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Abstract: Rayleigh wave exploration is a crucial technique in engineering site investi-

gation for obtaining subsurface stratigraphic information. Inverting its dispersion curve

can effectively reveal underground structures. However, traditional global optimization

algorithms exhibit significant limitations in dispersion curve inversion, including slow

convergence, low accuracy, and a tendency towards premature convergence. These issues

hinder the precise interpretation of stratigraphic information and impact the efficiency

and reliability of engineering surveys. To address these challenges, this paper introduces

a novel global optimization algorithm—Beluga Whale Optimization (BWO)—for Rayleigh

wave dispersion curve inversion, aiming to improve inversion effectiveness and enhance

performance. BWO achieves optimal solution finding by mimicking beluga whale swim-

ming, predation, and falling behaviours. Compared to other heuristic algorithms, BWO

demonstrates favourable performance in solving complex functions, offering superior per-

formance and efficiency while ensuring high solution accuracy, convergence speed, and sta-

bility. When testing the theoretical model of BWO applied to dispersion curve inversion,

first, four noise-free models were used to verify the feasibility of BWO for dispersion curve

inversion; subsequently, 15% random noise was added to the models, demonstrating that

BWO has strong anti-interference capability; finally, specific multi-mode dispersion data

were used to test that BWO can be applied to multi-order dispersion curve inversion. Dur-

ing the inversion of noise-free, noise-containing, and multi-mode dispersion models, BWO

was compared with the Particle Swarm Optimization (PSO) algorithm, which proved that

BWO has superior inversion performance and can obtain higher-precision solutions. In
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the actual data testing, seismic data from Wyoming, USA, were used to verify BWO’s

capability in processing actual data. Results from theoretical model tests and analysis of

field data indicate that BWO possesses characteristics of speed, high accuracy, stability,

and strong practicality, making it effectively applicable for the quantitative interpretation

of Rayleigh wave dispersion curves.

Key words: Rayleigh wave, dispersion curve inversion, global optimization, beluga whale
optimization (BWO)

1. Introduction

With the acceleration of urbanization and the advancement of major en-
gineering construction, the geological conditions of engineering sites have
become increasingly complex. From the concealed excavation of urban sub-
way tunnels to foundation selection for cross-sea bridges, from stability as-
sessments of underground energy storage facilities to disaster early warning
for high-steep slopes, the design and construction of every project highly
depend on an accurate understanding of the subsurface stratigraphic struc-
ture (Nong et al., 2024; Zhang et al., 2020; Liu et al., 2024). For instance,
in soft soil foundation treatment projects, failure to accurately obtain the
shear-wave velocity and thickness distribution of various soil layers may
lead to unreasonable foundation reinforcement designs, potentially causing
excessive building settlement. Conversely, in tunnel construction through
karst-developed areas, errors in stratigraphic information could even trig-
ger major safety accidents like water or mud inrushes (Liu et al., 2024).
Against this backdrop, how to efficiently and accurately detect the physical
and mechanical parameters of shallow subsurface layers (typically 0–50 me-
tres below the surface) has become a core issue in the field of engineering
geological investigation (Wang et al., 2022).

Rayleigh wave exploration technology holds an irreplaceable core posi-
tion in shallow engineering geological surveys due to its unique technical
characteristics and application advantages, serving as one of the key techni-
cal means for finely characterizing shallow stratigraphic structures and ef-
ficiently obtaining physical and mechanical parameters (Fu et al., 2023a,b).
Compared to traditional techniques like seismic reflection and refraction
methods, Rayleigh wave exploration exhibits two significant advantages:
Firstly, it offers high-resolution imaging of shallow geological structures,
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achieving metre-scale precision capable of effectively identifying thin-layer
stratigraphic units only a few metres thick, providing reliable technical sup-
port for detailed near-surface structure characterization. Secondly, it pos-
sesses strong anti-interference capabilities, allowing the collection of wave-
form data suitable for analysis even in environments with urban construction
site vibrations or high-frequency noise from electromagnetic equipment in
industrial areas (Ai et al., 2025). These technical advantages have led to its
widespread application in engineering practices such as foundation bearing
capacity assessment, underground pipeline detection, and subgrade com-
paction testing. Dispersion curve inversion is the critical step in transform-
ing Rayleigh wave exploration technology into actual stratigraphic informa-
tion. The dispersion curve describes the correspondence between Rayleigh
wave propagation velocity and frequency, with different stratigraphic struc-
tures producing unique dispersion characteristics. The inversion process
involves calculating subsurface parameters (such as layer thickness, shear-
wave velocity, Poisson’s ratio, etc.) from measured dispersion curves, and
its accuracy directly determines the reliability of the final survey results. It
can be said that the quality of dispersion curve inversion bridges the gap be-
tween field data acquisition and engineering design decisions. Consequently,
developing high-precision and high-efficiency inversion methods remains a
research hotspot in this field (Liu et al., 2018; Zeng et al., 2011; Yang et
al., 2023; Lamuraglia et al., 2023; Dal Moro et al., 2018).

