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Abstract: We have used 2D integrated modelling method to derive a model of the litho-
spheric structure along profile Vyhne located in the Western Carpathians. The algorithm
determines the thermal structure of the lithosphere that is controlled by other geophysical
fields, namely by heat flow, topography, gravity and geoid data. Such approach allows
us to distinguish between density variations at different depths. Integrated algorithm
method focuses primarily on the analysis of deeper lithospheric structure, especially on
the lithosphere—asthenosphere boundary (LAB). Beneath the European Platform and the
Outer Western Carpathians, the LAB is nearly horizontal, lying at depths of approxi-
mately 115-118 km. Moving toward the Inner Western Carpathians, a modest increase
in lithospheric thickness becomes apparent, along with the presence of a subtly developed
lithospheric root, which may represent a small remnant of the upper part of the break-off
subducted lithospheric slab. Based on the computed thermal structure of the lithosphere,
we established a rheological model along this profile. We determined the lithospheric
strength distribution (considering both brittle and ductile deformation) for compressional
and extensional settings, calculated the vertically integrated strength, and constructed
the yield-strength envelope for the tectonic environment of the Vyhne tidal station. Our
findings clearly indicate that a compressional regime prevails, with the greatest strength
beneath the European Platform and the Western Carpathians. Along the modelled pro-
file, strength declines from the high values observed beneath the European Platform to a
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minimum within the Pieniny Klippen Belt before rising again to peak values beneath the
Western Carpathians.
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1. Introduction

The Western Carpathians (Fig. 1) represent the northernmost, west—east
oriented orocline of the European Alpine system, lying between the Eastern
Alps to the west and the Eastern Carpathians to the east (Plasienka, 2003;
Froitzheim et al., 2008). To the north, the Western Carpathians neighbours
with the Carpathian Foredeep and the the European Platform, which in-
cludes a Palaeozoic-aged basement consolidated during the Variscan orogeny
and its post-Variscan sedimentary cover (Ziegler, 1990; Dadlez et al., 2005).
This platform incorporates the Bohemian Massif in the northwest and the
Polish Platform further north (Golonka et al., 2000). Toward the northeast,
it is separated from the Fennosarmatian (East European) Platform by the
Teisseyre-Tornquist Zone (TTZ) (Pharaoh, 1999; Mazur et al., 2018).

Much of the central and inner portions of the Western Carpathians are
overlain by thick Tertiary sediments and volcanic rocks, associated with the
evolution of the Pannonian back-arc basin system (Royden and Horvdth,
1988; Csontos and Vords, 2004). The present-day structural architecture
of the Western Carpathians developed through subduction and collisional
events that took place from the Late Jurassic to the Tertiary, within the
Tethyan mobile belt situated between the stable European Platform and
continental fragments derived from Apulia/Adria (Plasienka et al., 1997;
Schmid et al., 2008).

A notable aspect of the Alpine (Alpidic) evolution of the Western Carpa-
thians is the pronounced northward progression of both pre-orogenic and
orogenic stages. These include Mesozoic rifting and extension of the Variscan
continental crust, subsequent crustal shortening and nappe stacking, as well
as the compression and subduction of longitudinal oceanic basins (Plasienka
et al., 1997; Kovdé, 2000). Later stages of deformation were often charac-
terised by transpressional and transtensional tectonics that followed the
main compressional phases (Kovdé et al., 1994; Lexa and Konecny, 1998).
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The Western Carpathian orogeny waned during the Late Tertiary, following
slab detachment that marked the end of southeast-directed subduction of
the oceanic crust beneath the Outer Carpathian Flysch Belt (Tomek and
Hall, 1993; Kovadc et al., 2017).
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Fig. 1. Location of profile Vyhne on the map of the European platform-Carpathian-
Pannonian region. The profiles I-IX were modelled in the papers of Zeyen et al. (2002)
and Dérerovd et al. (2006).

