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Abstract: This study investigates the subsurface geological structures and mineralisa-
tion zones in the Gabal Abu Rahaya area, South Eastern Desert, Egypt, using integrated
geological, remote sensing, and aeromagnetic data. Landsat-8 imagery was processed to
identify lithological contacts and fault zones, creating a refined geological map of the
region. Aeromagnetic data were analysed using geophysical filters such as Reduced-to-
Pole (RTP), Tilt Derivative (TDR), Centre for Exploration Targeting (CET) porphyry
analysis, and Euler deconvolution to delineate subsurface structural features and miner-
alisation patterns. The results from both remote sensing and magnetic data showed con-
sistent structural trends, including matching fault and contact zones, which significantly
improved the reliability of structural interpretations. This data integration enhances the
delineation of prospective mineralised zones, making it possible to refine geological models
for the area. The approach successfully combines satellite imagery and aeromagnetic data,
offering a useful methodology for mineral exploration in complex, poorly mapped regions.
Ultimately, the study provides a model for targeting ore deposits in similar geologically
challenging terrains, contributing to more accurate mineral exploration.
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edge detection

1. Introduction

Gabal Abu Rahaya area is positioned in the Eastern Desert of southern
Egypt. Despite being surrounded by numerous promising gold discoveries,
there haven’t been many discoveries in the field itself. This might be at-
tributed to the dearth of thorough geomorphological mapping and the small
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number of thorough geological surveys. Furthermore, because of their close-
ness to cities and their lengthy mining and exploration history, which dates
back to the Pharaonic era, the northern (NED) and central (CED) sections
of the Eastern Desert have drawn a lot of scholarly interest. The southern
Eastern Desert (SED), in contrast, has received less attention, underscor-
ing the need for further data and study to fully comprehend its geological
makeup and salient features.

Although there may be some parallels between the SED and the CED’s
geological structure, research implies, it contains older rock formations and
has undergone more complex geological transformations, with less influence
from the major Najd shear system, and also is characterized by the ex-
istence of the pre- Pan-African rocks of the medium-grade gneiss, which
include continental shelf sediments intruded with alkali granitoids. These
rocks are exposed underneath ophiolitic belt that is encompassed between
the NW-SE trending orogenic belts (O’Conner et al., 1994).

Because of these geological obstacles, it is challenging to precisely define
mineralised zones, which create uncertainty in ore deposit, mine design,
mineral exploration, evaluation, and resource extraction. According to Hal-
dar (2018), mineral exploration focuses on activities that are interested in
finding new minerals and assessing profitable ones. An efficient method
for identifying subsurface objects and desirable drilling locations is the geo-
physical survey (Haldar, 2018). Magnetic methods are considered one of the
common beneficial accessible tools that assist in the identification of the sur-
face and subsurface geology. The goal of the utilization of the aeromagnetic
analysis is to help in explaining the problems of provincial geologic map-
ping and structure (Eldosouky, 2019; Sehsah et al., 2019; Eldosouky and
Mohamed, 2021; Melouah and Pham, 2021). Eldosouky et al. (2017, 2020,
2021) and Ekwok et al. (2019) used aeromagnetic and remote sensing data
to discuss mineralisation, density of sedimentary cover, representation of
buried contacts, and the location of the presumed fields of rock differentia-
tion.

Geological studies have been carried out in the vicinity of Gabal Abu
Rahaya area by several researchers, including Abdelsalam and Stern (1996),
El-Shimi (2005), and Elkhateeb and Eldosouky (2016), who assessed the
Wadi Allaqi region’s potential for mineralisation using aeromagnetic analy-
sis. Geological investigations have shown a sedimentary layer of around
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2,300 metres in thickness in the region’s stratigraphy, including results
from the El-Nom borehole in the Gebel Abraq region southeast of Aswan
(Mahmoud and Essa, 2007). This sequence, which spans geological eras
from the Berriasian to the Cenomanian, is mostly composed of siltstone,
black shale, fine-grained quartz-rich sandstone, and cemented sandstone.