Currently, dispersion curve inversion algorithms are mainly divided into
two categories: local optimization algorithms and global optimization algo-
rithms, each with its own strengths and weaknesses applicable to different
scenarios (Fu et al., 2022). Local optimization algorithms, represented by
Least Squares (Dorman and Ewing, 1962; Gabriels et al., 1987; Pei et al.,
1994; Ganji et al., 1998; Song et al., 2003), Levenberg-Marquardt (L-M)
algorithm (Xia et al., 1999), and Occam’s algorithm (Ai and Cheng, 2009;
Song et al., 2007), operate by starting from an initial model and iteratively
adjusting parameters to minimize the error between theoretical and mea-
sured dispersion curves. Early on, these algorithms were widely adopted
due to their high computational efficiency—under ideal conditions with low
parameter dimensionality and an initial model close to the true subsurface,
inversion could be completed within tens of iterations. However, their lim-
itations are prominent: Firstly, they exhibit extreme dependence on the
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initial model. If the initial model differs significantly from the true values,
the inversion results may be unsatisfactory. Secondly, they are highly prone
to getting trapped in local minima. When low-velocity interlayers exist in
the subsurface, the parameter space may contain multiple local optima, and
local algorithms often stop searching after finding the first “seemingly rea-
sonable” solution. Furthermore, algorithm performance heavily relies on the
accuracy of the Jacobian matrix, which describes the influence of parameter
changes on the dispersion curve; calculation errors in this matrix can cause
oscillation or convergence stagnation in the inversion results (Dal Moro et al.,
2007; Arai and Tokimatsu, 2005). These shortcomings significantly restrict
the application of local optimization algorithms under complex subsurface
conditions. The emergence of global optimization algorithms offers new ap-
proaches to address these issues. These algorithms do not rely on an initial
model but perform a global search within the parameter space by simulat-
ing natural phenomena (e.g., biological evolution, physical annealing, swarm
foraging). Representative methods include Genetic Algorithms, Simulated
Annealing, Particle Swarm Optimization (PSO), etc. (Shi and Jin, 1995;
Yamanaka and Ishida, 1996; Zhang et al., 2000; Mart́ınez et al., 2000;
Beaty et al., 2002; Calderón-Maćıas and Luke, 2007; Pei et al., 2007; Lu et
al., 2016; Song et al., 2012; Cai et al., 2018a). For example, Genetic Algo-
rithms simulate the biological evolutionary process of “selection-crossover-
mutation” to maintain population diversity for exploring the global op-
timum, while Particle Swarm Optimization simulates bird flock foraging
behaviour, adjusting search directions through information sharing among
individuals. Compared to local algorithms, global algorithms show distinct
advantages when dealing with complex subsurface inversion: they can po-
tentially find the global optimum even if the initial model differs greatly
from reality. However, these algorithms also have drawbacks: Firstly, high
computational cost. To ensure search comprehensiveness, thousands or even
tens of thousands of iterations are often required, potentially taking hours
for multi-layer subsurface inversion. Secondly, susceptibility to premature
convergence. If algorithm parameters are set inappropriately (e.g., crossover
probability too high in Genetic Algorithms), population diversity diminishes
rapidly, leading to premature termination at a non-optimal solution. These
problems limit the application of global optimization algorithms in rapid
field engineering surveys.
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To address the shortcomings of existing algorithms, this paper applies a
novel Beluga Whale Optimization (BWO) algorithm (Zhong et al., 2022) to
Rayleigh wave dispersion curve inversion, aiming to improve inversion effec-
tiveness and meet engineering survey requirements. The BWO algorithm
simulates the foraging and migration behaviours of beluga whales in Arctic
waters, balancing local search and global exploration capabilities through
strategies like “spiral predation” and “group siege”, showing potential for
solving high-dimensional, multi-extremum optimization problems. To sys-
tematically verify the performance of the BWO algorithm in Rayleigh wave
inversion, the research unfolds at three levels: First, construct four the-
oretical geological models ranging from simple to complex—including one
2-layer homogeneous model (simple) and three 4-layer models with transi-
tional gradient layers. Noise is also added to the models to further evaluate
algorithm performance comprehensively. By comparing the deviation of
inverted parameters from theoretical values and the standard deviation of
multiple inversion results, the feasibility (ability to converge to a reasonable
solution), effectiveness (whether inversion error meets engineering require-
ments), and stability (consistency of multiple inversion results) of BWO
for dispersion curve inversion are assessed. Secondly, the classic Particle
Swarm Optimization (PSO) algorithm is selected as a benchmark for com-
parison. Performance differences are quantified across three dimensions:
Root Mean Square Error (RMSE) measures inversion accuracy, the conver-
gence iteration process evaluates convergence efficiency, to clarify whether
BWO exhibits superior performance. Finally, the BWO algorithm is ap-
plied to measured Rayleigh wave data from Wyoming, USA. By comparing
inversion results with nearby borehole data, the algorithm’s practicality in
real-world engineering scenarios is validated. Through this research, we
aim to provide a new method characterised by high accuracy and stabil-
ity for Rayleigh wave dispersion curve inversion, promoting the application
of Rayleigh wave exploration technology in complex engineering sites and
offering more reliable geological foundations for engineering design and con-
struction.

