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Abstract: The present study describes results from synthetic modelling of 2D GPR

constant-offset radargrams (B-scans) for air-filled cavities with different shapes. The pri-

mary objective of these simulations was to enhance the understanding of actual GPR data

when subsurface cavities are present. Three different numerical methods are used, based

on the Finite-Difference Time Domain approach. During processing of received synthetic

radargrams, migration plays a crucial role. When designing the final depth-sections,

it proved to be extremely important the application of the so-called Combined Time–

Depth Conversion transformation method. Final results showed with good precision the

geometry and depth extent of studied cavities in the absolute majority of the calculated

models. The verified processing steps sequence was also successfully applied to a real-

world dataset from GPR survey data from St. Catherine’s church in Banská Štiavnica.
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1. Introduction

Ground penetrating radar (GPR, or in simple terms “georadar”) is one of
the most important methods in near-surface geophysics. The GPR method
has found applications in many areas: ranging from solving engineering, en-
vironmental, hydrogeological, geotechnical, forensic, glaciological problems
– to non-destructive archaeological research (e.g., Daniels, 2004; Annan,
2003; Reynolds, 2011). The GPR technique in archaeology is one of the
standard non-destructive prospecting methods (Basile et al., 2000; Lecke-
busch, 2000; Lorenzo et al., 2002; Linford, 2006; Leucci and De Giorgi,
2010; Haynes et al., 2023; Cuenca-Garcia et al., 2024 and many others).
The detection of naturally occurring and artificial cavities is one of the im-
portant objectives of GPR surveys, as cavities are usually objects with a
significant contrast in electric petrophysical properties to their soil (rock)
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surroundings (e.g., Morey, 1974 in Smith and Jol, 1995; Kuhns 1983; Mar-
tinaud et al., 2004; Daniels, 2004; Annan, 2003; Reynolds, 2011; Persico
et al., 2014; Solla et al., 2016; Persico et al., 2019; Panisova et al., 2016;
Leucci et al., 2021; Persico et al., 2024).

Several authors have published studies describing the basic characteris-
tics of anomalous wave images in GPR data in the case of cavity detection.
Based on practical experience, it can be stated that cavities are mainly
characterized by a pronounced reflection (with high amplitudes) from their
upper edge and a possible reflection from the bottom edge (Persico et al.,
2024). Besides this, typical is the presence of reverberations due to proba-
ble multiple reflections and occurrence of so-called “X-shaped features” (will
be explained later) in the un-migrated B-scans (ibid.). Some other authors
(Martinaud et al., 2004) point to the fact that right angles between vertical
walls and floor in the bottom of the cavity can produce additional disturb-
ing signals – so-called dihedral corner signals (will be explained later).

The present study focuses on anomalous features in 2D radargrams (B-
scans) in the case of shallow cavities, occurring in historical buildings and
complexes: crypts, tombs, cellars, corridors, etc. This type of cavity is rel-
atively easy to detect by means of the GPR method, but their anomalous
patterns can be sometimes very complex (influenced by diffraction waves
and multiples). In our opinion, from the 2D radargrams it is only possible
to determine the depth and shape of the upper edge with certainty. De-
termining the depth and shape of the lower edge is more difficult. Using
synthetic modelling, we attempted to visualize different types of cavities,
mainly with different shapes in their cross-section. We show that, through
an accurate numerical modelling and by careful analysis of processed 2D
radargrams, valuable information about their geometry can be obtained.

In general, several methods have been proposed to numerically simulate
GPR data. These techniques include ray-based methods (Goodman, 1994;
Cai and McMechan, 1995), frequency-domain methods (Prokopidis and Tsi-
boukis, 2007; Zeng et al., 1995) and pseudospectral methods (Carcione,
1996; Casper and Kung, 1996; Liu and Fan, 1999). But, of all these listed
methods, the Finite-Difference Time Domain (FDTD) approach seems to be
the most widely used, and it has been developed over the last few decades
as a standard method for modelling GPR wave propagation (e.g., Wang and
Tripp, 1996; Bourgeois and Smith, 1996; Bergmann et al., 1996; Teixeira
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et al., 1998; Giannopoulos, 2005; Irving and Knight, 2006). In this paper,
we have chosen three software solutions, which are based on the FDTD
approach: a) the simplified solution (so-called “Exploding-Reflector”) in
the commercial software ReflexW (Sandmeier, 2020); b) the algorithm from
Irving and Knight (2006), together with their MATLAB script and finally
c) the well-known algorithm GPRmax (Giannopoulos, 2005). There exist
differences among the concepts and numerical schemes in these three used
methods – and for this reason, after initial independent testing, we decided
to use all of them in the this paper.

Synthetic radargrams contain the basic information about the modelled
cavity, but they must be further processed – with the aim to “strip” the
fundamental information about the depth, size and geometry of the studied
cavity. During the processing of modelled synthetic GPR data, we have
applied several important calculation steps, like migration and removal of
multiples (with ReflexW software and in-house MATLAB script). We have
also used the so-called Combined Time–Depth Conversion (CTDC) trans-
formation from Persico et al. (2024), to improve the calculation of final
depth sections. This approach is working with a velocity model of the sec-
tion, which uses different values for the surrounding soil (rock) and for the
interior of the interpreted cavity. This is very helpful, especially for the esti-
mation of the depth of the cavity lower edge. We show that an appropriate
use of a GPR survey data, supported by well-selected processing steps, al-
lows not only the detection of the subsurface cavity but also the retrieval
of detailed information on its shape, in particular returning its upper edge
curvature. Such results are critical for enhancing the interpretability and
applicability of GPR in complex subsurface settings.