Aeromagnetic surveys are utilized frequently in mineral exploration as
they provide detailed maps of variations in rock magnetization, making
them a valuable tool to point out subsurface geological structures. Using
sophisticated methods like reduction to the pole (RTP) and adding filters
like tilt angle analysis, CET porphyry and Euler Deconvolution on aeromag-
netic data researchers can increase the precision of geological and structural
mapping and identify possible mineralised regions. Because they frequently
signal the presence of economically viable mineral deposits, hydrothermal al-
teration districts are primarily important in mineral prospecting (Eldosouky
et al., 2017, 2020, 2021).

To effectively identify mineral-rich sectors as well as hydrothermal alter-
ation zones, tools such as principal component analysis (PCA) and band
ratio analysis are used to investigate hydrothermal alteration and distin-
guish lithological units in various contexts across the world (Banerjee et al.,
2019; Zoheir et al., 2019¢; Elsayed Zeinelabdein et al., 2020; Howari et al.,
2020; Sekandari et al., 2022; Abd El-Wahed et al., 2021; Pour et al., 2021).

Furthermore, several microwave sensor items are more advantageous and
efficient for mapping structural features and deformational settings (Kusky
and Ramadan, 2002; Pour and Hashim, 2015a; 2015b; Pour et al., 2016;
2018; Khalifa et al., 2021).

Mineral exploration in the upper crust benefits greatly from the integra-
tion of many geophysical, remote sensing, and structural datasets (Chen et
al., 2004; Eldosouky et al., 2021, 2024; Aali et al., 2022; Kharbish et al.,
2022; Mahdi et al., 2022; Maleki et al., 2022).

Therefore, geological mapping and mineral exploration in the Gabal Abu
Rahaya area can be significantly enhanced by combining data from remote
sensing with the findings of aeromagnetic surveys.

This combination strategy increases the likelihood of finding new min-
eral deposits in the southern Eastern Desert, which is currently understud-
ied. Particularly in polymetallic and very worn basement areas, where
the integration of remote sensing, geophysical, structural, and geological
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data using artificial intelligence produces beneficial results (Bencharef et al.,
2022).

The main goal of this study is to find the best locations for minerali-
sation and hydrothermal zones based on the identification of surface and
subsurface structures using the combination of remote sensing images and
aeromagnetic data. This will also make it easier to identify the various
lithologic units and point out potential mineralisation zones.

2. Location and geology

According to Zoheir et al. (2019b); Stern (1994), economically important
minerals including gold, copper, and iron are abundant in the Egyptian
Eastern Desert (EED), especially in its central and southern regions. There-
fore, the SED has undergone extensive mineralogical and geological inves-
tigations by several researchers (Akaad and El-Ramly, 1960; Abdel-Karim,
2021; Kusky and Ramadan, 2002; Zoheir et al., 2018). The region is lo-
cated east of Aswan between longitudes 33° 37 & 34°22'E and 23°02' &
23°23' N (Fig. 1a). It covers approximately 2400 km?.

Because there hasn’t been much geological research done in the area un-
der investigation, we used previous studies on the SED generally and its
adjacent areas specifically to describe the lithologic units in the Gabal Abu
Rahaya area. Conoco (1987) provided the geological map for the area un-
der study, which is characterized by an extremely arid environment where
rainfall is scarce, and mainly covered by foreland sediments which are repre-
sented by Cretaceous Nubian Sandstones and Quaternary deposits. The sed-
imentary cover is underlain by Precambrian rocks which are mainly younger
granites (Fig. 1b). The Nubian Sandstones are unconformably overlying the
basement rocks and can be classified into three units corresponding to the
lithological and photogeological characteristics (El Tarras, 1995).

The exposed basement rocks include metamorphic and igneous units cov-
ering the south-eastern, north-western, and southwestern parts of the study
area. The metamorphic rocks include the oldest deformed rock units in the
area. The exposed igneous rocks in the study area are mostly of granitoid
composition. These rocks and the hydrothermal deposits are the focus of
this study. The sedimentary cover in the north-eastern part of the study
area revealed the dominance of Upper Cretaceous Nubia sandstone succes-
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Fig. 1. a) Location map of the study area; b) geologic map of the Gabal Abu Rahaya area
(Conoco, 1987); c) rose diagram of the surface structures that affected the study area;
and d) rose diagram of the surface structures that affected the study area.

sion which is arranged from oldest to youngest as follows; Abu Aggag and
Um Barmil formations overlain by Quaternary represented by alluvial de-
posits covering the distributed wadies in the study area.