2. Basic principles of BWO

The Beluga Whale Optimization (BWO) algorithm is a heuristic optimiza-
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tion algorithm inspired by the swimming, predation, and falling behaviours
of beluga whales in the ocean. Compared to other heuristic algorithms,
BWO demonstrates considerable competitiveness, particularly excelling in
handling large-scale application problems and complex functions, offering
superior performance and efficiency. The BWO algorithm primarily con-
sists of three evolutionary phases: Exploration, Exploitation, and Whale
Fall, corresponding to the whales’ swimming, predation, and falling be-
haviours, respectively. The algorithm has a simple structure, exhibits good
capabilities in both global and local search, and demonstrates excellent per-
formance in solving practical problems. Its mathematical model is described
below:

2.1. Initialization

The positions of belugas can be regarded as search agents, which randomly
generate a number of candidate values in the search space. In dispersion
curve inversion, these candidate values refer to the shear wave velocity (vs)
and formation thickness (thk) for inversion.

Xi
j = Lbj + (Ubj − Lbj)× rand , (1)

Lb is the lower bound of the candidate value X, Ub is the upper bound of
X, and rand is a random number in (0, 1).

Furthermore, the balance factor Bf controls the adjustment of the ex-
ploration and exploitation phases in the BWO.

Bf = B0 ·

(

1−
t

Tmax

)

, (2)

where B0 is a random number between (0,1), t represents the current it-
eration number, and Tmax is the maximum number of iterations. When
the balance factor Bf > 0.5, the population is in the exploration phase,
performing swimming behaviour. When Bf < 0.5, the population is in the
exploitation phase and exhibits predation behaviour.

2.2. Exploration phase

The exploration phase of the BWO algorithm simulates the social behaviour
of beluga whales swimming in pairs, moving randomly in a synchronised or
mirrored manner. The position update is as follows:
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





xt+1
i,j = xti,p + (xtr,p − xti,p)(1 + r1)·sin(2πr2), j = 2, 4, 6...

xt+1
i,j = xti,p + (xtr,p − xti,p)(1 + r1)·cos(2πr2), j = 1, 3, 5...

(3)

where xt+1
i,j represents the position of the individual in the next iteration; p

is a random integer within the range [1, D], D being the problem dimension;
xti,p represents the value of the i-th individual in the p-th dimension, xt

r,p

represents the value of a random individual r in a random dimension p

during the current iteration, and r1 and r2 are random numbers.

2.3. Exploitation phase

The exploitation phase of the BWO algorithm mimics the predation be-
haviour of beluga whales, involving coordinated movement and cooperative
hunting within the population through information exchange. Simultane-
ously, the Levy flight strategy is employed during exploitation to enhance
the algorithm’s convergence capability. Its mathematical model is expressed
as:

xt+1
i = r3 ·x

t
best − r4 ·x

t
i + C1 ·LF ·(X

t
r − xti) , (4)

C1 = 2·r4 ·

(

1−
t

Tmax

)

, (5)

where r3 and r4 are random numbers in (0, 1); xt
i and xtbest represent the

positions of a random individual and the best individual, respectively; C1

is a step size control parameter measuring the intensity of the Levy flight.
LF represents the Levy flight function:

LF = 0.05 ×
µ·σ

|ν|
1

β

(6)

σ =





Γ(1 + β)× sin
(

π · β
2

)

Γ
(

1+β
2

)

× β × 2
β−1

2





1

β

, Γ(x) = (x− 1)! , (7)

where u, v ∼ N(0,1) are random numbers following a normal distribution
with mean 0 and variance 1, and β is a constant set to 1.5.

