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Abstract: This study applies a Tikhonov regularization framework to aeromagnetic
data from parts of northeastern Nigeria to enhance the resolution of magnetic anomalies
and suppress geological and cultural noise. The dataset, covering twelve geological map
sheets acquired by Fugro Airborne Surveys (2004—2009), was processed using a range of
derivative-based edge-detection filters, including the Horizontal Gradient (HG), Analytic
Signal (AS) amplitude, Tilt, Horizontal Gradient of Tilt (HG_Tilt), Theta, Normalized
HG (TDX), TDXAS, Tilt Angle of the Total Horizontal Gradient (TAHG), Enhanced Tilt
(ETilt), Enhanced Total Horizontal Derivative of the Tilt Angle (ETHDR), and Modified
Horizontal Gradient Amplitude (MHGA). The MHGA method was further optimized by
varying a constant offset (often a fraction or multiplication of 7) in its computation to
evaluate its sensitivity and performance. Results show that regularized derivatives effec-
tively minimize noise amplification while preserving structural integrity, with a revisited
algorithm (published by Karcol and Pasteka in year 2025) providing the most stable dif-
ferentiation. The ETHDR and MHGA (—=/3) filters delineated low-magnetic anomaly
zones associated with the Bima, Yolde, Pindiga, Gombe, and Kerri-Kerri Formations,
indicating promising geothermal potential. High-gradient zones correspond to granitic
intrusions and fault intersections that may act as heat sources and hydrothermal con-
duits. These results demonstrate that integrating regularized derivatives with advanced
edge-detection filters significantly enhances geothermal prospectivity mapping in complex
crustal settings.
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1. Introduction

Qualitative magnetic data interpretation relies heavily on edge-detection
filters, which help delineate subsurface features by identifying boundaries
between zones of different magnetic susceptibility. Among the most widely
used techniques are the horizontal gradient (HG) method (Cordell and Gra-
uch, 1985) and enhanced derivatives such as the analytic signal (Nabighian,
1972, 1984), tilt angle (Miller and Singh, 199/4), and theta angle (Wijns et
al., 2005). These techniques offer improved localization of source bound-
aries, but their performance can be compromised in noisy or shallow-depth
environments. Consequently, modifications have been proposed to improve
their stability and interpretability. The use of non-regularized derivatives
in magnetic data processing, although common, often leads to noise ampli-
fication and instability, especially in areas with shallow sources or complex
geology (Oliveira et al., 2024). Regularization techniques, such as Tikhonov
regularization (Tikhonov and Arsenin, 1977), have been developed to ad-
dress these challenges by reducing noise amplification and enhancing feature
clarity. Regularized derivatives are particularly useful in stabilizing the nu-
merical evaluation of higher-order gradients, which are inherently unstable
and tend to amplify noise content (Pasteka et al., 2009; Baniamerian et al.,
2018; Melo et al., 2023; Oliveira et al., 2024; Karcol and Pasteka, 2025).
In this contribution, we present the application of a regularized derivative
filter in the Fourier domain, formulated as a minimization task using clas-
sical calculus of variations, building on the framework of regularized inver-
sion and stable numerical differentiation (Pasteka et al., 2009; Karcol and
Pasteka, 2025). A large group of semi-automated interpretation methods
use higher gradients of the interpreted field (e.g. Euler deconvolution) or
methods based on analytic signal amplitude evaluation, normalized deriva-
tive methods, and many other approaches (Nabighian, 1972, 1974, 1984;
Thompson, 1982; Reid et al., 1990; Roest et al., 1992; Salem et al., 2008;
Cooper and Cowan, 2006; Pasteka et al., 2009).

