expanded grids, using various extrapolation and padding methods,
vertical component of gravitational acceleration field for a sphere: a) original synthetic
data, grid with 2 × 2 km dimension (used for extrapolation), b) synthetic data, larger
grid with 4 × 4 km dimensions, c) extrapolated grid to 4 × 4 km (Kriging method), d)
extrapolated grid to 4 × 4 km (Minimum Curvature method), e) extrapolated grid to
4 × 4 km (Cosine-taper method), f) extrapolated grid to 4 × 4 km (partial differential
equations approximation). Density of the sphere model: +1000 kgm−3.
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Fig. 8. Two examples of expanded grids (partial differential equations approximation)
together with their corresponding C-norms: a) extrapolated to 3×3km, b) corresponding
C-norms, c) extrapolated to 4× 4 km, d) corresponding C-norms. Sampling steps for all
cases: Δx = Δy = 100 m.

5. Real world data interpretation – high definition UXO de-
tection study

As we have shown in our synthetic examples and as it follows from our
experience with real data-sets interpretation, TRDC method is suitable for
the interpretation of well developed and separable anomalies from isolated
and compact source bodies. In near surface geophysical applications, the
search for UneXploded Ordnance (UXO) object by means of high-definition
magnetic survey produces often such kind of anomalies (interesting study
of regularized DC algorithm application for UXO magnetic data interpre-
tation is given by Li et al., 2013). Here we bring two examples from such
a type of survey. In the first example the depth of the ordnance object was
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known and test measurements have been realized over it (ordnance was po-
sitioned at the earth surface). In the second example, we have selected one
real anomaly from a performed UXO survey in SW Slovakia (site Rohožńık-
Studienka), where the detected objects have been excavated by professional
pyrotechnicians. In both examples, the amplitude of the total magnetic in-
duction field (T ) was acquired by means of a Cs-vapour magnetometer with
a sampling step along measured lines equal to 0.1 m. Anomalous field ΔT
was obtained by means of median filter application along measured lines.
In the first example, the distance between the measured lines was 0.5 m, in
the second one it was 1.0 m. In both examples the ordnance was a 100 mm
diameter tank projectile.

In Fig. 9 we can see results from the first experiment. When a larger

Fig. 9. Real world magnetic data-set, anomalous ΔT field over a 100mm tank projectile,
in the depth 1.0m below the sensor: a) measured data on 10×10m area, b) corresponding
L1-norms, c) extracted data on 3×3m area over the projectile, d) corresponding L1-norms.
Sampling steps for all cases: Δx = Δy = 0.1 m.
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surrounding of the anomaly has been selected (10 × 10 m area, Fig. 9a),
then a larger depth of the estimated source was obtained (0.8 m) (Fig. 9b).
When compared with the real depth (1.0m), there is an error of 20%, which
is acceptable in this kind of depth-estimations. In the case of an extracted
(smaller) grid – (3 × 3 m area, Fig. 9c), the estimated depth is shallower
(0.6 m) (Fig. 9d). For the interpretation L1-norms have been selected, al-
though shapes of their local minima do not have the perfect “sharp” shape
(as we have seen in the case of synthetic data-sets interpretation). This is
often the case, when we work with the real-world data-sets.

Fig. 10. Real world magnetic data-set, anomalous ΔT field over a 100mm tank projectile,
in the depth 1.0 m below the sensor: a) extrapolated data on 10 × 10 m area (from
3 × 3 m area in Fig. 9c by means of partial differential equations approximation), b)
corresponding L1-norms, c) re-interpolated measured data on the original 10× 10m area,
d) corresponding L1-norms. Sampling steps: for case a): Δx = Δy = 0.1 m and for case
c): Δx = Δy = 0.25 m.
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In Fig. 10a we can see an extrapolated grid (with the same sampling step
Δx = Δy = 0.1 m), which was extrapolated from 3 × 3 m area (Fig. 9c)
to 10 × 10 m area by means of the mentioned partial differential equations
together with sparse linear algebra approach (D’Errico, 2012), using the
method nr. 3. It can be easily seen that the L1-norms interpretation in the
case of this extrapolated grid brought very similar results (Fig. 10b) like it
was in the case of original data in Fig. (9b) – it resulted again to the depth
of 0.8 m. In Fig. 10c we show as an addition the effect of a coarse sampling
step – the original data on the area of 10× 10m have been re-grided with a
sampling step Δx = Δy = 0.25 m, which resulted again to a shallow depth
of 0.6 m (Fig. 10d).