The main objective of the article is to better understand the manifes-
tations of modelled cavities in the reflection field (which has a slight edu-
cational dimension) and to find a processing procedure that can extract as
much information as possible from the data about the actual shape (and
dimensions) of the detected cavities. We demonstrate the basic properties
of anomalous patterns in the case of shallow cavities in several synthetic
examples, which build the main part of this paper (additional examples are
provided in the Supplementary Material). In addition to synthetic exam-
ples, we also offer an example of real data processing: GPR survey data
from St. Catherine’s church in Banská Štiavnica.
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2. Methodology

We will start in this chapter with the explanation of the modelling pro-
cedures and describing the occuring features in the resulting radargrams.
Then we will continue with the processing steps needed to improve the vis-
ibility of cavities in the synthetic radargrams.

The presented publication deals with numerical modelling of air-filled
cavities that often occur in non-destructive archaeological (archaeo-geophys-
ical) research – crypts, tombs, cellars, tunnels, etc. The strong contrast
between two environments in the case of air-filled cavities (soil/air) is one
of the most striking examples of the application of near-surface geophysical
methods. Based on the above, the use of geoelectric/EM methods (mainly
GPR) is often successful in detecting and defining of air-filled cavities. The
basis for explaining the properties of EM waves in the GPR method in the
case of reflection and refraction into air-filled cavities is the description of
contrasts in EM petrophysical properties (electric permittivity, electric con-
ductivity and magnetic permeability).

In this study, we use synthetic datasets generated by simulation of un-
derground cavities models with the Finite-Difference Time Domain (FDTD)
approach. The FDTD approach to the numerical solution of Maxwell’s equa-
tions (first-order partial differential equations) is to discretize both the space
and time continua (Giannopoulos, 2005). In the presented study, we have
used three different software solutions of the FDTD approach:

a) The first software solution is the commercial software ReflexW (Sand-
meier, 2020), a well-known and used processing tool in GPR practice.
This software uses a simplified solution for the 2D direct problem of
propagation of EM waves by means of the FDTD method, the so-called
“Exploding-Reflector”. We understand this concept as very close to
the known Huygens-Fresnel principle in wave-physics, in which every
point of boundaries acts as a source of secondary waves, propagating
through media. This ReflexW solution does not calculate reflections
from the top surface soil/air boundary, which makes the resulting syn-
thetic radargrams more simple, but far away from real datasets. On the
other hand, it can help better to understand phenomena, which occur in
the cavity and its close surroundings. Another great advantage is that
anomalous structures of variable forms can be modelled.
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b) The second software solution is the MATLAB script from authors Irv-
ing and Knight (2006), which involves also the FDTD method in two
dimensions, using the transverse magnetic mode formulation. Compu-
tation time is higher, when comparing it with the ReflexW software,
but on the other hand the Irving and Knight method calculates reflec-
tions from the top surface soil/air boundary, which makes the resulting
synthetic radargrams closer to the real data-sets. Also here, anomalous
structures of variable forms can be modelled.

c) The third software is the well-known algorithm GPRmax, which is
widely used by the GPR expert community and is based on the paper
from Giannopoulos (2005) and following publications (e.g. Warren et
al., 2016). It uses the so-called Yee’s algorithm to solve Maxwell’s equa-
tions in 3D using the Finite-Difference Time-Domain (FDTD) method.
The finite difference expressions for the spatial and temporal derivatives
are central-difference in nature and second-order accurate (GPRmax
website, n.d.). A great advantage is the 3D approach and possibility
to use as sources of modelled EM waves simulations of real GPR an-
tennas (e.g. GSSI). Disadvantages of this algorithm are: This method
encounters two main problems because it needs longer computation time
and it cannot accurately model complex shapes of cavities, since curved
structures have to be approximated through staircases in the rectangu-
lar grid. This algorithm again calculates reflections from the top surface
soil/air boundary.

Although, usually the field GPR data are collected in TEmode (transverse-
electric), the numerical modelling was performed in TM mode (transverse-
magnetic), which is a common approximation in GPR studies. This differ-
ence does not significantly affect the interpretation of our results. In the case
of all three used software, we have used the frequency of the source equal
to 100 MHz. This frequency is suitable for the detection of objects with di-
mensions, which are typical for the searched cavities in archaeo-geophysical
researches (crypts, tombs, cellars, corridors, etc.).

During numerical modelling of GPR data, it is important to analyse
the propagation velocities of EM waves in the obtained outputs. Velocity
(speed) of EM waves in different materials and environments can be calcu-
lated by formulas, derived from the EM field theory. In the case of simplified
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ideal dielectric materials with low loss (conductivity = 0, relative magnetic
permeability = 1), a simplified formula is valid (Reynolds, 2011, p. 539):

v = c/
√

εr = 0.3/
√

εr [m/ns] . (1)

In this contribution we work in all presented models with the contrast of
two environments: soil and air. In the case of a dry soil (sand), we consider
the typical value of the relative electric permittivity εr = 9 (this value fits
into the interval 5 – 10 for coastal dry sands in Table 13.4 from Reynolds
2011, p. 551), which results in the velocity value v = 0.1 m/ns. In the case
of air we have the well-known value εr = 1, which results into the velocity
value v = 0.3 m/ns (typical value of EM waves in air).