2.4. Whale fall phase

The whale fall phase of the BWO algorithm mimics the behaviour of beluga
whales falling to the ocean floor after death. The population enters the
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whale fall phase when the balance factor Bf ≤ Wf . Belugas are susceptible
to external harm during migration and foraging, leading to death and sink-
ing. To maintain constant population size, the whale fall position update
formula utilises the individual’s current position and the whale fall step size:

xt+1
i = r5 ·x

t
i − r6 ·x

t
r + r7 ·x

t
step , (8)

xtstep = e
−C2·t

T ·(Ub− Lb) , (9)

C2 = 2Wf ×N , (10)

Wf = 0.1 − 0.05·
t

Tmax

, (11)

where r5, r6, and r7 are random numbers between 0 and 1; Ub and Lb

are the upper and lower bounds of the optimization problem, respectively;
xtstep represents the whale fall step size; C2 represents a step factor; Wf

represents the whale fall probability for a beluga individual. Figure 1 shows
the flowchart of the BWO algorithm.

3. Theoretical model testing

In engineering practice, the fundamental mode dispersion curve, due to its
stronger energy and easier observability, is the primary source of information
in collected data. Accordingly, inversion work typically targets the funda-
mental mode dispersion curve (Yang et al., 2019). However, considering
the possible presence of higher-mode dispersion phenomena, this paper also
tested the case of joint inversion using both fundamental and higher-mode
dispersion curves. Among subsurface parameters, shear-wave velocity (V s)
and layer thickness (h) are the most significant factors influencing changes
in Rayleigh wave dispersion curve characteristics; the influence of other pa-
rameters is relatively limited (Fu et al., 2023a,b). To reduce computational
load, this paper only uses V s and h as evaluation indices for the inversion
algorithm; other parameters are determined based on prior information.
Given the complexity of real subsurface conditions, the search range for
model parameters was set to 50% of the true model values.

Regarding algorithm parameter settings, for BWO, population size and
iteration count are key parameters affecting its performance. Therefore, the
population size for BWO was set to 30, and the iteration count was set to
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Fig. 1. Flowchart of the BWO algorithm.
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100 (Fu et al., 2023a,b). To mitigate the effects of algorithm randomness,
10 independent inversions were performed for each theoretical model test,
with a different initial model used for each inversion. Finally, the mean of
the data obtained from the 10 inversions was taken as the inversion result,
while the standard deviation was used as an indicator of algorithm stability
for evaluation.

The essence of Rayleigh wave dispersion curve inversion is an optimiza-
tion problem of minimizing a fitness function. The fitness function adopted
in this paper is defined based on the ability of the inverted model to accu-
rately explain the observed data:

F =

√

1

M

{

∑M

i=1

[

vobsR (i)− vcalR (i)
]2
}

, (12)

G =
1

L

∑L

k=1

√

√

√

√

∑Mk

i=1
(vobsR − vcalR )2

Mk

. (13)

In Eqs. (12) and (13): vobsR is the measured Rayleigh wave phase velocity;
vcalR is the theoretically calculated Rayleigh wave phase velocity; M is the
number of frequency points; L is the number of dispersion curves; Mk is the
number of frequency points for the k-th dispersion curve.

To reasonably evaluate the performance of the BWO algorithm, this
paper selected four theoretical models commonly used in engineering surveys
for testing. These four models range from simple to complex, gradually
increasing in complexity and approaching real subsurface conditions. Model
parameters are detailed in Table 1. Among them, model A is a two-layer
velocity-increasing model, model B is a four-layer velocity-increasing model,
model C is a four-layer model containing one low-velocity soft interlayer,
and model D is a four-layer model containing one high-velocity hard inter-
layer.

3.1. Inversion of noise-free data

To thoroughly evaluate algorithm performance, testing progressed from a
basic two-layer model to complex four-layer models, increasing model com-
plexity. Observing the inversion results for the simple two-layer velocity-
increasing model (model A) in Figure 2 reveals: even without prior informa-
tion, the inverted dispersion curve (dotted line in a) maintains a high degree
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of fit with the theoretically simulated dispersion curve (solid line in a). The
dispersion curves and S-wave velocity models inverted by BWO are both
closer to the true values than those obtained by PSO. The parameter errors
between the BWO inverted model and the theoretical model are only 0.38%,
0.58%, and 5.80% (detailed in Table 2). Simultaneously, the standard de-
viations of parameters obtained from 10 independent inversions show low
overall deviation across multiple runs, with the maximum deviation being
only 5.98. The above results confirm that the BWO algorithm is feasible
and stable for dispersion-curve inversion in simple layered structures and
outperforms the PSO algorithm on the two-layer model.

Table 1. Model parameters and search space.