Final example comes from real UXO survey in an area close to an ac-

Fig. 11. Real world magnetic data-set, anomalous ΔT field over a 100mm tank projectile,
in the depth 1.9 m below the sensor: a) extracted measured data on 16 × 15 m area, b)
corresponding L1-norms, c) extrapolated data to 24 × 23 m area, d) corresponding L1-
norms. Sampling steps for all cases: Δx = Δy = 0.1 m.
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Pašteka R. et al.: Matlab tool REGCONT2: effective source . . . (231–254)

tive shooting area in Rohožńık-Studienka in SW Slovakia (survey was done
because of planned vibroseismic survey in this area). As it was mentioned
in the begin of this sub-chapter, magnetic data have been acquired in a
net of 1.0 × 0.1 m points. One typical anomaly was selected for TRDC
depth-estimation (Fig. 11a). This anomaly is connected with an unexploded
100 mm tank gun projectile, which was excavated in the depth 1.3 m be-
low the surface (the average height of the magnetometer sensor over the
earth surface was around 0.6 m). On the shapes of interpreted L1-norms
(Fig. 11b) it can be seen that the detected local minimum vanishes too early
and the estimated source depth 0.6m is too shallow (0.6m = 1.2m – 0.6m).
In this case unfortunately, the extrapolation by means of the mentioned
partial differential equations together with sparse linear algebra approach
(D’Errico, 2012) did not helped much. Estimated depth in the case of ex-
trapolated grid (Fig. 11c) is slightly larger (Fig. 11d), but its value 0.8 m
(1.4 m – 0.6 m) is in a large error, when compared with the real depth of
the projectile (1.3 m). Here we can see that sometimes even such kind of
extrapolation does not help and we have still to work on this aspect of the
method (searching for better extrapolation methods).

6. Conclusions

Presented results show that during application of stable downward contin-
uation methods (here the Tikhonov’s regularization method was used) for
the estimation of source depths also the discretization parameters of the
interpreted fields can play an important role. The most important are the
dimensions of the area covered by the interpreted field – in other words, there
is a need for relatively large surroundings around the interpreted anomaly
(from our experience these should be 5–10 times larger than the expected
source depth). From this point of view, the method is more suitable for the
interpretation of objects in near surface and mining geophysics (anomalies
from cavities, UXO objects and ore bodies). Some extrapolation methods
(based on partial differential equations approximation) can help in these
situation. Beside of this, also the sampling step plays an important role –
we can improve the properties of the method even by introduction of in-
terpolated values, covering the area in a denser grid. Although, we do not
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increase the information content of the anomalous field, but we improve the
numerical aspects of the discrete Fourier transform evaluation, which is the
basis of the method). From our experiences, at least 10 sampling points
pro anomaly half-with should represent a material, which is good for the
interpretation with this kind of methods. In this situations, the well know
Kriging interpolation method gives the best results.

Together with this paper, we give a software solution of this proposed and
analysed method – the Matlab script REGCONT2 is free for academic and
scientific use and it can be downloaded together with supporting files and a
user manual from the server: http://www.kaeg.sk/vyskum/projekt-vega-20

14/project-vega-1-0462-16/.
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Chebyshev–Padé Approximation Function. Pure and Applied Geophysics, 175, 1,
275–286.

Appendix

Derivation of the regularized downward continuation filter in Fou-
rier domain

This derivation was inspired by the fundamental paper from Tikhonov et
al. (1968) and we try to give it here with all needed details (for better un-
derstanding of the basic idea of regularization).

Based on the harmonic property of the continued potential field function
U (potential or its higher derivative; which fulfils the Laplace’s equation)
and Green’s third identity, the so-called Poisson’s integral is valid for the
analytical continuation (e.g. Blakely, 1995, p. 316):

U (x, y, z −Δz) =
Δz

2π

∞∫
−∞

∞∫
−∞

U (ξ, η, z)[
(x− ξ)2 + (y − η)2 +Δz2

]3/2 dξdη , (A.1)

(3D problem)

where U(x, y, z − Δz) is the potential field on a depth level h − Δz (fur-
ther from the sources), U(x, y, z) is the field on the level z (closer to the
sources), Δz is the vertical continuation distance (Δz > 0; z-axis is pointing
downwards) and ξ, η are the equivalents of variables x, y in the integration
plane. When the function U(x, y, z −Δz) is searched then we speak about
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an upward and when U(ξ, η, z) inside the integral then about a downward
continuation, respectively. Upward continuation is a stable operation (it
is an integral transformation) and downward continuation is an unstable
operation (it must be searched as a solution of an integral equation).