When understanding the complex reflection pattern in the case of anoma-
lous cavity manifestations in 2D radargarms (B-scans), it is also important
to analyse the polarity of the recorded EM waves. The change of the po-
larity of reflected waves is given by the reflection coefficient (Γ), which is
determined by the contrast in the intrinsic impedances of adjacent media
(e.g. Pozar, 2012, p. 29). Again, in the simplified ideal dielectric case (elec-
tric conductivity = 0, relative magnetic permeability = 1) of two layers with
dielectric constants εr,1 and εr,2, the generally used formula has the form:

Γ =

√

1/εr,2 −
√

1/εr,1
√

1/εr,2 +
√

1/εr,1
. (2)

In the case when EM waves penetrate the boundary from soil (εr,1 = 9)
into air in the cavity (εr,2 = 1), reflection coefficient (Eq. 2) has the value
+0.5. In the opposite case, when EM waves are penetrating the boundary
from the air into the soil, the calculated reflection coefficient (Eq. 2) has
the value −0.5. The aforementioned change in polarity can be observed
in several synthetic results in this paper, but it is sometimes difficult to
observe this phenomenon in the practical datasets, because the reflections
from bottom edges of cavities are often masked by resulting multiples in
these situations. We can nicely demonstrate this change of wave amplitude
polarity in the case of a simple prism with rectangular cross-section (Fig. 1a,
width = 5 m, height = 3 m). Depth of the upper edge of the prism is 1 m,
which gives for the velocity of soil (v = 0.1 m/ns) the value of the two-way
time (TWT) = 20 ns (first important flat reflection in Fig. 1b). After the
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EM waves enter into the cavity, the velocity increases to the velocity of EM
waves in air (v = 0.3 m/ns): this fact will cause the occurrence of the next
important flat reflection in the 2D radargram (Fig. 1b) for the TWT value
of 40 ns (20 ns in the soil plus 20 ns in the air, the height of the cavity is
3 m). The polarity of this second important reflection from the bottom edge
has reversed character (Fig. 1b), due to the negative reflection coefficient in
the case air/soil. This can be seen also in the cases of rectangular prisms
with different vertical dimensions (Supplementary Material, figures SM 1-1,
SM 1-2, SM 1-3, SM 1-4, SM 1-5 and SM 1-6; left-hand column – solutions
from the ReflexW software).

Fig. 1. Model of a cavity with rectangular cross-section (width = 5 m, height = 3 m).
a) vertical depth-section of the model (surrounding soil: ε1 = 9, air in the cavity: ε2 = 1);
b) original synthetic 2D radargram (ReflexW software); c) original synthetic 2D radargram
(ReflexW) with marked important diffraction hyperbolas and estimated velocities.

Another very important aspect of the complex reflection pattern in the
case of cavities is the occurrence of multiple reflections (multiples) for the
higher TWT values in the 2D radargrams. There are occurring two main
types of multiples in the case of shallow cavity models:
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– The first type arises within the cavity itself and is dominant. It always
occurs for larger TWT values than the first reflection of the bottom
edge. As it can be seen in Fig. 1b, polarity of these multiples remains
identical as it was in the case of the first reflection from the bottom edge of
the cavity (because there occur two next reflections from the boundary
air/soil, which will return the amplitudes polarity back to that from
bottom edge). This phenomenon can be nicely seen in next examples of
rectangular prisms with different vertical dimensions (Figs. 2 and 3; and

Fig. 2. Sequence of partial outputs from the GPR data 2D processing of synthetic model
results in the form of vertical radargrams: a) synthetic radargram of an air-filled cavity
model with rectangular cross-section (width = 3 m, height = 4 m), generated using the
FD method in ReflexW software; b) migrated section using Kirchhoff migration with a
combining window width of 100 traces; c) identification of internal multiple reflections for
removal (short red line shows the reflection, which should remain in the final section as
the deepest one); d) final radargram after multiple suppression (time range = 60 ns, time
lag = 40 ns, number of multiples = 4, number of traces = 5).
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Figs. SM 1-1, SM 1-2, SM 1-3, SM 1-4 and SM 1-5 in the Supplementary
Material, for smaller vertical dimensions of the prisms also the TWT
distances between the multiples become smaller).

– The second type of a multiple arises from repeated reflection of EM waves
from the top surface (soil/air). This type of reflection occurs deeper than
the first significant reflection of the upper edge (this often falls into the
TWT interval of the cavity) and is usually less pronounced. Its TWT
position can be easily calculated – it is located in integer multiples of the
TWT value of the first significant reflection from the upper edge. It can
be easily identified in the cases of cavities with high vertical dimension
(Fig. 4 and Fig. 5), but it can be hardly recognised in the case of cavities
with small vertical dimension (Supplementary Material, figures SM 1-4
and SM 1-5 – solutions from the GPRmax algorithm), where it interferes
with the reflection from the bottom edge and multiples of the first type.