Model Layers

Model Parameters Search Range

Vs Vp ρ h Vs h

(m/s) (m/s) (g/cm3) (m) (m/s) (m)

A
1 200 566 2 5 100 ∼ 300 2.5 ∼ 7.5

2 450 900 2 ∞ 225 ∼ 675 ∞

B

1 200 566 2 2 100 ∼ 300 1 ∼ 3

2 320 727 2 3 160 ∼ 480 1.5 ∼ 4.5

3 460 913 2 5 230 ∼ 690 2.5 ∼ 7.5

4 530 1006 2 ∞ 265 ∼ 795 ∞

C

1 200 566 2 3 100 ∼ 300 1.5 ∼ 4.5

2 150 500 2 2 75 ∼ 225 1 ∼ 3

3 360 780 2 6 180 ∼ 540 3 ∼ 9

4 480 940 2 ∞ 240 ∼ 720 ∞

D

1 150 500 2 4 75 ∼ 225 2 ∼ 6

2 300 700 2 4 150 ∼ 450 2 ∼ 6

3 240 620 2 5 120 ∼ 360 2.5 ∼ 7.5

4 600 1100 2 ∞ 300 ∼ 900 ∞

To further validate the inversion capability of BWO under complex strati-
graphic conditions and compare its performance with PSO, inversion exper-
iments were continued on three types of complex formations—models B,
C, and D—to test the performance of both algorithms. The test results
are detailed in Figure 3, where subfigures a-f correspond to the inversion
effectiveness of models B, C, and D, respectively. Analysis of the inversion
data shows that for all model types, the dispersion curves generated by
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Fig. 2. Inversion results for model A: (a) inverted dispersion curve; (b) inverted shear-
wave velocity profile.

BWO inversion (dotted lines in a, c, e) exhibit high consistency with the
theoretical dispersion curves (solid lines in a, c, e). The dispersion curves
inverted by PSO (gray solid lines in a, c, e) also agree well with the theo-
retical ones. In terms of parameter inversion, the maximum relative error
yielded by BWO is only 7.67%, and the standard deviation remains low,
with a maximum value of 13.58. In contrast, PSO produces a maximum
relative error of 10.25% and a maximum standard deviation of 28.71 (see
Tables 2 and 3). This fully demonstrates that even when facing dispersion
curve inversion tasks for complex subsurface models, BWO can maintain
good performance, and its inversion performance still outperforms PSO.

3.2. Inversion of noise-contaminated data

The presence of noise is unavoidable during seismic data acquisition. Such
noise causes small-scale random fluctuations in the extracted dispersion
curves, thereby interfering with inversion results. Therefore, before ap-
plying an algorithm to real data processing, it is necessary to test its noise
resistance. To evaluate BWO’s anti-noise performance, 15% random noise
was added to the dispersion curves obtained from forward modelling of the
aforementioned four theoretical models, followed by inversion.

The noise addition method used in the article is as follows:

vnoise = v[1 + 2 (0.5 − r) p] . (14)
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Fig. 3. Inversion results for models B, C, and D: (a, c, e) inverted dispersion curves; (b,
d, f) inverted shear-wave velocity profiles.
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In the formula, vnoise is the phase velocity after noise addition, v is the phase
velocity before noise addition, r is a random number within the range of
(0, 1), and p is the degree of noise added with a range of 0 – 100%.

The inversion results of BWO for the noisy models are shown in Fig-
ure 4, where subfigures a-h sequentially present the inversion outcomes for
models A, B, C, and D. Observing Figures 4b, d, f, h, it is evident that even
with the introduction of 15% noise, the model parameters obtained from
inversion remain highly consistent with the true model parameters. Specif-

Table 2. Model A, B, C, D: inversion results of BWO for noise-free and noisy data.

Model True Noise-Free Results Noisy Results (15%)