2. Profile Vyhne

The profile Vyhne starts in the Polish-European platform near Opole (50.59°
N, 17.08° E), continues via the Western Carpathian molasse Foredeep, the
Outer Western Carpathian flysch belt, the Pieniny Klippen Belt and the In-
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ner Western Carpathians including the Tatric, Veporic, and Gemeric units,
then traverses the Central Slovak Volcanic Field and adjacent Neogene ex-
tensional basins, and finally terminates in the Pannonian Basin near Szeged
(45.82° N, 20.85° E). The direction of the profile was chosen to meet the con-
dition of perpendicularity to the studied geological units of the Carpathian
orogenic system. Its total length is about 600 km, and the distribution of
the main geological structures along the profile is illustrated in Fig. 1.

The Vyhne tidal station lies along the studied profile in Central Slo-
vakia, in the central part of the Stiavnické vrchy Mountains, within the
Inner Western Carpathians. It is situated in the cadaster of Vyhne vil-
lage, approximately 10 km northwest of Banskd Stiavnica, at an elevation
of 420 m a.s.l. (48.50° N, 18.83° E). The station is installed in the St. An-
thony of Padua gallery, which provides stable underground conditions for
geophysical monitoring (Brimich et al., 2016).

Geologically, the area represents a complex structural zone composed of
Palaeozoic crystalline rocks, Mesozoic sedimentary sequences, and Neogene
volcanic and intrusive formations (Brimich, 1988; Konecny et al., 2001;
Leza et al., 1999). The basement consists mainly of Carboniferous granites
of Variscan age, forming part of the Vyhne massif, which were affected by
multiple tectonic phases (DuddSovd, 1998; Brimich et al., 2016). During
the Late Palaeozoic, strong NW-SE-trending fault zones developed, repeat-
edly reactivated throughout later geological periods (Brimich, 1988; Hdk et
al., 2000). A major NE-SW-oriented fault system established in the Meso-
zoic further divided the region, separating the rising Hodrusa—Vyhne island
block from the adjacent subsiding depression to the southeast (Brimich,
1988). Subsequent Middle Miocene granodiorite and diorite intrusions, to-
gether with the underlying Carboniferous granite, created a relatively rigid
basement framework, while the marginal fault zones remained tectonically
active and fractured (Koneény et al., 2001; Lexa et al., 1999; Leza et al.,
2010). The St. Anthony gallery is predominantly excavated within Palaeo-
zoic granite affected by two major deformation events: an early mylonitiza-
tion phase and a later magmatic—hydrothermal phase, associated with the
emplacement of young intrusions and mineralization (Duddsovd, 1998; Lexa
et al., 2010). At about 43 m from the gallery entrance, a younger dacite dyke
intrudes the granitic body along a north—south direction, beyond which the
rocks are comparatively massive and less fractured (Brimich et al., 2016).
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The gallery also follows a mylonitic vein zone with quartz lenses, and lo-
cally unstable segments are reinforced by protective masonry (DuddSovd,
1998). The geological configuration of the Vyhne site thus reflects the in-
teraction of Variscan basement structures, Mesozoic fault reactivation, and
Neogene magmatic activity, making it a representative locality within the
Inner Western Carpathian volcanic—tectonic zone along the regional profile
(Kovdé et al., 1994; Leza et al., 2010).

3. Method

The lithospheric structure along the Vyhne profile (Fig. 1) was determined
using a two-dimensional (2D) integrated geophysical modelling approach,
which simultaneously interprets gravity, geoid, topography, and surface
heat-flow data (Dérerovd et al., 2006). The method, originally developed by
Zeyen and Ferndndez (1994) and refined by Zeyen et al. (2005), provides
a consistent framework for constraining the thermal and density structure
of the lithosphere. A finite-element algorithm was applied to calculate the
steady-state temperature field, with the lithospheric thickness defined by
the 1300 °C isotherm. Thermal conductivity and radiogenic heat production
were varied with depth, and the resulting temperature field was used to com-
pute densities as functions of temperature and pressure, assuming a thermal
expansion coefficient of 3:107° K~!. The resulting density model was ap-
plied to calculate gravity anomalies (Talwani et al., 1959), topography under
local isostatic equilibrium (Lachenbruch and Morgan, 1990), and geoid un-
dulations (Zeyen et al., 2005). The combined interpretation of these datasets
enables discrimination between shallow crustal and deep lithospheric density
variations. Gravity data primarily constrain the upper crust, while geoid
and topography provide information on deeper, temperature-controlled den-
sity variations. Using the computed temperature field, the rheological struc-
ture was derived by evaluating the brittle and ductile strength components.
Brittle strength follows the frictional sliding law of Byerlee (1978), while
ductile strength is based on power-law creep (Lynch and Morgan, 1987;
Ranalli, 1995). The resulting lithospheric strength envelope highlights the
distribution of mechanically strong and weak zones, offering insight into the
geodynamic evolution of the Western Carpathian lithosphere (Bielik et al.,
2010; Zeyen et al., 2002).
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4. Initial model