Together, both types of described multiples can sometimes create to-
gether a relatively complex interference pattern (Supplementary Material,
figures SM 1-4 and SM 1-5 – solutions from the GPRmax algorithm), which
in some cases can complicate the interpretation of the lower edge of the
cavity. In the next part of the paper, we will show several examples of such

Fig. 3. Sequence of outputs showing time–depth conversion results for an air-filled cavity
model with rectangular cross-section (width = 3 m, height = 4 m): a) depth estimate
using a conventional single uniform velocity method (0.1 m/ns), showing an improper
lower edge depth; b) correct depth estimate using the Combined Time–Depth Conversion
(CTDC) transformation with two velocities: for soil (0.1 m/ns) and for air (0.3 m/ns
inside the cavity).
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situations for modelled cavities with different shapes (in cross-section) and
horizontal/vertical dimensions. It is important to mention here that the
synthetic data outputs from ReflexW software do not produce the multiples
from the top surface boundary (soil/air), so received 2D radargrams from
this software have more simple “character”, in comparison with the outputs
from Irving and Knight (2006) method and from the GPRmax software. On
the other hand, solutions from the ReflexW help to understand the basic
character of the anomalous wave pattern without the influence of the top
surface boundary (soil/air).

Fig. 4. Comparison of processed 2D synthetic radargrams of modelled cavity structure
with rectangular cross-section (width = 3 m, height = 5 m). Panel a) shows the vertical
depth-section of the model (with identical petrophysical parameters as in Fig. 1); Panels
b) – e) show the results of the ReflexW software: b) the original synthetic radargram,
c) migrated version, d) version with removed multiples and e) result from applied CTDC
transformation with the outline of the original model (red). Panels f) – i) show the re-
sults of the GPRmax software for the same sequence of processing steps as in b) – e).
In radargrams g) – i) additional background removal was applied. In radargrams h) – i)
additional removal of the multiple from the top of the model was applied. Red contours
in e) and i) show the cross-section of the cavity structure. Processing parameters used:
summation width (applied during migration) = 75 for ReflexW results and 40 for GPRmax
and method results, migration velocity = 0.1 m/ns.

322



Contributions to Geophysics and Geodesy Vol. 55/3, 2025 (313–339)

In some situations, we can remove both types of the multiples from the
radargram during processing of the modelled data. The first type of multi-
ple can be well removed by means of the special tool of the ReflexW software
(functionality “Multiple Reflection”), where the user has to specify four pa-
rameters: time range, time lag, number of multiples and number of traces.
This kind of removal is influencing usually the bottom part of the radar-
gram (for higher TWT values than the reflection from the bottom edge of
the cavity), which is not so important for the interpretation. Example of
such removal application will be shown in Fig. 2c and Fig. 2d; and it will be

Fig. 5. Comparison of processed 2D synthetic radargrams of modelled cavity structure
with rectangular cross-section (width = 3 m, height = 5 m). Panel a) shows the vertical
depth-section of the model (with identical petrophysical parameters as in Fig. 1); Panels
b) – e) show the results of the ReflexW software: b) the original synthetic radargram,
c) migrated version, d) version with removed multiples and e) result from applied CTDC
transformation with the outline of the original model (red). Panels f) – i) show the results
of the Irving and Knight method for the same sequence of processing steps as in b) – e).
In radargrams g) – i) additional background removal was applied. In radargrams h) – i)
additional removal of the multiple from the top of the model was applied. Red contours
in e) and i) show the cross-section of the cavity structure. Processing parameters used:
summation width (applied during migration) = 75 for ReflexW results and 40 for GPRmax
and Irving-Knight method results, migration velocity = 0.1 m/ns.
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later applied during the processing of all synthetic examples and practical
dataset. To remove the second type of multiple we have created a simple
in-house MATLAB script, which is very similar to the numerical solution
in ReflexW. It is based on the removal of amplitudes (in a defined window)
that occur at integer multiples of the TWT value from the first important
reflection (from the upper edge of the cavity). The user has to specify four
parameters: TWT of the first important reflection, TWT interval (which
will be then removed), begin of the window in x-direction and end of the
window in x-direction. In the case of this second type of multiple we have
often a more complicated situation (when comparing it with the first type
of multiple), because this kind of multiple can occur also for smaller TWT
values and can interfere with the reflection from the bottom edge. In such
a case, the user has to decide if to remove this kind of multiple or not.

Besides the important reflections from the upper and bottom bound-
aries of the cavity, there occur diffraction waves at the terminations of these
edges (corner points of the prism). Inside the expected interior of the cavity
(prism), or in deeper parts of the radargram, “wings” (side parts) of these
diffraction hyperbolas intersect in a typical pattern, which is resembling the
letter “X”. This so-called “X-shape” was pointed out in papers from several
authors (Utsi 2017 in Persico et al., 2019; Persico et al., 2024) and we can
follow it in the majority of our synthetic results (starting with Fig. 1b and
1c). Very interesting is the occurrence of so-called dihedral (or corner) sig-
nals (Martinaud et al., 2004), which originates when an EM beam bounces
twice on perpendicular flat reflectors (in bottom corners of the cavity). This
is causing an existence of a specular reflection, which occurs very near to
the main reflection from the bottom edge of the cavity. This phenomenon
can be followed in many practical datasets, but is hardly to be modelled –
because the majority of software solutions work with horizontal and sub-
horizontal reflectors (not with vertical reflectors).