Parameters Value
Mean Error RMSE STD Mean Error RMSE STD

A

Vs1 (m/s) 200 199.24 0.38% 1.26 1.28 193.69 3.16% 3.39 3.51

Vs2 (m/s) 450 447.40 0.58% 5.94 5.98 453.78 0.84% 12.16 12.52

H1 (m) 5 4.71 5.80% 0.17 0.18 5.46 9.20% 0.34 0.36

B

Vs1 (m/s) 200 201.21 0.61% 2.39 2.52 208.12 4.06% 6.44 6.73

Vs2 (m/s) 320 319.87 0.04% 6.97 7.42 325.28 1.65% 5.32 5.6

Vs3 (m/s) 460 462.23 0.48% 8.87 9.34 477.83 3.88% 20.46 21.47

Vs4 (m/s) 530 533.52 0.66% 5.72 6.03 542.12 2.29% 8.16 8.5

H1 (m) 2 2.12 6.00% 0.10 0.11 2.21 10.50% 0.24 0.25

H2 (m) 3 3.23 7.67% 0.24 0.28 3.35 11.67% 0.36 0.38

H3 (m) 5 5.21 4.20% 0.49 0.53 5.11 2.20% 0.24 0.25

C

Vs1 (m/s) 200 198.91 0.55% 8.81 9.25 199.9 0.05% 6.07 6.35

Vs2 (m/s) 150 153.28 2.19% 4.29 4.52 160.55 7.03% 8.83 9.21

Vs3 (m/s) 360 368.14 2.26% 11.50 12.13 382.71 6.31% 18.21 19.13

Vs4 (m/s) 480 485.71 1.19% 12.78 13.58 506.23 5.46% 18.05 18.96

H1 (m) 3 2.91 3.00% 0.16 0.17 3.26 8.67% 0.35 0.37

H2 (m) 2 2.12 6.00% 0.41 0.43 2.07 3.50% 0.27 0.28

H3 (m) 6 5.89 1.83% 0.20 0.21 5.65 5.83% 0.30 0.32

D

Vs1 (m/s) 150 151.68 1.12% 0.99 1.03 149.8 0.13% 6.51 6.83

Vs2 (m/s) 300 302.40 0.80% 4.04 4.25 283.41 5.53% 8.82 9.21

Vs3 (m/s) 240 245.32 2.22% 3.75 3.94 261.01 8.75% 22.27 23.35

Vs4 (m/s) 600 606.32 1.05% 4.58 4.8 620.46 3.41% 3.45 3.62

H1 (m) 4 4.11 2.75% 0.07 0.07 4.26 6.50% 0.26 0.27

H2 (m) 4 3.98 0.50% 0.13 0.14 3.78 5.50% 0.17 0.18

H3 (m) 5 5.19 3.80% 0.22 0.23 5.13 2.60% 0.12 0.13
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ically, the maximum relative errors for parameters inverted by BWO for
models A, B, C, and D are 9.20%, 11.67%, 8.67%, and 8.75%, respectively
(detailed in Table 2). Compared to the results from noise-free models (A,
B, C, D max relative errors: 5.80%, 7.67%, 6.00%, 3.80%), the parameter
differences are within acceptable limits. In summary, although noise affects
the inversion results to some extent, BWO can still achieve good inversion
results when inverting dispersion curves with 15% noise, and its inversion
performance is better than that of PSO. This indicates that BWO possesses

Table 3. Model A, B, C, D: inversion results of PSO for noise-free and noisy data.

Model True Noise-Free Results Noisy Results (15%)