The initial layout of the lithosphere along the profile Vyhne (Fig. 2) was
prepared using the following sources. The sedimentary layer in the starting

Profile VYHNE - initial model
17.076/50.593; 20.850/45.818
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Fig. 2. Initial lithospheric model along profile Vyhne. (a) Surface heat flow, (b) free air
gravity anomaly, (c¢) geoid, (d) topography with dots corresponding to measured data
with uncertainty bars and solid lines to calculated values.
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model was defined according to the data published by Kilényi and Sefara
(1989), Krejéi and Jurovd (1997), and Makarenko et al. (2002). The depth
of the upper—lower crust boundary was adopted from the study of Bielik
(1995). The Moho boundary was taken from the map presented by Bielik et
al. (2018). The preliminary trend of the lithosphere—asthenosphere bound-
ary (LAB) was derived by extrapolating values from the lithospheric thick-
ness map of Dérerovd et al. (2000).

The surface heat flow data were compiled from the worldwide data set
of Pollack et al. (1993). Topography data were taken from the GTOPO30
database (Gesch et al., 1999) and the free air gravity anomalies from the
TOPEX 1-min gravity data set (ftp://topex.ucsd.edu/pub (Sandwell
and Smith, 1997)). Geoid data were prepared based on the EGM-2008
global model (Pavlis et al., 2008). Geoid component corresponding to the
spherical harmonics up to degree and order 8 has been removed, to avoid ef-
fects of sub-lithospheric density variations on the geoid (Zeyen et al., 2005;
Dérerovd et al., 2006). For each geophysical dataset, we have extracted
several parallel profiles to calculate the lateral variability of the data.

5. Results

The initial lithospheric model, as previously described, was refined through
a manual, iterative 2D integrated modelling approach to achieve the best
possible joint fit to all input geophysical datasets. Adjustments were made
to the geometry and depth of density discontinuities and lithospheric units
wherever necessary, along with modifications to thermal and density-related
parameters. Given that near-surface structures (such as sedimentary layers
and the upper crust) are relatively well constrained, the most substantial
revisions were applied to deeper features, particularly the Moho and the
lithosphere—asthenosphere boundary (LAB). The modelling process contin-
ued until a satisfactory fit was reached between the observed geophysical
data and the model-predicted responses. The final model is shown in Fig. 3,
together with by the calibrated set of density and thermal parameters listed
in Table 1.

The main focus of our study is the calculation of depth and shape of the
LAB along the profile Vyhne. Beneath the European platform and Outer
Western Carpathians, the LAB trend is almost flat with depths about 115—
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Table 1. Densities and thermal properties of the different bodies used in integrated
modelling along profile Vyhne. No: Reference number in Fig. 2, HP: heat production
(uWm™®), TC: thermal conductivity (Wm™'K™!), po: density at room temperature
(kgm™3).

Nr. | Unit HP TC Po
1 | Neogene sediments 1 3.0 2.5 2450
2 | Neogene sediments 2 3.0 2.5 2550
3 | European platform cover 1.0 2.5 2500
4 | Carpathian Foredeep 2.5 2.5 2500
5 | Outer Carpathian Flysch Belt 2.0 2.5 2650
6 | European platform upper crust 1.0 2.5 2750
7 | Western Carpathian upper crust 2.5 3.0 2750
8 | Pannonian Basin upper crust 2.5 3.0 2750
9 | European platform and 0.2 2.0 3000
Western Carpathian lower crust
10 | Pannonian Basin lower crust 0.2 2.0 3000
11 | European platform and 0.05 3.4 3200 + (3325)
Western Carpathian lower
(mantle) lithosphere
12 | Pannonian Basin lower 0.05 3.4 3200 + (3325)
(mantle) lithosphere