In this work, we applied the Tikhonov regularization approach to the
calculation of the numerical derivatives of the Total Magnetic Induction
(TMI) data from part of northeastern Nigeria, aiming to enhance the reso-
lution of magnetic anomalies while suppressing geological and cultural noise.
The anomalous TMI (not reduced to the pole) and geological maps of the
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area are presented in Figure la and 1b, respectively. The aeromagnetic
data were acquired with a terrain clearance of 80 metres, a flight height of
about 80 metres above ground level, and tie-line spacings of 2000 metres
oriented in the NW-SE and NE-SW directions (Oladele et al., 2022). The
TMI map represents aeromagnetic data over twelve geological map sheets—
Kailatu (map sheet number 127), Madaki (map sheet number 128), Ganjuwa
(map sheet number 129), Dukku (map sheet number 130), Toro (map sheet
number 148), Bauchi (map sheet number 149), Alkaleri (map sheet num-
ber 150), Ako (map sheet number 151), Maijuju (map sheet number 169),
Balewa (map sheet number 170), Yuli (map sheet number 171), and Fu-
tuk (map sheet number 172)—acquired by Fugro Airborne Surveys between
2004 and 2009. Each sheet covers an area of 55 x 55 km, giving a total study
area of approximately 36,300 km?. The TMI map reveals intensive magnetic
anomalies, which usually indicate the presence of magnetite-rich rocks such
as igneous intrusions, basalt flows, or metamorphic basement structures, and
less intensive magnetic anomalies, which are often associated with sedimen-
tary cover, hydrothermally altered zones or demagnetized regions caused
by deep weathering (Reeves, 2005; Nabighian et al., 2005). The study area
lies primarily within Bauchi State, with portions extending into Plateau
and Gombe States. It is bounded by longitudes 9°00'E to 11°00'E and
latitudes 9° 30’ N to 11° 00’ N. Geologically, the region represents a transi-
tion from the Precambrian Basement Complex to Cretaceous and Tertiary
sedimentary formations, including the Bima, Yolde, Pindiga, Gombe, and
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Fig. 1. (a) TMI anomaly map; (b) Geological map of part of northeastern Nigeria (Usman
and Hassan, 2025).
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Kerri-Kerri Formations, and these structures are situated in the southeast-
ern part of the study area (Usman and Hassan, 2025). Structures such as
intrusions and alteration zones are indicative of areas with high geothermal
potential, where crustal discontinuities and radiogenic granites may act as
both heat sources and hydrothermal conduits (Salako et al., 2020). The
results for all computed edge detectors are presented in both colour and
grayscale formats for detailed interpretation.

2. Non- and regularized derivatives

Traditional derivative filters—such as the horizontal gradient and verti-
cal derivative—are known to amplify noise, particularly in near-surface re-
gions characterized by magnetic anomalies with short wavelengths. To mit-
igate this limitation, we employed a Tikhonov regularization framework,
which balances fidelity to the observed magnetic signal with smoothness
constraints on the solution. Specifically, we adopted the C-norm approach
described by Tikhonov and Glasko (1965) and Pasteka et al. (2009), wherein
the norm of the difference between adjacent solutions (corresponding to suc-
cessive regularization parameters values) is plotted as a function of regular-
ization parameter. This method assists in determining the optimal regular-
ization parameter.

We utilized first Pasteka et al. (2009) (so-called original form — OF ap-
proach) and then Karcol and Pasteka (2025) (so-called general form — GF
approach) MATLAB scripts to compute and compare the non-regularized
and regularized derivatives of the magnetic field data. Regularized horizon-
tal and vertical derivatives of the magnetic field were computed, and Fig. 2
(a,b, and c) presents the vertical derivatives for both the non-regularized
and regularized solutions. The regularized derivatives computed using the
Pasteka et al. (2009) and Karcol and Pasteka (2025) algorithms (Fig. 2)
demonstrate the significant benefits of Tikhonov regularization in magnetic
field differentiation. The non-regularized derivatives exhibit strong noise
amplification (Fig. 2a), particularly over shallow and complex geological
zones. The OF approach introduces smoother gradients but slightly atten-
uates anomaly contrast. The GF approach however achieves superior noise
suppression while maintaining sharper anomaly boundaries, indicating op-
timal control of the trade-off between data fidelity and model smoothness
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(visible in Fig. 2d). This result validates the application of regularized dif-
ferentiation for stable edge enhancement in aeromagnetic dataset. Figure 3
presents the C-norm plots for first horizontal (z, y) and vertical (z) deriva-
tives.