The extracted structural lineaments from the geologic map in Fig. 1b
shows that the study area is affected by surface faults trending in the N,
NE-SW, ENE-WSW, NW-SE, and WNW-ESE directions (Figs. 1lc, 1d).
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3. Material and methods

3.1. Remote sensing data

The detection of hydrothermal mineralisation, as well as the spatial distri-
bution and expansion of their fluid routes, are the main topics of this investi-
gation. Therefore, the remote sensing (RS) datasets selected to accomplish
this aim, and the primary source of lithological mapping for the studied re-
gion, are Landsat-8. The data can be easily downloaded from the online link-
ages (http://earthexplorer.usgs.gov and http://glovis.usgs.gov).
To achieve accurate surface reflectance for precision processing, atmospheric
corrections were performed using the FLAASH module in ENVI v.5.1 on
Landsat-8 images.

Since the area of interest is smaller than the Landsat 8 OLI scene, the
undesirable portions were cropped using a subset function, leaving just the
area needed for analysis. This method reduces the amount of data stored
on the computer’s hard disk while simplifying and expediting additional
processing.

Band ratioing is a simple yet effective technique in remote sensing. Weiss-
brod et al. (1988), Cappiccioni et al. (2003), and Gerck and Hurtak (1992)
employed this technique to extract spectrum information from multi-spectral
data. Its foundation lies in emphasizing the spectral variations specific to
the materials being mapped. It works by dividing the Digital Number (DN)
values of one band by those of another, producing a grayscale image that
reflects relative band intensities (Sabins, 1997).

In mineral prospecting, band ratio is commonly used to improve the spec-
tral characteristics of the alteration zones based on the absorption bands
of their altered minerals. For example, using Landsat-8 the iron-bearing
(ferrous and ferric oxides) minerals are delineated using band ratios 4/5
and 6/5, whilst band ratio 6/7 is applied to detect high values of the
hydroxyl-bearing minerals (kaolinite, alunite, muscovite, epidotes and chlo-
rites) (Gupta, 2003).

Principal Component Analysis (PCA) is a commonly used enhancement
technique in lithological and alteration mapping studies, mainly in metal-
logenetic areas (Ruiz-Armenta and Prol-Ledesma, 1998). The number of
spectral bands input and the number of output principal components (PCs)
are equal. Most of the data variability is captured by PC1, which also
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identifies characteristics shared by all bands and frequently provides crucial
structural information.

The vector of greatest pixel variance is represented by PC1. The second-
highest variability is represented by PC2, which is orthogonal to PC1 and
emphasizes the spectral differences between the visible and infrared bands.
In comparison to the first two PCs, PC3 captures the third-largest variabil-
ity, but the other PCs capture less variability (Vincent, 1997; Gabr et al.,
2010).

3.2. Magnetic data

The aeromagnetic map, depicting total intensity is a part of the airborne
magnetic, which was conducted by Aero-Service Division, Western Geo-
physical Company of America in 1984, for the Egyptian General Petroleum
Corporation (EGPC) and the Egyptian Geological Survey and Mining Au-
thority (EGSMA). This airborne survey was conducted along most of the
Egyptian Eastern Desert. Following parallel flight lines are oriented in a
NE-SW direction at 1.5 km spacing with an azimuth of 45° and 225° from
the true north. Meanwhile, the tie lines were flown in a NW-SE direction
at right angles to the main flight line direction with an azimuth of 135° and
315° from the true north (Aero-Service, 1984).

The reduced-to-pole (RTP) filter to rectify these data, the total main
field value of 42425 nT was deducted from the overall intensity data using
the International Geomagnetic Reference Field of 1980. The reduced-to-
the-north magnetic pole (RTP) map of the research area was calculated
using an inclination of 39.5° N and a declination of 2° E. This process is an
essential step prior to applying any analytical technique, as the RTP cen-
tres the peaks of magnetic anomalies above their causative bodies (Baranov,
1957).