In the case of a 2D problem we can write:

U (x, z −Δz) =
Δz

π

∞∫
−∞

U (ξ, z)[
(x− ξ)2 +Δz2

] dξ . (2D problem) (A.2)

Equation (A.2) (and A.1 of course too) can be seen as a convolution integral:
e.g. for the 2D problem it can be rewritten as U(x, y, z −Δz) = U(x, z) ⊗
K(x), where ⊗ is the convolution symbol and K(x) = (1/π)((Δz/(x2 +
Δz2)) is the integral kernel function from (A.2). Convolution operation can
be performed effectively in the Fourier domain using the convolution theo-
rem, what will be used later on.

The most important aspect of the regularized solution creation in the
sense of Tikhonov approach (Tikhonov et al., 1968; Tikhonov and Arsenin
1977) can be defined as a minimization problem solution – we have to mini-
mize a functional (F ), which is composed by two partial functionals (objec-
tive functions). The first of them is describing the closeness of the searched
regularized solution to classical one (the searched function is continued up-
wards and compared with the original measured function); the second one
is the regularizing (smoothing) functional, assuming the fact that a sum
of the squared horizontal derivative of the searched solution should be as
small as possible. The aim is to find a solution, which will be in a kind of
“equilibrium” between these two conditions.

In the next part of the text we will derive, based on this minimization
scheme, the solution for the downward continuation (Tikhonov et al., 1968).
Because of the lack of simplicity we will derive it for the 2D problem, taking
the starting level at z = 0, U0 = U(x, 0) and the downward continuation
will be performed to the depth level h(Δz = h), y(x) = U(x, h). The
minimization problem can be formulated as:

∞∫
−∞

F
[
y, y′, x

]
dx =

∞∫
−∞

{
[y ⊗K (x)− U0 (x)]

2 + α
[
y′ (x)

]2}
dx = min. , (A.3)
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where y′(x) stands for the horizontal derivative of y with respect to x(∂y/∂x)
and α is the regularization parameter “managing” the influence of the sec-
ond (stabilizing) functional upon the whole solution (physical unit of α is
m−1).

The aim of the solution of this minimization problem is to find the
solution y(x), for which the functional F [ ] reaches a minimum. We use
the known Euler-Lagrange equation from the variational calculus theory
(e.g. Bath, 1968; Troutman, 1983) for finding an extreme of the variational
problem:

∂F

∂y
− d

dx

[
∂F

∂y′

]
= 0 , (A.4)

The first term of the Euler-Lagrange equation (A.4) is:

∂F

∂y
= 2 (y ⊗K − U0)

∂ (y ⊗K)

∂y
= 2 (y ⊗K − U0)

+∞∫
−∞

K (x− ξ) dξ =

= 2 (y ⊗K − U0)
1

π

+∞∫
−∞

h

(x− ξ)2 + h2
dξ =2 (y ⊗K − U0) ,

where the incident integral of the shifted kernel function is equal to 1 (with
assumption h > 0).

The second term of the Lagrange-Euler equation (A.4) is:

d

dx

[
∂F

∂y′

]
=

d

dx

[
2αy′

]
= 2αy′′ .

These results are substituted to equation (A.4) and we yield:

2y ⊗K − 2U0 − 2αy′′ . (A.5)

This equation is solved in spectral domain by using theorems of spectrum
of convolution and theorem of spectrum of differentiation of a function:
The Fourier transformations F of single terms are (u is the wave-number):

F{K(x)} = e−|u|h – spectral characteristics of upward continuation (h > 0),
F{y(x)} = ỹ(u) – spectrum of the solution (regularized downward

continued field),
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F{y′′(x)} = −u2ỹ(u) – spectral characteristic of second horizontal
derivative of the solution,

F{U0(x)} = Ũ0(u) – spectrum of measured field on the level z = 0.

Substituting these terms into the equation (A.5) gives (divided by factor 2):

e−|u|hỹ − Ũ0 − α(−u2)ỹ = 0,

ỹ
[
e−|u|h + αu2

]
= Ũ0,

ỹ
[
1 + αu2e|u|h

]
= e|u|hŨ0.

The spectrum of searched solution is then equal:

ỹ =
1

1 + αu2e|u|h
e|u|hŨ0, (A.6)

where the first part (fraction) is a low-pass filter – the regularization term
(controlled by the regularization parameter α), the second one exp(|u|h)
is the spectral characteristics of the classical downward continuation and
the third is the spectrum Ũ0(u) of continued function U0(x). A part of the
regularized solution is the search for an optimum value of the regularization
parameter α (there exist several methods, in this paper we use the concept
of C-norms, or in general LP-norms).
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