Consequently, the Karcol and Pasteka (2025) (GF approach) approach
was adopted in this study to compute the following edge detectors.
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Fig. 2. First (z) derivative dT%: (a) Non-regularized, (b) Regularized derivative using
Pasteka et al. (2009) script (OF approach); (c) Regularized derivative using Karcol and
Pasteka (2025) script (GF approach); (d) Difference between b) and c¢) solutions.
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Fig. 3. Regularized derivates C-norms for: (a) z-derivate, (b) y-derivate, (c) z-derivate.
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3. Edge detectors

Numerous methodologies have been developed for extracting the bound-
aries of buried sources, most of which rely on directional derivatives of
potential field anomalies (Nunez-Demarco et al., 2022). Cordell and Grauch
(1985) introduced the horizontal gradient amplitude (HG) method to de-
lineate horizontal boundaries of subsurface structures. The HG approach,
when applied to reduced-to-pole (RTP) magnetic or gravity fields, can be
expressed as:

wo- (T ()

0 0
where —f and 5_f represent the first-order horizontal derivatives of the po-
z

tential field data function f(x,y,z). Roest et al. (1992) introduced the an-
alytic signal amplitude (AS), also known as the total gradient, and demon-
strated that its maximum values effectively indicate the edges of buried
sources with larger dimensions. The AS amplitude is expressed as follows:

ws- () + 2T (-

where of represents the first-order vertical derivative of the potential field

data function.

Miller and Singh (1994) proposed the tilt-angle filter as a structural edge
detector, which was further tested by Verduzco et al. (2004). The method
involves computing the normalized ratio of the vertical derivative of the
potential field to the horizontal gradient amplitude (HG). This approach
highlights the edges of subsurface structures, with zero-values corresponding
to boundary locations. The tilt angle is defined as:

of
Tilt = arctan | 22 | . 3
i arctan | 75 (3)

Verduzco et al. (2004) presented an edge detector, which is the total hori-
zontal derivative of the tilt angle (HG_Tilt). It is given by:
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OTilt\?  /OTilt\?
HG_Tilt = . 4
1 \/(ax)+(ay) W
Wigns et al. (2005) proposed the use of the theta derivative, defined as:
HG
Theta = cos = — .
eta = cos AS (5)

Cooper and Cowan (2006) proposed the normalized HG (TDX) filter, which
uses the normalized horizontal gradient amplitude of the potential field
f(z,y,2z). This method produces maxima that correspond to the edges
of subsurface structures. It is defined as:

HG
TDX = arctan a_—f . (6)

0z

Stampolidis and Tsokas (2012) further proposed a transformation method
that enhances potential field data by multiplying the normalized HG (TDX)
with the analytic signal (AS) amplitude, resulting in improved edge detec-
tion and feature enhancement:

TDXAS = TDX - AS. (7)

To improve the effectiveness of the horizontal gradient amplitude in detect-
ing the boundaries of causative sources, Ferreira et al. (2013) introduced
the tilt angle of the total horizontal gradient (TAHG), which is calculated
as follows:

OHG
TAHG = arctan Oz . (8)

\/ OHG\?  [OHG\?

(&) (%)

Here, we must point out the fact that the partial derivative OHG/0z in
(8) do not present the true vertical derivative of the HG function, but a
pseudoderivative, calculated in the spectral domain (de Souza et al., 202/;
Pasteka et al., 2025).

Arisoy and Dikmen (2013) presented ETilt which is the ratio of vertical
derivative to horizontal derivative of AS, expressed as:
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of
ETilt = arctan | K 9z , 9)

() (23

where K =1/4/(dz)? + (dy)? (dz and dy are sampling steps in the z and

y directions, respectively).

According to Arisoy and Dikmen (2013), when magnetic data contain
anomalies with a wide range of amplitudes, the results of the Horizontal
Gradient (HG) and Analytic Signal (AS) amplitude filters are often domi-
nated by high-amplitude anomalies, which can obscure subtler features. To
address this issue, they proposed the Enhanced Total Horizontal Derivative
of the Tilt Angle (ETHDR) method, in which the Enhanced Tilt (ETilt)
is used as a filter to improve the detection of weak or concealed magnetic
sources:

OETilt\? OETilt\?
ETHDR = . 1
R\/(ax)+(ay) (10)

Ai et al. (2024) proposed the Modified Horizontal Gradient Amplitude
(MHGA) technique, which employs an improved ratio of the first-order ver-
tical and horizontal derivatives of the horizontal gradient amplitude. This
method can be applied to both gravity and reduced-to-pole (RTP) mag-
netic data to enhance edge detection and delineate source boundaries more
accurately. The MHGA is expressed as:

MHGA = |R+1|;|R_”, (11)
where

OHG
R= Oz - % (12)