Parameters Value
Mean Error RMSE STD Mean Error RMSE STD

A

Vs1 (m/s) 200 195.59 2.20% 5.15 5.43 187.31 6.35% 8.96 9.43

Vs2 (m/s) 450 443.32 1.48% 7.64 8.10 476.02 5.78% 17.32 18.31

H1 (m) 5 4.58 8.40% 0.29 0.31 4.51 9.80% 0.58 0.61

B

Vs1 (m/s) 200 203.73 1.87% 3.91 4.13 209.73 4.87% 9.60 10.12

Vs2 (m/s) 320 329.22 2.88% 9.59 10.11 314.22 1.81% 20.50 21.61

Vs3 (m/s) 460 448.15 2.58% 6.75 7.12 485.15 5.47% 16.35 17.23

Vs4 (m/s) 530 539.11 1.72% 10.67 11.25 551.11 3.98% 16.00 16.85

H1 (m) 2 1.96 2.00% 0.32 0.34 1.93 3.50% 0.39 0.41

H2 (m) 3 3.31 10.33% 0.28 0.30 3.35 11.67% 0.30 0.32

H3 (m) 5 4.81 3.80% 0.77 0.81 4.76 4.80% 0.50 0.53

C

Vs1 (m/s) 200 210.03 5.02% 17.29 18.37 185.27 7.37% 10.96 11.55

Vs2 (m/s) 150 145.54 2.97% 2.99 3.18 175.13 16.75% 16.20 17.18

Vs3 (m/s) 360 372.34 3.43% 18.13 19.28 347.28 3.53% 12.58 13.26

Vs4 (m/s) 480 491.34 2.36% 22.68 24.14 514.19 7.12% 25.91 27.31

H1 (m) 3 2.81 6.33% 0.26 0.27 3.35 11.67% 0.47 0.49

H2 (m) 2 1.87 6.50% 0.58 0.61 2.27 13.50% 0.20 0.21

H3 (m) 6 6.21 3.50% 0.16 0.17 6.41 6.83% 0.54 0.57

D

Vs1 (m/s) 150 147.71 1.53% 11.5 12.12 152.14 1.43% 13.21 13.92

Vs2 (m/s) 300 307.21 2.40% 20.04 21.12 329.12 9.71% 20.25 21.34

Vs3 (m/s) 240 250.31 4.30% 27.24 28.71 268.19 11.75% 30.30 31.93

Vs4 (m/s) 600 624.54 4.09% 20.23 21.32 632.35 5.39% 12.06 12.71

H1 (m) 4 3.85 3.75% 0.24 0.25 4.30 7.50% 0.32 0.34

H2 (m) 4 4.41 10.25% 0.64 0.68 3.67 8.25% 0.24 0.26

H3 (m) 5 5.32 6.40% 0.87 0.92 5.27 5.40% 0.27 0.29
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Fig. 4. Inversion results for noisy data from models A, B, C, D: (a, c, e, g) inverted
dispersion curves; (b, d, f, h) inverted shear-wave velocity profiles. See next page.
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Fig. 4. Continuation from the previous page.

strong anti-noise performance, is superior to the PSO algorithm in both in-
version accuracy and anti-noise capability, and is suitable for handling data
inversion tasks with strong noise.

3.3. Multi-mode dispersion curve inversion

In some special subsurface conditions (e.g., soft interlayers), higher-mode
waves may exhibit stronger energy than the fundamental mode in the high-
frequency part. In such cases, jointly inverting higher-mode dispersion
curves with the fundamental-mode curve can increase the effective infor-
mation for inversion, thereby improving the accuracy of the obtained strati-
graphic information. Therefore, testing the algorithm’s ability to invert
multi-mode dispersion curves is necessary. This test used model C as an ex-
ample, adding higher-mode data to its fundamental-mode dispersion curve
data for inversion. The inversion results are shown in Fig. 5 and Table 4.
Figure 5a shows that the inverted dispersion curves (dotted lines), whether
fundamental or higher-mode, fit the true model dispersion curves (solid
lines) very well. Figure 5b indicates that the inverted model parameters
(dotted line) also differ only slightly from the true model parameters (solid
line), demonstrating the feasibility of using BWO for multi-mode disper-
sion curve inversion. Comparison of the inversion results for BWO and
PSO reveals that both algorithms achieve excellent fitting to the true val-
ues for the fundamental-mode dispersion curves they invert. However, the
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Fig. 5. Multi-mode data inversion results for model C: (a) inverted dispersion curves; (b)
inverted shear-wave velocity profile. The raw seismic records are shown in Fig. 7a. The
seismic records were imported into the code and then converted into a dispersion energy
map. And Figure 7b presents the converted dispersion energy map.

first-mode and second-mode dispersion curves inverted by PSO exhibit a
substantial deviation from the true values. This observation demonstrates
that BWO is also superior to PSO in addressing multi-mode dispersion in-
version problems. Furthermore, the accuracy of the multi-mode inversion
results generally improved compared to using only the fundamental mode.
This indicates that multi-mode dispersion curve inversion yields more ac-
curate model parameters and superior inversion effectiveness compared to
inversion using only the fundamental-mode dispersion curve.

Table 4. Model C: inversion results of multi-mode data for BWO and PSO.

Parameter True Noise-Free Results Noisy Results (15%)

Value
Mean Error RMSE STD Mean Error RMSE STD

Vs1 (m/s) 200 200.12 0.06% 9.69 10.21 205.34 2.67% 14.43 15.21

Vs2 (m/s) 150 151.48 1.00% 3.10 3.27 141.25 5.83% 9.71 10.23

Vs3 (m/s) 360 371.08 3.08% 10.48 11.04 347.79 3.39% 8.94 9.42

Vs4 (m/s) 480 484.21 0.88% 14.54 15.32 489.29 1.94% 27.87 29.38

H1 (m) 3 2.82 6.00% 0.10 0.11 2.89 3.67% 0.07 0.08

H2 (m) 2 1.97 1.50% 0.46 0.48 1.87 6.50% 0.58 0.61

H3 (m) 6 6.11 1.83% 0.17 0.18 6.16 2.67% 0.30 0.32
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4. Comparison with particle swarm optimization

To verify the effectiveness of the BWO algorithm in obtaining accurate sub-
surface parameters through dispersion curve inversion, this study compared
it with the classic Particle Swarm Optimization (PSO) algorithm. The
systematic comparison, analysis, and evaluation aimed to reveal the inver-
sion efficiency of both algorithms. The test selected the noise-free model
D. During inversion, the population size, search space, and iteration count
were kept consistent for both algorithms: population size was set to 30,
iteration count to 100, matching the settings used earlier (PSO algorithm
parameters configured according to Fu et al. (2022).