When analysing the velocities obtained from 2D radargrams in their
deeper parts, it is necessary to take into account that EM waves pass
through multiple layers and objects with different propagation velocities.
In such cases, it is necessary to consider the average speed, and in practice,
the so-called RMS (Root Mean Square) velocity vRMS, which is the square
root of the average squared velocity (Yilmaz, 2001):
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vRMS =

√

√

√

√

N
∑

i=1

v2i∆ti

/

N
∑

i=1

∆ti , (3)

where vi is the velocity in the i-th layer and ∆ti is the two-way time in
the same layer. It is quite clear that in our case, this RMS velocity is only
a rough approximation, as it was derived for a horizontally layered homo-
geneous medium. The results of fitting velocity hyperbolas to the results
from some synthetic models indicate that the use of this approximation
is justified. Using the example in Fig. 1 with velocities: v1 = 0.1 m/ns,
v2 = 0.3 m/ns and TWT values: ∆t1 = 20 ns, ∆t2 = 20 ns, we receive the
value for the RMS velocity (Eq. 3): vRMS = 0.2236 m/ns. This value fits
with high precision with the estimated velocity from the deeper diffraction
hyperbolas (starting from the bottom corners of the modelled cavity) in
Fig. 1c and was also identified in the next model results (e.g. in Figs. SM4-1
and SM4-2, simulating pits with an air-filled layer above them; Supplemen-
tary Material document).

The original synthetic 2D radargrams obtained from modelling software
(Fig. 1 and next examples) need to be further processed in order to be bet-
ter interpreted – with the aim of determining the geometry of the cavity.
Some processing steps can significantly clean up the given sections – mainly
migration and removal of multiples. For this processing, we have used the
ReflexW software and also in-house MATLAB scripts. In Fig. 2 we brought
an example of such processing flow – in the case of a modelled cavity with
rectangular cross-section (width = 3 m, height = 4 m). We can see that in
the comparison with the original radargram (Fig. 2a), its migrated version
(Fig. 2b) has suppressed diffraction waves from the corners of the cavity.
Later we will show that besides this important improvement also the shapes
of upper and bottom boundaries of the cavity will improve their form. In
our calculations, we have used the known Kirchhoff migration – with a com-
bining window of 100 traces. Next step was the removal of the multiples
(the first type of the multiple). The ReflexW Processing software allows
the user to define manually a selected reflection (Fig. 2c, red line-segment),
which will be then automatically removed from the radargram. In Fig. 2d
we display the result of this operation. It can be seen that in this result, two
dominant planar reflections are defining the upper and bottom edge of the
cavity. Final step in our processing sequence is the calculation of the depth
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section. When we took the time-section in Fig. 2d and have used the con-
stant velocity for soil (0.1 m/ns) for the time-to-depth recalculation, then
we obtained a depth-section (Fig. 3a), in which the depth of the upper edge
of the cavity is correct (1 m), but the depth of the bottom edge is incorrect
(2.5 m). This is a well-known fact, caused by the different velocity of the
EM waves in the air-filled cavity. When we have processed this step by
means of the so-called Combined Time–Depth Conversion (CTDC) method
from Persico et al. (2024) (using an in-house MATLAB script), then we
have received a correct result (Fig. 3b), where the depth of the bottom edge
of the cavity is in the right position – in the depth of 5 m. The CTDC
method is based on the approach This method is based on an approach
that uses a velocity model in which the correct air velocity is calculated
within the expected cavity. Of course that by means of the creation of the
velocity model we are shifted into the interpretation part, but in the case of
cavities with rectangular cross-section, this can be done relatively easily –
vertical dimension of the cavity can be estimated from the two-way times of
the dominant reflection and also its horizontal dimension. This will not be
so easy, when we will deal with cavities of irregular cross-sectional shapes
(this will be shown later).

In the next part of the paper (chapter Results) we will bring results
of synthetic modelling (for cavities with different shapes of cross-sections)
and processing of the obtained results by means of the presented processing
flow.

3. Results

Main features of the GPR constant-offset 2D radargrams in the case of a
cavity with rectangular cross-section were introduced in the methodological
part of this paper (Figs. 1, 2 and 3). Here we continue with further results
of our numerical modelling – focusing on cavities with various shapes of
cross-sections. In all presented examples (Figs. 4–11) we present the results
from ReflexW software and the Irving and Knight method (in Fig. 4 the
GPRmax method), where we have used the same work-flow of processing
steps: migration, removal of multiples and finally the Combined Time–
Depth Conversion (CTDC) transformation. We start with a rectangular
cavity (but with different dimensions, as used before) and then we present
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models of cavities with various shapes of the upper edge: two types of trape-
zoidal cross-section, normal and reverse arched vault, normal and reverse
triangular vault. We know that not all of these shapes occur commonly, but
they are certainly important for understanding the anomalous wave field in
their cases.