<aHG)2 N (6HG)2
ox oy
Also, here we point to the fact that the derivative OHG/dz in (12) is a
pseudoderivative.
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By using the MHGA method proposed by Ai et al. (2024), we introduced
a ratio-based approach that enhances the edge definition of potential field
anomalies by varying the constant value, subtracted in the calculation of R
(in the original paper of Ai et al. the value —m/3 was used). Specifically,
the R parameter in the MHGA equation was calculated using different val-
ues of the subtracted constant —m, 7/2, 7/3, w/4, and 7/5. The resulting
MHGA maps were subsequently compared to identify the parameter value
that provided the best edge enhancement and anomaly delineation (more
details of the analysis of the role of the subtracted constant in the R cal-
culation can be found in the Appendix). In general, we recommend always
to check various values of the mentioned constant in R calculation, when
applying the MHGA operator.

4. Results and discussion

The Horizontal Gradient (HG) and Analytic Signal (AS) amplitude filters
are foundational techniques in magnetic data interpretation and structural
mapping. The HG maps (Figs. 4a and 5a) effectively highlight areas of
strong lateral variation in the magnetic field, delineating possible subsurface
contacts such as lithologic boundaries, faults, and intrusive margins. These
high-gradient zones are spatially associated with heat-producing granitic
bodies. The AS maps (Figs. 4b and 5b) integrate the horizontal and verti-
cal components of the magnetic field, producing amplitude responses that
are largely insensitive to the direction of magnetization. This results in
a more isotropic representation of source edges. However, both HG and
AS tend to be dominated by high-amplitude anomalies, causing smaller
or deeper features to become masked by stronger signals—an observation
consistent with Arisoy and Dikmen (2013). Consequently, subtle structural
boundaries linked to low magnetic anomalies remain poorly resolved in these
maps.

Tilt-based filters improve upon traditional gradients by normalizing ver-
tical derivatives against horizontal gradients, making them scale-independent
and enhancing the interpretability of deep or low-amplitude sources. The
Tilt and Normalized Tilt (HG_Tilt) maps (Figs. 4c-d and 5c-d) partially
delineate low-magnetic anomaly edges but exhibit strong noise amplifica-
tion. The high-frequency content dominates, reducing clarity around ma-

427



Usman A. K.

et al.: Influence of regularized derivatives in edge detectors.. .

Fig. 4. Maps with colour-scale of: (a) HG, (b) AS, (c¢) Tilt, (d) HG_Tilt, (e) Theta,
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Fig. 5. Maps with grayscale of: (a) HG, (b) AS, (c) Tilt, (d) HG_Tilt, (e) Theta, (f) TDX,
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jor anomaly sources. The Theta, TDX, TDXAS, TAHG, and ETilt maps
(Figs. 4e-i and 5e—i) provide varying degrees of improvement. The TDX and
TDXAS filters enhance edge detection by coupling tilt depth with analytic
signal strength, enabling better visualization of shallow contacts. However,
excessive enhancement introduces noise, limiting the accuracy of boundary
interpretation. Among these, the Enhanced Total Horizontal Derivative
of the Tilt Angle (ETHDR) (Figs. 4j and 5j) demonstrates superior per-
formance for low-magnetic anomaly zones, such as those associated with
the Bima, Yolde, Pindiga, Gombe, and Kerri-Kerri Formations. ETHDR
improves the delineation of subtle features while maintaining stability, al-
though some noise amplification persists. This behaviour confirms findings
by Arisoy and Dikmen (2013), where ETHDR successfully detects concealed
or weak magnetic sources by mitigating the dominance of high-amplitude
anomalies.

The maps in Figures 6 and 7 are the results of MHGA transformation
calculated by varying the constant value, subtracted in the calculation of
R. When the R parameter is computed using a constant —m, the result-
ing MHGA map shows no visible edges (Figs. 6a and 7a), indicating that
the weighting fails to capture the magnetic contrast. Using —7/2 yields
a substantial improvement—model edges corresponding to low magnetic
anomalies are partially resolved, with a notable reduction in noise-to-signal
amplification (Figs. 6b and 7b). Also, —7/3 yields a better substantial
improvement with some clarity than —m/2 (Figs. 6¢c and 7c). For —m/4,
and — /5, the edges become diffused, and noise is more pronounced, lead-

Table 1. Summary of Comparative Filter Performance.