118 km. Towards the Inner Western Carpathians, slight lithospheric thick-
ening can be observed, as well as a formation of a weakly pronounced litho-
spheric root which can be interpreted as a small remnant of a subducted
slab. This lithospheric root was described by Spakman et al. (1993), Lillie
et al. (1994), and Wortel and Spakman (2000) and it has also been detected
in the previous work of Zeyen et al. (2002) and Dérerovd et al. (2006). The
depth of LAB at the location of Vyhne tidal station is 113 km. In the Pan-
nonian Basin, the modelled depth rapidly decreases to 80 km.

The Moho beneath the European platform reaches values up to 35 km.
In the Western Carpathians, we observe slight thickening of Moho up to
37 km. These values are in correlation with our previous modelling (Zeyen
et al., 2002) and Bielik et al. (2018). The Moho depth at the location of
Vyhne tidal station is 31.4 km. The Moho boundary beneath the Pannonian
Basin shows a stable trend of approximately 25 km.

The depth of the boundary between upper and lower crust changes min-
imally and varies between 17 and 19 km, which is in correlation with data
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published by Bielik (1995). Under the European platform and the Western
Carpathians, the trend varies from 17 to 20 km, while in the Pannonian
Basin, the values are almost constant (on average it is about of 18 km).
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Fig. 3. Lithospheric model along profile Vyhne. (a) Surface heat flow, (b) free air gravity
anomaly, (c) geoid, (d) topography with dots corresponding to measured data with un-
certainty bars and solid lines to calculated values. Numbers in (e) correspond to material
number in Table 1.
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The sedimentary layer changed minimally and it’s in agreement with data
published by and Makarenko et al. (2002). In our modelling, the densities
of sediments are constant; we don’t consider lateral or with-depth variations
because it has negligible effect on our calculations.

In order to fit the surface heat flow data, the upper and lower crust had
to be divided into two units that differ in their thermal parameters, while
the densities remain the same.

We have calculated temperature distribution for a given lithospheric
structure along profile Vyhne (Fig. 4), where the lower limit of the model
corresponds to 1300 °C isotherm. The resulting temperature field is deter-
mined by the effect of the heat sources and background heat flow density
from the lower mantle. The Moho temperature at the location of Vyhne
tidal station is 599°C.

Vyhne Vyhne temperature field
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Fig. 4. Lithospheric temperature distribution calculated for profile Vyhne, isolines every
200°C. The bottom of the model corresponds to the 1300 °C isotherm (red line). Green
lines show contours of individual bodies comprising the lithospheric model.

Based on the calculated temperature distribution and given rheological
parameters (Tables 2a and 2b) we have calculated the brittle and ductile
strength distribution in the lithosphere. The minimum of these two val-
ues represents the yield strength, for both compressional and extensional
regimes (Figs. 5 and 6). In our calculations we adopted the strain rate
value of 1071 s~ 1.

The results of yield strength contour plot for both compressional and ex-
tensional deformation show that the largest strength occurs on the bound-
ary between the upper and lower crust. Compressional regime is dominant,
with the highest values of strength beneath the European platform and the
Western Carpathians.
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Table 2a. General properties used for producing the rheological model along the profile
Vyhne.

Definition Parameter Value
Gravity acceleration [ms™2] g 9.81
Universal gas constant [Jmol K] R 8.314
Temperature at the base of the lithosphere [°C| Tm 1300
Static friction coefficient fs 0.7
Strain rate [s™) € 107"
Hydrostatic pore fluid factor A 0.4

Table 2b. Thermal and rheological parameters used for modelling along profile Vyhne
(after Carter and Tsenn (1987); Goetze and Evans (1979) and Lankreijer et al., (1999)).
HP: heat production (uWm™?), TC: thermal conductivity (Wm™'K™'), p: density at
room temperature (kgmf?’)7 Ap: power law pre-exponential constant, n: power law expo-
nent, E,: power law activation energy (kJmol™!).