The inversion results are shown in Figure 6, with specific inversion pa-
rameters detailed in Table 4. Figure 6a shows that both algorithms can fit

Fig. 6. BWO and PSO inversion results for noise-free model D: (a) inverted dispersion
curves; (b) minimum objective function value vs. iteration count; (c) comparison of in-
verted shear-wave velocity profiles.
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the dispersion curve well, achieving a high degree of fit. However, Figure 6c
clearly shows that BWO outperforms PSO in reconstructing the thickness
and shear-wave velocity of the fourth layer. Moreover, from the iteration
process in Figure 6b, BWO converges rapidly towards the optimal solution
within about 30 iterations, while PSO still shows a trend of moving towards
the optimum even after 100 iterations. At iteration 100, BWO’s misfit value
is significantly lower than PSO’s. Additionally, comparing the standard de-
viations of the inversion results for each model parameter in Table 4 reveals
that the stability of the BWO algorithm is significantly better than that of
the traditional PSO algorithm.

In conclusion, for the Rayleigh wave dispersion curve inversion problem,
the BWO algorithm, compared to the PSO algorithm, offers higher inversion
accuracy, faster convergence speed, and stronger stability.

5. Field data test

The test results from the aforementioned theoretical models clearly demon-
strate the feasibility and effectiveness of applying the BWO algorithm
to dispersion curve inversion. To validate its applicability for real-world
data inversion, this study used measured data from Wyoming, USA (data
sourced from Xia, 2014) for testing. During data acquisition, a hammer im-
pact source was used for excitation, with 48 channels of vertical geophones
employed for signal reception. The minimum shot interval and geophone
interval were both set to 0.9 metres.

The raw seismic records are shown in Fig. 7a. The seismic records were
imported into the code and then converted into a dispersion energy map.
Figure 7b presents the converted dispersion energy map. Due to the pres-
ence of mode merging phenomenon in high-mode data, extracting high-
mode dispersion curves may lead to misjudgement, which in turn results
in inversion errors. Therefore, the fundamental-mode dispersion curve was
manually picked based on energy intensity for inversion. The frequency
band range used for inversion is 10 – 30 Hz. The algorithm parameters were
set consistent with the previous theoretical model tests. The inverted model
parameters are shown in Table 5.

The inversion results are shown in Figure 8. Analysis of Figures 8a and
8b reveals that the inverted dispersion curve (solid line in Fig. 8a) achieves
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Fig. 7. Field data in Wyoming (a) and its dispersion image (b) (Xia, 2014).

a high degree of fit with the measured data dispersion curve (dotted line
in Fig. 8a). The inversion process converged within just over 20 iterations.
In the shallow subsurface (within 10 m), the shear-wave velocity model
reconstructed by BWO (solid line in Fig. 8c) shows high agreement with
borehole data (diamond-marked polyline in Fig. 8c). Beyond 10m depth,
the reconstructed model still follows the borehole data well and aligns with
the trend of previous inversion results. This result fully demonstrates the
high reliability of BWO when applied to real-world data inversion.

Table 5. Inversion model and search range for field data (Cai et al., 2018b).

Layers
Vs h Poisson’s ρ

(m/s) (m) Ratio (g/cm)

1 100 ∼ 300 1 ∼ 5 0.38 2.0

2 100 ∼ 400 1 ∼ 5 0.38 2.0

3 100 ∼ 600 1 ∼ 5 0.35 2.0

4 200 ∼ 600 1 ∼ 5 0.35 2.0

5 200 ∼ 800 ∞ 0.30 2.0

6. Conclusion

This study introduces a novel swarm intelligence optimization algorithm—
Beluga Whale Optimization (BWO)—into the field of Rayleigh wave dis-
persion curve inversion. In terms of inversion strategy design, broad model
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Fig. 8. Field data dispersion curve inversion results: (a) inverted dispersion curve; (b)
minimum objective function value vs. iteration count; (c) reconstructed shear-wave ve-
locity result.

parameter search spaces (layer thickness, shear-wave velocity) were set to
simulate complex exploration scenarios lacking prior information, better
aligning with practical application needs. To systematically verify the ap-
plicability of BWO: (1) Multiple theoretical models were constructed (cov-
ering simple-complex structures, noise-free-noisy data) to comprehensively
evaluate algorithm performance; (2) Measured data from Wyoming, USA,
was used to test its real-world application performance. The test results
indicate:

(1) BWO demonstrates strong exploration and exploitation capabilities in
the solution space. It achieves high-accuracy subsurface parameter in-
version while possessing fast convergence and strong robustness, high-
lighting its potential for application in geophysical inversion.
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(2) Compared to the traditional Particle Swarm Optimization algorithm,
BWO exhibits higher accuracy, faster convergence speed, and stronger
stability in Rayleigh wave dispersion curve inversion.
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