Method Strengths ‘Weaknesses Interpretive Value
regularized |enhanced stability, requires optimal parame- | improves quantitative
derivatives | noise reduction ter tuning differentiation
HG/AS good for major struc- | dominated by high first-pass mapping
tures; strong anomaly | amplitudes; poor subtle
localization feature detection
Tilt/HG_Tilt | enhances weak signals | high noise sensitivity moderate delineation
ETHDR good detection of low |slight noise amplification | good for geothermal
anomalies; stable zones
MHGA clear detection of low | slight noise amplification | excellent for geother-
anomalies; stable mal zones
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Fig. 6. MHGA colour maps for the estimated parameter R with different values of the
subtracting constant: (a) m only, (b) 7/2, (c¢) 7/3, (d) 7/4, (e) ©/5.

ing to poor delineation of anomaly boundaries (Figs. 6d—e and 7d—e). The
—7/3 configuration thus provides the most balanced outcome—achieving
enhanced boundary visibility without excessive smoothing or noise amplifi-
cation. This suggests that —m/3 offers an optimal trade-off between sensi-
tivity and stability in MHGA-based edge detection, though the edges remain
not perfectly delineated. At this point, we would like to point out that the
above constant should be changed and tested for each processed dataset
separately (more information on this topic can be found in the Appendix).
Figure 8 shows MHGA (—/3) map with delineated formations highlighted.
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The summary of performance of the all comparative filter is presented in

Table 1.

5. Conclusion

This study employed Tikhonov regularization in combination with a suite
of edge-detection filters to improve the interpretation of aeromagnetic data
from northeastern Nigeria. The regularized derivatives, particularly those
derived using the Karcol and Pasteka (2025) approach, effectively sup-
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Fig. 8. Maps of MHGA (—n/3) (a) and ETHDR, (b) showing (i) Bss — Bima (ii) Psh
— Pindiga (iii) Gst — Gombe (iv) Kss — Kerri-Kerri formations (note that Yolde/Yola
formation overlies the Bima formation as in Fig. 1b).

pressed noise while enhancing the resolution of geological features. Among
all the edge detectors evaluated, the ETHDR filter yielded the most reli-
able structural delineations, clearly defining low-magnetic anomaly zones
linked to key lithologic units such as the Bima, Yolde, Pindiga, Gombe, and
Kerri-Kerri Formations (Fig. 10). The MHGA filter, with its —n/3 para-
meter configuration, achieved the best balance between edge sharpness and
noise stability, outperforming other parameter values. The integration of
these methods demonstrates the advantages of combining regularization
techniques with derivative-based edge detection to produce stable and ge-
ologically meaningful results. The identified structures—faults, intrusions,
and alteration zones—are indicative of areas with high geothermal poten-
tial, where crustal discontinuities and radiogenic granites may act as both
heat sources and hydrothermal conduits. From the methodical aspect, we
recommend testing several values of the used constant in the R function
calculation when using the MHGA method.
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Appendix — Analysis of the properties of the MHGA operator

For a better understanding of how the MHGA operator (Modified Horizontal
Gradient Amplitude; Ai et al., 2024) works it is good to analyse its partial
components and properties of the mathematical form of the MHGA operator
(Egs. (11) and (12) in the main paper).

For this kind of analysis, we have selected a simple gravity model of a
thin horizontal ribbon, which is a 2D structure with a very small vertical
dimension, width 2b and is positioned in the depth h (Fig. Al).

v

-5

vZ
Fig. Al. Geometry of a 2D thin horizontal ribbon structure.
In the case of such an object, the gravitational effect (its vertical com-

ponent), as the input function f(z,z) into the MHGA operator can be
expressed (e.g. LaFehr and Nabighian, 2012; p. 30):

x+b x—b
flx,2) =V, (x,2) =2k <arctan P arctan . z> , (A-1)

where p is the so-called surface density. Since this function is independent of
variable y, the quantity R (Eq. (12) from the main paper) can be expressed
in the form:

OHGA 0 0
n— 9z _ &‘fﬂr‘ _ %‘faz‘

(O R G [

) (A-2)
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where:
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Figure A2 shows the individual fields for the set of input parameters
(b=h=10m and p = 5500 kg:m~2).