In Figure 4 we have an example of a cavity with relatively high vertical
dimension (5 m), which does not occur very often in historical buildings
(but there exist such examples). We chose this example because it clearly
shows the manifestation of special multiple waves within the cavity itself.
Reflection from the bottom edge (at TWT 53.3 ns) can be well seen in the
results from ReflexW software (Fig. 4b), but it has a more complex shape
in the results from the GPRmax algorithm (Fig. 4f). This is due to the
fact that in the result from the GPRmax algorithm also the multiple from
the top soil/air surface interferes with other reflections. Migration is very

Fig. 6. Comparison of processed 2D synthetic radargrams of modelled cavity structure
with trapezoidal cross-section (wider part at the top, height = 3 m). Explanation of
panels a) – i) is identical with Figs. 4 and 5. In radargrams h) – i) additional removal of
the multiple from the top of the model was not applied. Processing parameters used:
summation width (applied during migration) = 75 for ReflexW results and 80 for the
Irving and Knight method results, migration velocity = 0.1 m/ns.
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helpful and makes the pattern much more clear (Fig. 4g), but the multiple
from the top soil/air surface (TWT = 40 ns, as expected) is still present.
By means of a simple in-house MATLAB script we have removed this mul-
tiple – by removing amplitudes that occur at integer multiples of the TWT
value from the first important reflection (from the upper edge of the cavity).
Result of this simple processing step (Fig. 4h) has very similar character,
when compared with the result from the ReflexW method (Fig.4d) (slightly
different character of the amplitudes of the main reflecting boundaries in
the results from the ReflexW software and GPRmax algorithm is given by
the usage of different basic wavelets, involved in both methods). Finally,
after application of the CTDC transformation (Fig. 4e and Fig. 4i), re-
sulting depth-sections give a good representation of the horizontal/vertical
extent of the cavity and its geometry (great difference of the wave pattern
character can be seen mostly between images in Fig. 4f and Fig. 4i). The

Fig. 7. Comparison of processed 2D synthetic radargrams of modelled cavity structure
with trapezoidal cross-section (wider part at the bottom, height = 3 m). Explanation
of panels a) – i) is identical with Figs. 4 and 5. In radargrams h) – i) additional removal
of the multiple from the top of the model was not applied. Processing parameters used:
summation width (applied during migration) = 75 for ReflexW results and 145 for the
Irving and Knight method results, migration velocity = 0.1 m/ns.
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only difference between Fig. 4 and Fig. 5 is that in the case of Fig. 5 the
Irving-Knight method was used (parameters of the prism with rectangular
cross-section are identical). As we can see, results from these two methods
(GPRmax and Irving-Knight method) are very similar and helpful to un-
derstand better real-world GPR sections (B-scans).

In Figures 6 and 7 we present results from prisms with trapezoidal cross-
section (Fig. 6: wider part in the top; Fig. 7: wider part in the bottom).
Such types of cavities are not very common in the real world (mainly this in
Fig. 6), but we wanted to show the wave pattern in 2D radargrams and the
effects of the applied processing steps for these types of objects. In the re-
ceived results, we can see how important is the role of the upper edge in the
detection of the bottom one. In the case, when the upper edge has larger
horizontal dimension than the bottom one – both of them are relatively
well described in the migrated and corrected radargrams after applying the

Fig. 8. Comparison of processed 2D synthetic radargrams of modelled cavity structure
with a normal arched vault (bottom edge is flat, height = 3 m). Explanation of panels a) –
i) is identical with Figs. 4 and 5. In radargrams h) – i) additional removal of the multiple
from the top of the model was not applied. Processing parameters used: summation
width (applied during migration) = 75 for ReflexW results and 145 for the Irving and
Knight method results, migration velocity = 0.1 m/ns.
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CTDC transformation (Fig. 6e and Fig. 6i). Trapezoidal shape of the cavity
can be well recognised. Completely opposite situation is in the case of a
cavity with small horizontal dimension – received geometry of the cavity in
the final radargrams (Fig. 7e and Fig. 7i) is deformed and the trapezoidal
shape cannot be interpreted in this case. Very similar results were received
from cavities with triangular cross-sections (SM4-4 and SM4-5 in Supple-
mentary Materials).

The model in Figure 8 is probably the closest to the real world examples –
it is a cavity with normal arched vault. It can be seen, how the shape of the
upper edge is influencing the shape of the bottom edge, even after applying
the migration procedure (Fig. 8c and Fig. 8g) (this can be followed also in
examples in Figs. SM3-1 and SM3-2 in the Supplementary material). The
same influence is visible in the case of a cavity with a reverse arched vault
(Fig. 9). Such a situation is really artificial (reverse vault), but again – it

Fig. 9. Comparison of processed 2D synthetic radargrams of modelled cavity structure
with a reverse arched vault (bottom edge is flat, height = 3 m). Explanation of panels a) –
i) is identical with Figs. 4 and 5. In radargrams h) – i) additional removal of the multiple
from the top of the model was not applied. Processing parameters used: summation
width (applied during migration) = 75 for ReflexW results and 100 for the Irving and
Knight method results, migration velocity = 0.1 m/ns.
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shows nicely, how the shape of the bottom edge is influenced by the shape
of the upper edge, even in migrated versions. In both cases, the CTDC
transformation yields interesting results, where even the shape of bottom
edge was slightly corrected (this was not the case for the Irving and Knight
method, where the final result was influenced by an imperfect removal of
the diffraction waves from the top corners of the cavity). In Figures 10 and
11 we have a similar situation, like it was in Figs. 8 and 9, but the shape
of the upper boundary is triangular – with normal and reverse versions. In
the situation with normal triangular shape (Fig. 10) the shape of the up-
per boundary could be well reconstructed in the final radargrams after all
processing steps, but the shape of the bottom boundary could not be well
estimated. In the case with reverse triangular shape (Fig. 11) the result
is even worse – existence of the diffraction waves from the centre of the
upper boundary makes the section more complicated and migration proce-