According to (Phalips, 1997), the reduction-to-pole (RTP) is a technique
in the frequency domain used to decrease the directional fuss that the low
geomagnetic latitude caused. This technique is carried out on the gridded
data that take off the asymmetry in total magnetic intensity (RMI) data
that is caused by the non-vertical inclination of the Earth‘s magnetic field.
The Geosoft Oasis Montaj (2015) software was used to compute RTP data
in the spectrum domain as:
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Lo [sin(I) — i cos(I) cos(D — 0)]? W
(sin?(Ia) + cos?(Ia) cos2(D — 0)) - (sin?(I) + cos2(I) cos2(D — 6)) ’

if (ITa<I), la=1, (2)

where the direction of the wavenumber vector in azimuth degrees = La, the
inclination angle = I, the inclination for amplitude correction = Ia, and the
declination angle = D. The RTP map serves as the primary dataset for any
analytical or interpretative techniques.

Miller and Singh (1994) created the Tilt Angle filter to highlight features
and identify the borders of causal bodies in potential field data. Verduzco
et al. (2004) claimed that the tilt derivative filter also automatically de-
tects anomalies in gain, which successfully draws attention to noticeable
anomalies (Cooper and Cowan, 2006). The tilt angle produces zero value
over the source edges, which is helpful in tracing them (Miller and Singh,
1994), which is the ratio of the vertical derivative to the absolute value of
the horizontal derivative of the magnetic field:

VDR
-1
THDR’ (3)

where, VDR = first vertical derivative, and THDR = total horizontal deriva-
tive.

On other hand, the CET Porphyry Detection system is used to locate
and boundary the subcircular zonation type in the magnetic data related
to the central intrusion and inner alteration zone of the porphyry system
(Holden et al., 2008; Macnae, 1995; Eldosouky et al., 2017).

The CET system is composed of the following elements: (1) the Ampli-
tude Contrast Transform to evaluate magnetic amplitude variations; (2) the
Central Peak Detection to identify the centres of circular features; (3) the
Circular Feature Transform to detect circular-shaped features (Loy and Zelin-
sky, 2003); and (4) Boundary Tracing to define the edges of the features
(Williams and Shah, 1990).

At last, a semi-automatic process called Euler deconvolution (Reid et al.,
1990) was submitted by Thompson (1982) to locate the depth of sources and
evolved by Reid et al. (1990) to estimate the locations and the correspond-
ing depth of geologic sources of magnetic or gravimetric anomalies in a
two-dimensional grid.

TDR = () = tan
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Reid et al. (1990) automated the solution of the Euler linear equation
of homogeneity for gridded data to produce solutions for the positions and
depths of magnetic sources.

The usual Euler’s equation is re-arranged in the form:

oT

(@ = 20) Gy (=) g+ (2= 20) G+ N(BT), )

where, (x9, Yo, z0) is the position of a source whose total field T is detected
at (z,y,z), B is the regional or the background of the total field, and N is
the structural index (SI).

The Structural Index (SI) is an exponential factor corresponding to the
rate at which the field falls off with distance from a source of a given ge-
ometry (Reid et al., 1990). The value of the SI parameter depends on the
type of source body we are looking for and the type of potential field data
we are using (magnetic or gravitational).

4. Results

4.1. Remote sensing results

In band ratio (BR), clay, mica, talc-carbonate, and carbonates, like marbles,
are exemplification of hydroxyl minerals that show strong absorption in the
2.08-2.35 m wavelength region, which is identical to OLI-B7 (2.1-2.3 m).
Additionally, the 1.55-1.75 m band, which corresponds to B6 (1.56-1.66 m)
of Landsat-8, has a higher intensity of spectral reflectance.

Consequently, the best way to differentiate between carbonate minerals
and hydroxyl-bearing changes is to use the 6/7 band ratio (Fig. 2a) (Gupta,
2018; Pour and Hashim, 2015b).

Ferrous (Fe?) mafic minerals, such pyroxene and olivine, show high re-
flectance in B6 (1.560-1.660 m) and substantial absorption in OLI-B5
(0.845-0.885 m). Accordingly, gossans, ferrous-bearing rocks, and the dis-
tinction between mafic and felsic rocks may all be identified using the 6/5
band ratio (Fig. 2b) (Zoheir et al., 2019a).