Here, let us focus on the images for the quantity R and for the MHGA
operator itself. From the expression for R (without the constant —m/3), we
can see that it must contain a singularity at points where f, has an extreme
value. This is indeed what happens here — so the amplitude of the R function
depends on the size of the measurement step and thus on how close the
calculation point gets to the inflection point on the input field f curve. As
can be seen in Fig. A2, the R function already responds with its maxima to
the specified positions of the inflection points of the original function, but
only the MHGA operator (which is actually a linearly saturated function)
brings it “under control” — into the useful interval [—1,+1]. At first glance,
it may not seem so, but the MHGA function is only a modified part of the
R function. This property becomes apparent when they are superimposed
on each other (Fig. A3). Here we can see that the MHGA operator acts
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Fig. A2. Graphs of individual fields (components) from equation (A-3), function, R and
operator MHGA for a model of 2D thin horizontal ribbon with parameters b = h = 10 m
and p = 5500 kg-m™2.
like a “trimmer” or “cutter” (from the word trim or prune or cut) of the
function R.

This brings us to the role of the constant —7/3, in Eq. (12). When we
subtract the constant from the fraction in the variable R, the result is a

25

20 -

5 ] ] ] ] ] ]

-60 -40 -20 0 20 40 60
x[m]

Fig. A3. Graphs of the function R and the operator MHGA for a model of 2D thin
horizontal ribbon with parameters b = h = 10 m and g = 5500 kg-m™2.
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downward shift of the curve by exactly the selected constant (Fig. A4).
The MHGA “trimmer” then cuts out the upper part (towards the peaks)
of this shifted curve. Based on the above finding, it is possible to propose
a modified form of the relationship for calculating the R function (Eq. (12)
in the main text):

OHG
R= Oz +cf, (A-4)
<aHG)2 N (6HG)2
ox oy
where it is appropriate to change the constant C' and qualitatively assess
the obtained MHGA (we usually use multiples and parts of 7, with negative
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Fig. A4. Graphs of the function R and the operator MHGA for different values of the
constant C (for a model of 2D thin horizontal ribbon with parameters b = h = 10 m and
w = 5500 kg-m™?).
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and positive sign).

MHGA transformation is also sensitive to the size of the discretization of
the interpreted anomalous field (grid cell size in the case of grids, step along
the horizontal axis in the case of profile data). In Figs. A5 and A6 we can see
several examples of the MHGA field for various sizes of the grid cell size and
the used constant C' in the Eq. (A-4) (model is composed of two rectangular
prisms with horizontal dimensions 2 x 2 km, vertical dimension 2.5 km,
depth of the upper edge 20 m and density contrast 41000 kg-m ~3). Graphs
of R function and MHGA operator values along a central interpretation line
are shown in Figs. A7 and A8. Maps in the Figs. A5 and A6 (and graphs
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Fig. A5. Image maps of the MHGA values for different values of the constant C' (for a
model composed of two rectangular prisms). Used grid cell size: 100 x 100 m. The dashed
line shows the position of the interpretation line used in Fig. A7.
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in Figs. A7 and AS8) clearly show how the sharpness of the prism edges in
the MHGA field is affected by the used C' value and the grid-cell size of
the processed grid. For the case with 100 x 100 m grid, from all tested C
values the used —m/2 gave the sharpest boundaries of prisms boundaries
(Fig. A5b). For the case with 300 x 300 m grid all results were too blurry
and it can be seen that this grid is too sparse for this kind of qualitative
interpretation. The graphs in Fig. A8 clearly show that the sampling step
used (300 x 300 m) is too coarse and that the resulting interpolation errors
contribute to the insufficient determination of the positions of the prism
edges (nevertheless, the MHGA operator shows very good properties here
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Fig. A6. Image maps of the MHGA values for different values of the constant C (for a
model composed of two rectangular prisms). Used grid cell size: 300 x 00 m. The dashed
line shows the position of the interpretation line used in Fig. AS8.
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Fig. A7. Graphs of the function R (black) and the operator MHGA (green) for different

values of the constant C' (for a model composed of two rectangular prisms, used grid cell
size: 100 x 100 m).
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Fig. A8. Graphs of the function R (black) and the operator MHGA (green) for different
values of the constant C' (for a model composed of two rectangular prisms, used grid cell

size: 300 x 300 m).
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compared to the R function — the local maxima of MHGA are approximately
at the same level, even in case where the R function reaches significantly
higher value at x = —2300 m).
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