Fig. 10. Comparison of processed 2D synthetic radargrams of modelled cavity structure
with a cross-section with normal triangular vault (bottom edge is flat, height = 3 m).
Explanation of panels a) – i) is identical with Figs. 4 and 5. In radargrams h) – i) addi-
tional removal of the multiple from the top of the model was not applied. Processing
parameters used: summation width (applied during migration) = 75 for ReflexW results
and 145 for the Irving and Knight method results, migration velocity = 0.1 m/ns.
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dure could not eliminate this influence completely. Imperfect estimation of
the upper boundary shape has influenced also the estimation of the bottom
boundary shape – so this result is one of the worst among all the calculated
examples.

From examples SM2-1 to SM2-8 (cavity with rectangular cross-section,
various horizontal dimensions) and SM3-1 to SM3-4 (cavity with normal
arched vault, various horizontal dimensions) in Supplementary Materials we
can observe several interesting properties of the received radargrams. The
first important point is given by the fact that for larger horizontal dimen-
sions the corners of the upper edge are always characterised by diffraction
waves, which have the velocity of the upper soil layer (0.1 m/ns). Cor-
ners of bottom edges produce also diffraction waves, their velocity is close
to the average velocity (0.2236 m/ns), calculated by the VRMS approach
(Eq. 3), as it was shown in Fig. 1 and also in Figs. SM4-1 and SM4-2. The

Fig. 11. Comparison of processed 2D synthetic radargrams of modelled cavity structure
with a cross-section with reverse triangular vault (bottom edge is flat, height = 3 m). Ex-
planation of panels a) – i) is identical with Figs. 4 and 5. In radargrams h) – i) additional
removal of the multiple from the top of the model was not applied. Processing parameters
used: summation width (applied during migration) = 75 for ReflexW results and 145 for
the Irving and Knight method results, migration velocity = 0.1 m/ns.
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second important point is that with very thin vertically stretched cavities
(Figs. SM2-7 to SM2-8 and Figs. SM3-3 to SM3-4), we cannot reliably de-
tect the diffracted wave from the bottom edge - only that from the upper
edge. At this point, we cannot explain this phenomenon, but it is important
to keep it in mind when interpreting real data.

In the case of a cavity with circular cross-section (Fig. SM4-3 in Supple-
mentary Materials) we have received one dominant diffraction wave from
the top edge of the object and from the bottom edge of the object (together
with multiples of the first order). This result is in full agreement with the
results presented in the text-book from Reynolds (2011, p. 589, Fig. 14.29).

As an example of the application of the presented processing steps, we
present the results of archaeo-geophysical measurements in the St. Cather-
ine’s church in Banská Štiavnica. Measurements in the interior of the church
(GPR, microgravimetry, ERT = electrical resistivity tomography) were car-
ried out as part of a joint exercise between the Christian-Albrechts Univer-
sity in Kiel and Comenius University in Bratislava (Pašteka et al., 2019).
GPR measurements were performed on parallel lines with 0.3 m separa-
tion, in the central part of the church (close to the altar) by means of the
GSSI equipment (400 MHz antenna, SIR-3000 controller). From the ac-
quired data, we have selected a typical line, which was measured above an
unknown cavity (verified also by microgravimetry and ERT survey), orig-
inally acquired data are displayed in Fig. 12a. In Fig. 12b we can see the
processed result after applying dewow, zero-time removal, background re-
moval, gain (energy decay) and Kirchhoff migration (summation width =
100 traces). Important features of the radargram are signed by yellow colour
numbers: 1 – main reflection from the upper edge (vault, TWT = 9 ns) of
the cavity, 2 – reflection from the bottom (with inversed polarity of am-
plitudes, TWT = 20 ns), 3 – multiple of second type from the top surface
soil/air (TWT = 18 ns), 4 – this is probably the so-called dihedral (or cor-
ner) signal (Martinaud et al., 2004) or interference of several multiples of
first and second order. When removing multiple waves, we focused mainly
on the deeper parts of the processed radargram (TWT larger than 22 ns)
(Fig. 12c), using the approach in ReflexW software. We did not remove the
second type of multiple from the top surface soil/air (TWT = 18 ns), as it
is located in close proximity to the reflection from the bottom of the cavity
(such removal would have distorted or completely suppressed the bottom
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cavity reflection). Final step was the CTDC transformation with a prepared
velocity model (velocity for air was used in the expected space of the cavity
– with upper vault and bottom flat floor). In the final depth-section we
can see the resulting cavity geometry – in the depth interval from 0.5 m to

Fig. 12. Practical data example: selected GPR line (GSSI 400 MHz antenna) from the
church of St. Catherine’s in Banská Štiavnica. Panel a) shows the original acquired radar-
gram (without any processing). Panel b) shows the result after applying dewow, zero-time
removal, background removal, gain (energy decay) and migration (find the description of
features 1–4 in the main text). Panel c) shows the radargram from b) with applied CTDC
transformation. Panel d) shows the radargram from b) with multiples removal, performed
with ReflexW. Panel e) shows the radargram in d) with applied CTDC transformation.
Processing parameters used: dewow filter length = 4, summation width (applied during
migration) = 100, migration velocity = 0.1 m/ns.
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approx. 2.0 m). Of course, such a result is strongly influenced by the used
velocity model and its geometry. The detected and interpreted cavity has
not yet been verified by archaeological probing or video inspection, but it
could probably be a crypt or a treasury chamber.