In the visible and near-infrared (VNIR) spectrum, ferric (Fe?) ions show
a spectral response (Gupta, 2018). Iron oxide/hydroxide minerals, such as
jarosite, hematite, and limonite, show significant absorption in the ultravi-
olet or blue spectral region (0.45-0.52 m), which corresponds to OLI-B2,
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and intense reflectance in the near-red zone (0.63-0.69 m), corresponding
to OLI-B4. According to Pour and Hashim (2015b), this is what gives iron
minerals their distinctive rusty reddish-brown hue. In order to highlight
ferric-bearing iron minerals, the OLI-B4/2 band ratio (Fig. 2c). was used
in this investigation (Sabins, 1999).
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Fig. 2. a) BR of 6/7, highlighting the hydroxyl-bearing and carbonate alteration zones;
b) BR of 6/5, sharpening the ferrous-bearing minerals; ¢) BR of 4/2, highlighting the
ferric-bearing minerals; and d) false-colour composite image of BR: 6/7, 6/5, and 4/2 as
RGB.

To highlight the combination of hydrothermal alteration minerals, a false-
colour composite image was produced utilizing the band ratios 6/7, 6/5,
and 4/2 as RGB (Fig. 2d). Light green highlights ferrous-bearing minerals,
brilliant blue highlights ferric iron minerals, and light red, orange, pink,
and yellowish hues emphasize hydroxyl minerals. Granites and metamor-
phic rocks are depicted in green due to their high iron oxide content. The
mid-red hue associated with metasediments denotes a low concentration of
silicate minerals and a high concentration of clay and iron minerals. Clay
and ferric/ferrous oxide-rich alteration zones are indicated by areas high-
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lighted in yellow.

Moreover, the Principal Components Analysis (PCA) or “Crésta” tech-
nique, which was applied to remote sensing data for mineral exploration
(Crésta et al., 2003), the “Crésta” Method Target regions can be highlighted
as either bright or dark pixels in principal component pictures produced us-
ing PCA (Loughlin, 1991). It is well-established that iron-bearing and clay
minerals exhibit distinct absorption characteristics in specific bands. By
applying PCA, maps of hydroxyl (OH)-bearing and iron-rich minerals can
be extracted by transforming selected bands.

Four bands from Landsat 8 (bands 2, 5, 6, and 7) were chosen to identify
regions rich in OH-bearing minerals (H-image) in order to map alteration
zones (OH-bearing minerals) using the Crésta approach. To avoid mapping
iron oxides, bands 2 and 3 were omitted (see Table 1; Mia and Fujimitsu,
2012). Subsidiary, the approach used by Loughlin (1991) and Crdsta et
al. (2003), an evaluation of the eigenvector matrix’s output was executed.
The highest eigenvector properties, albeit with opposite values (+ or —),
are usually found in the main component (PC) that retains the intended
spectral information.

PC3 displays a considerable contrast between band 6 (0.999985) and
band 7 (—0.003682) based on the PCA loading of the chosen bands (2, 5,
6, and 7) (Table 1). Because of this, PC3 successfully draws attention to
the alteration zone, with affected rocks appearing significantly darker than
other rock units (Table 1).

Thus, PC3 highlighted alteration zone in Compared to the other rock
units, the altered rocks have a very dark tone (Table 1).

Table 1. PCA of the selected bands 2, 5, 6, and 7 of Landsat-8.

EIGENVECTOR | BAND2 BAND5 BANDG6 BAND7 | EIGENVALUE
PC1 0.999793 | —0.019833 | —0.003193 | —0.003251 | 26082.437875
PC2 —0.019827 | —0.999800 0.002486 | —0.000542 618.401592
PC3 0.003230 0.002424 0.999985 | —0.003682 63.307976
PC4 0.003251 | —0.000598 0.003673 0.999988 13.413621

Additionally, the PCs used to identify regions rich in iron oxides were
derived by transforming Landsat-8 bands 2, 4, 5, and 6 (Table 2). The
findings indicate that PC3 aids in locating areas with a greater iron oxide
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content by providing a good contrast between bands 5 (0.999934) and 6
(—0.007886) (Table 2). Therefore, PC3 is multiplied by —1 to get the F-
image, which highlights regions of iron oxides (Table 2).

Table 2. PCA of the selected bands 2, 4, 5, and 6 of Landsat-8.