Nr. | Unit HP | TC Po Ap n E,
1 | Neogene sediments 1 3.0 2.5 2450 3.16E-26 | 3.30 | 186.5
2 | Neogene sediments 2 3.0 2.5 2550 3.16E-26 | 3.30 | 186.5
3 | European platform cover 1.0 2.5 2500 3.16E-26 | 3.30 | 186.5
4 | Carpathian Foredeep 2.5 2.5 2500 3.16E-26 | 3.30 | 186.5
5 | Outer Carpathian Flysch Belt 2.0 2.5 2650 3.16E-26 | 3.30 | 186.5
6 | European platform upper crust | 1.0 | 2.5 | 2750 3.16E-26 | 3.30 | 186.5
7 | Western Carpathian upper crust | 2.5 3.0 2750 3.16E-26 | 3.30 | 186.5
8 | Pannonian Basin upper crust 2.5 3.0 2750 3.16E-26 | 3.30 | 186.5
9 | European platform and Western | 0.2 | 2.0 | 3000 6.31E-20 | 3.05 | 276.0

Carpathian lower crust
10 | Pannonian Basin lower crust 0.2 2.0 3000 6.31E-20 | 3.05 | 276.0
11 | European platform and Western | 0.05 | 3.4 | 3200+ | 7.94E-18 | 4.50 | 535.0
Carpathian lower (mantle) (3325)
lithosphere
12 | Pannonian Basin lower (mantle) | 0.05 | 3.4 | 32004 | 7.94E-18 | 4.50 | 535.0
lithosphere (3325)

The strength distribution, when integrated along vertical lithospheric
columns, allows to compare the resistance of the lithosphere to stress in
different areas. Figure 7 shows that the highest strength (compressional)
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Fig. 5. Yield strength contour plot for compressional deformation calculated along profile
Vyhne respective to a strain rate 107'° s7!.
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Fig. 6. Yield strength contour plot for extensional deformation calculated along profile
Vyhne respective to a strain rate 107° g1,

occurs beneath the European platform and the Western Carpathians. Fol-
lowing the calculated line, the strength decreases from its high values in the
European platform towards its minimum in Pieniny Klippen Belt. Then,
it increases again, reaching maximum values in the Western Carpathians.
As the profile continues towards the Pannonian Basin, the strength rapidly
decreases and reaches its flat minimum.

We have calculated the strength distribution and constructed the yield
strength envelope for lithospheric column that corresponds to location of
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Vyhne tidal station (Fig. 8). The yield strength envelope is represented by
the curves of two different types. At shallow depths, the straight line cor-
responding to brittle failure shows the increase of strength with depth. At
greater depths the curved line, corresponding to ductile deformation, shows
the decrease of strength with depth due to temperature increase.

6. Conclusions

We constructed deep lithospheric structure model based on 2D integrated
modelling. Several geophysical datasets have been used (surface heat flow
measurements, topography, gravity anomalies, and short-wavelength geoid
height data), together with available geological information. The resulting
model shows clearly that beneath the European Platform and the Outer
Western Carpathians, the LAB is nearly horizontal, lying at depths of ap-
proximately 115-118 km. Moving toward the Inner Western Carpathians,
a modest increase in lithospheric thickness becomes apparent, along with
the presence of a subtly developed lithospheric root, which may represent
a small remnant of the upper part of the break-off subducted lithospheric
slab. The contact zone between the Inner Western Carpathians and the
Pannonian Basin is represented by a sharp change in LAB depth (from 110
to 80 km). The lithospheric thickness in the Pannonian Basin is about
80 km. The Moho boundary beneath the European platform reaches values
up to 35 km. In the Western Carpathians, we observe slight thickening of
Moho up to 37 km. The Moho boundary beneath the Pannonian Basin
shows a stable trend of approximately 25 km.

Our rheological results show that the compressional regime is dominat-
ing and the highest strength occurs beneath the European platform and the
Western Carpathians. Following the calculated line, the strength decreases
from its high values in the European platform towards its minimum in the
Pieniny Klippen Belt. Then, it increases again, reaching maximum values
in the Western Carpathians. The calculated model of the lithosphere along
profile Vyhne will provide additional information to serve for tectonic in-
terpretation and geodynamical reconstruction of the area where the tidal
station Vyhne is located.
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