4. Conclusions

This paper presents several results from synthetic modelling of cavity re-
sponses in constant-offset 2D radargrams (by means of 3 independent FDTD
methods) to better understand the results of real GPR measurements in
such types of surveys. In addition to presenting anomalous wave fields in
cavities with different cross-sectional shapes (main reflections from upper
and bottom edges, intensive multiples and the presence of diffracted waves
from the corners of the cavity edges), this study also focuses on the neces-
sary processing steps that attempt to extract essential information about
the cavities under investigation – their depth, dimensions, and shape. It
can be stated that the depth and shape of the upper edge of the cavity can
be determined unambiguously in the majority of situations, while all other
parameters remain subject to interpretation. Migration is an extremely im-
portant step in the processing flow and it improves the detected shape of
the upper cavity boundary. In our opinion, the final interpretation of cavity
shapes should only be carried out on migrated sections. Very important
is also the removal of multiples, which make the anomalous pattern in the
radargram more complicated.

Another very important step is the application of the CTDC (Combined
Time –Depth Conversion) transformation method (Persico et al., 2024),
which recalculates the final time slices to their depth equivalents, includ-
ing correct information about the speed of EM waves in air (inside the
cavity). This method helps very much to improve the final radargrams
(depth-sections) for interpretation. Vertical dimensions of cavities are in
this result much more correct and in some cases also the geometry of the
cavity is closer to its real shape. On the other hand, this kind of transfor-
mation can strongly influence the result, because the used velocity model
pre-defines the final extension and shape of the resulting cavity geometry.
This important processing step can be performed several times – with dif-
ferent velocity models and the final solution can be found by an iterative
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way. CTDC method is limited in the case of cavities with irregular shapes
– it works well, when the horizontal dimension of the upper cavity edge is
larger than the horizontal dimension of its bottom edge.

Only cavities with very small horizontal dimensions are characterized by
one dominant diffraction wave (e.g. Liu et al., 2021), in the case of cavities
with larger horizontal dimensions the main reflection has the shape of the
upper edge and corners of the edge are characterized by diffraction waves,
which contribute to the creation of the typical “X-shaped feature” (Utsi,
2017 in Persico et al., 2019; Persico et al., 2024). This feature can be in
majority case easily removed by properly performed migration (the proper
value of the summation width parameter must be found by trial-and-error
method). These interesting patterns originate also in the case when the side
walls of the cavity are not vertical (e.g. Fig. 6 and SM4-2 in Supplementary
Material).

Shapes and horizontal dimensions of the reflections from detected bot-
tom edge have their typical properties (e.g. inverse polarity of reflection
amplitudes) and are strongly influenced by the shape and horizontal exten-
sion of the upper edge. Removal of some of the multiples can influence the
detection of the bottom edge reflection and must be performed in a sensitive
manner, when dealing with real-world datasets.

Demonstrated properties of 2D radargrams in the case of synthetically
modelled cavities are compared with real-world data-sets, one of them we
have presented also here – results of archaeo-geophysical measurements in
the St. Catherine’s church in Banská Štiavnica. This case study confirms
our experiences from synthetic studies and the applicability of suggested
processing steps (among them mainly migration and the so-called Com-
bined Time –Depth Conversion transformation). The research results pro-
vide direct applications for archaeological prospection and civil engineering
projects because they enable precise identification of underground voids
which protects sites from damage and ensures public safety. In the future
we would like to expand our studies also to 3D cases of synthetic modelling
and joint interpretation with other geophysical methods (e.g. microgravime-
try).
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Solla M., Lorenzo H., Pérez-Gracia V., 2016: Ground penetrating radar: Fundamentals,
methodologies and applications in structures and infrastructure. In: Riveiro B.,
Solla M. (Eds.): Non-Destructive Techniques for the Reverse Engineering of Struc-
tures and Infrastructure. Taylor & Francis Group, 89–111.

Teixeira F. L., Chew W. C., Straka M., Oristaglio M. L., Wang T., 1998: Finite-Difference
Time-Domain Simulation of Ground Penetrating Radar on Dispersive, Inhomoge-
neous, and Conductive Soils. IEEE Trans. Geosci. Remote Sens., 36, 6, 1928–1937,
doi: 10.1109/36.729364.

Utsi E. C., 2017: Ground Penetrating Radar: Theory and Practice. Butterworth-Heine-
mann, Amsterdam, 205 p.

Wang T., Tripp A. C., 1996: FDTD simulation of EM wave propagation in 3-D media.
Geophysics, 61, 1, 110–120, doi: 10.1190/1.1443930.

Warren C., Giannopoulos A., Giannakis I., 2016: gprMax: Open source software to
simulate electromagnetic wave propagation for Ground Penetrating Radar. Comput.
Phys. Commun., 209, 163–170, doi: 10.1016/j.cpc.2016.08.020.
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