EIGENVECTOR | BAND2 BAND4 BAND5 BANDG6 | EIGENVALUE
PC1 0.999680 | —0.022234 | —0.007171 0.009652 | 26538.763333
PC2 —0.022178 | —0.999741 0.004173 | —0.002833 542.672099
PC3 0.007339 0.004034 0.999934 | —0.007886 66.758719
PC4 0.009655 0.002586 0.007967 | —0.999918 7.962649

The “Croésta alteration image” is a false-colour composite image created
by using the OH-bearing minerals (H-image) in red (Fig. 3a), iron-bearing
oxides (F-image) in blue (Fig. 3b), and the combined H+F image in green
(Fig. 3c) after the H (hydroxyl-bearing) and F (iron oxide) images have
been obtained in grayscale.

The alteration zones resulting from these combinations are clearly visible
in (Fig. 3d). The reddish-yellow-highlighted false-colour composite image
precisely depicts the distribution of OH-bearing minerals and iron oxides in
the survey area.

The richer zones are shown in reddish-yellow (orange) in the final im-
age, which delineates the alteration zones according to the abundance of
iron oxides and OH-bearing minerals. Similar outcomes are seen in sed-
imentary rocks with high concentrations of clay minerals, particularly in
the southwest quadrant and in certain alluvial sediments. Compared to the
maps produced from band ratio alteration zones, the Crésta alteration im-
age (Fig. 3d) offers a more distinct delineation of alteration zones in terms
of number, size, area, and resolution.

Therefore, compared to the band ratio alteration zones map, the Crosta
alteration picture for Gabal Abu Rahaya area proves to be more effective
and potent for mapping alteration zones.

In the Eastern Desert of Egypt, mineralised zones are typically found
close to or inside fracture networks. The transfer of hydrothermal fluids,
which results in the creation of mineral deposits, is largely dependent on
these lineaments and fracture systems. All rock units with different densities
are intersected by linear features, so the lineaments Extraction, O’Driscoll
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(1972) asserts that lineaments can be used to locate possible mining re-
serves.

)

N 3sooE

A:

Fig. 3. a) False colour composite image using Crésta technique H-image; b) false colour
composite image using Crésta technique F-image; ¢) false colour composite image using
Crésta technique: (a) H-image F-image; and d) alteration areas in yellowish orange colour
after displaying h (R), F (B) and H+F (G).

This study traced several lithological units and extracted geological linea-
ments in the area of interest using data from the Shuttle Radar Topography
Mission (SRTM).

The research region is appropriate for this kind of investigation because
it is situated in an arid climate and has little vegetation. Lineament anal-
ysis was performed using Landsat-8 DEM data, and the main technique
for interpreting the SRTM DEMs was to create hill-shaded DEMs. In this
study, hill-shading DEMs with various azimuth angles and sun elevations
were used (Fig. 4a). This technique is effective in producing images that
enhance geomorphic lineaments.

Using azimuth and sun angle data, a grayscale DEM was used to create
the hill-shading image (Fig. 4b). Sun angles of less than 10° are extremely
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dynamic in highlighting topography in low-relief areas, such as the study
territory, and were therefore chosen for lineament analysis (Peria and Ab-
desalam, 2006). According to the findings, the shaded relief image offers
insightful geological information. The structural inputs extracted from the
SRTM DEM data are shown in the lineaments map (Fig. 4c) and the rose
diagram depicting the orientation of the lineaments (Fig. 4d).
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Fig. 4. a) Digital elevation model (DEM) of the study area: b) hill-shading image of
the study area; ¢) lineaments map, extracted from the DEM of SRTM data; and d) rose
diagram of lineaments extracted from surface remote sensing data.

Two primary fault systems may be identified in the tectonic trends within
the research area based on the extracted lineaments map. The first system
has numerous directional patterns and is linked to Precambrian tectonic
activity: NNW-SSE to NW-SE, NE-SW, WNW-ESE, ENE-WSW, E-W,
and N-S. The second system, which is mostly represented by NW—SE and
NNE-SSW trends, evolved during the Phanerozoic epoch as a result of the
Red Sea rifting process. The observed patterns coincide with the research
of Abdel Gawad (1967) and are generally in line with earlier investigations
conducted by Hunting Geology and Geophysics (1967), Krs et al. (1973),
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and Garson and Krs (1976). According to the data, the main N-S to
NNW-SSE trends were formed during the Precambrian by a tectonic force
that was roughly directed in an E-W direction. Secondary directions like
ENE-WSW, WNW-ESE, NE-SW, NW-SE, and E-W were also present.
During the Phanerozoic, stress oriented in the NNW-SSE direction led to
the development of conjugate fault trends (NW-SE and NE-SW) and re-
activated many of the older structures. The continuous development of the
Red Sea rift is intimately related to these movements. In conclusion, the
region’s tectonic structure is a result of both more recent Phanerozoic tec-
tonic pressures connected to Red Sea development and older Precambrian
stresses.

4.2. Magnetic results

The magnetic method is widely recognised as a valuable and accessible tool
for investigating both surface and subsurface geological structures. Aero-
magnetic analysis is employed to address challenges related to regional ge-
ological mapping and structural interpretation (Eldosouky, 2019; Sehsah et
al., 2019; Eldosouky and Mohamed, 2021; Melouah and Pham, 2021).

Aeromagnetic Interpretation Significant differences a qualitative elucida-
tion of the Total Magnetic Intensity (TMI) map (Fig. 5a) reveals a range
in magnetic intensity utility from —242.9 to 122.7 nT. These discrepancies
are explained by alteration inside the lithology of the investigation region.
Widespread magnetic anomalies with long wavelengths, weak magnetic re-
sponses, and low gradients are visible on the map. These irregularities,
which have elongated and semi-circular shapes, are frequently linked to
younger granitic formations in the southeast and metasedimentary rocks in
the north.

On the other hand, the western region, which is covered by sedimentary
rocks, and the southwestern and southeast regions’ basement rocks exhibit
stronger magnetic reactions.

The sources of these anomalies show trends in WNW-ESE to NW-SE,
E-W, NE-SW, and N-S directions, suggesting that they are structurally
aligned. The western, south-eastern, and north-eastern regions exhibit a
maximum amplitude of roughly 245.092 nT.

The Reduced-to-Pole (RTP) magnetic anomaly map is presented at
Fig. 5b. Both younger and older granites, as well as leucocratic metamor-
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Fig. 5. a) Total magnetic intensity map; and b) RTP map of Gabal Abu Rahaya area.
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phic rocks, are linked to these positive magnetic anomalies. While more
widespread positive anomalies in the southern region trend toward the SW
and WNW, the anomalies in the southeast and north-eastern regions are
longer and directed in a NE direction.

Moreover, the north-eastern and southeast territory of the research area
demonstrates mild magnetic anomalies correlated with metasediments and
sedimentary rocks, running NE and SW directions, with a minimum ampli-
tude of around —289.8815 n'T.

Moreover, the RTP map (Fig. 5b) manifests that the plurality of mag-
netic anomalies parallel NW, SE, N-S, and E-W directions signalize the
impact of regional tectonic processes such as the Syrian Arc system, the
Red Sea, and the entrance of the Gulf of Suez.

Lineaments, which are interpreted as faults, are found using the Tilt
Derivative (TDR) method, which makes it easier to locate extended mag-
netic source edges horizontally (Miller and Singh, 1994). The colour scale
(Fig. 6) indicates that these lineaments are characterized by abrupt changes
in magnetic susceptibility, especially at acute gradients where a faint yellow
“zero-contour” line occurs between green (negative values) and red (posi-
tive values). According to the TDR data (Fig. 6) and extracted lineaments
(Figs. Ta, 7b) the extracted structures coincide with the surface geology of
basement rock which could host mineralisation that is consistent with the
controlling NE-SW, NW-SE, and N-S trends. These trends are the main
lineament trends in the study area.

Magnetic topography was clarified using the CET Porphyry analysis,
which was first introduced by Holden et al. (2011) and was established on
the methodology of Macnae (1995).

The Reduced-to-Pole (RTP) magnetic data was subjected to this tech-
nique in four consecutive steps: boundary delineation, amplitude contrast
transformation, central peak detection, and circular feature identification.
The significance of circular features arises from the fact that intrusions, par-
ticularly porphyritic ones, generally have a circular or near-circular shape.
The processes of mineralisation are often linked to these intrusions or occur
in the surrounding areas due to the metamorphism of the host rock caused
by the intrusion. Additionally, the intrusion creates fractures in the invaded
rocks, providing a pathway for hydrothermal solutions, which facilitate min-
eralisation either through the direct emplacement of ores in these fractures
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or through replacement processes (Domzalski, 1964; Holden et al., 2011;
Eldosouky et al., 2017). The intrusions themselves have a positive magnetic
polarity, whereas the surrounding alteration zones are much less magnetic,
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which aids in the identification of these altered areas (Holden et al., 2011;
Eldosouky et al., 2017). The CET porphyry intrusion maps displayed in
Figs. 8 and 9 were produced as a result of these procedures.

The dyke-like features characteristics, which primarily align in NW-SE,
NE-SW, and N-S directions, are structurally impacted, according to the
analysis map (Fig. 8). This implies that the N-S structural trend is the
result of the most recent tectonic activity, while the NW-oriented trend re-
flects the dominant and more established tectonic framework in the study
area (Eldosouky and Elkhateeb, 2018) and these directions can be considered
among the most favourable zones for mineralisation emplacement within the
study area. It is worth noting that similar trends have been recorded in vari-
ous parts of the south-eastern desert of Egypt and have been associated with
known mineral deposits (Ammar et al., 1983; El Rakaiby and Kamel, 1988;
Hussein et al., 1988; Garson and Krs, 1976, among others).

The areas of potential structural complexity shown in (Fig. 9) show the
possible localities of mineralisation zones (marked as black triangles). These
potential zones were superimposed to the map mineralisation occurrences in
the study area (Fig. 10) to highlight and validate potential gold occurrences
in these structural blocks of the ED of Egypt (Zoheir et al., 2019a).

The produced map from carrying out the standard Euler deconvolution
technique to the RTP data (Fig. 11) shows a very good clustering of symbols
in linear and curved style, showing the type of probable contacts between
the rock units and showing the different geometries of the causative bodies,
with the linear contacts proposed to be the result of faults, which means the
contacts are structurally controlled. According to the results of the solu-
tion maps, the depths to the detected subsurface structures of the research
region range from 0.2 to 1.2 km for dyke (SI=1) with an average depth of
0.7 km. This range is typical of Euler analysis, which is often influenced by
shallow subsurface sources.

Determining the depth to the top of the source is a valuable technique
for estimating the thickness of sedimentary successions and, at times, for
identifying key structural features within basement rocks. In sedimentary
basin studies, it is generally assumed that erosional processes have reduced
the vertical extent of intrusive rocks within the basement. Accordingly, the
depth to the top of the intrusion represents the thickness of the overlying
sedimentary section. However, this thickness is often considered a minimum
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estimate, as the intrusion may not extend all the way to the basement sur-
face (Dobrin, 1976).

Basement depths (Fig. 12.) were calculated using standard Euler decon-
volution with a structural index (SI) of 0.1. This data was used to con-
struct a depth map of the magnetic sources across the study area. The
map indicates that the greatest depths, exceeding 1 km, are found in the
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southwestern and north-eastern regions of the area, aligned with a NW-SE
structural trend.

Figure 6 demonstrates a well-clustered distribution of solutions in both
linear and curved patterns. These patterns reflect the interactions between
different rock units and highlight the diverse geometries of the causative
magnetic sources.

Furthermore, the TDR Euler and maps (Figs. 6 and 11) show strong
alignment with circular features observed in the whole parts of the study
area. These circular structures are considered highly favourable indicators
for ore deposition, suggesting a strong potential for mineralisation in the
region.

This correlation strongly supports the interpretation that lineaments
commonly regarded as favourable zones for ore concentration coincide with
the boundaries of subsurface magnetic sources. Additionally, the close spa-
tial match between mineralised zones and circular features highlights the sig-
nificant influence of structural systems on mineral accumulation processes,
indicating that ore formation in the study area was largely controlled by
tectonic structures.

5. Conclusion

The integrated results demonstrate the value of combining high-resolution
aeromagnetic data with remote sensing techniques in identifying significant
geological structures and areas with high mineral potential. The final min-
eral potential map provides a comprehensive interpretation of lithological,
structural, and geophysical data, serving as a useful tool for guiding future
exploration in the Gabal Abu Rahaya area. This combined approach en-
hances the understanding of regional geology and supports the development
of more accurate and cost-effective mineral exploration strategies. The up-
dated geological and mineral potential maps are essential references for on-
going and future geological and economic studies in Egypt’s Eastern Desert.
Moreover, the high number of detected sites, along with the fact that the
area and its surroundings have had limited prior studies, underscores the
need for more detailed future research.

Data availability. The data will be available on request from the corresponding
author.
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