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Abstract: Transfer learning techniques, particularly the use of pre-trained Transformers,
can be trained on vast amounts of text in a particular language and can be tailored to specific
grammar correction tasks, such as automatic punctuation correction. The Czech pre-trained
RoBERTa model demonstrates outstanding performance in this task (Machura et al. 2022);
however, previous attempts to improve the model have so far led to aslight degradation
(Machura et al. 2023). In this paper, we present a more targeted fine-tuning of this model,
addressing linguistic phenomena that the base model overlooked. Additionally, we provide
a comparison with other models trained on a more diverse dataset beyond just web texts.
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1 INTRODUCTION

Punctuation, along with other graphical markers, plays a crucial role in ensuring
the accurate comprehension of any text. The automatic insertion of sentence commas
is typically addressed in two key tasks: (1) punctuation restoration in speech transcripts
generated by automatic speech recognition (ASR), where reinstating punctuation
significantly enhances readability, and (2) grammatical error correction in written
texts, where commas may be either missing or redundant. In Czech, automatic
punctuation correction is one of the most critical aspects of grammatical error
correction, as the comma is not only the most frequently used punctuation mark (see
Svec et al. 2021) but also a fundamental indicator of refined and structured writing.

268



For an extended period, the rule-based approach introduced by Kovar et al. (2016)
demonstrated the highest precision in comma insertion. However, its recall did not
exceed 60% of all commas. In recent years, advancements in machine learning have led
to significant improvements in precision. The transformer-based approach proposed in
(Machura et al. 2022) highlights the prevailing trend of training language models,
analyzing their errors, and exploring potential refinements. This approach achieves
precision comparable to or surpassing that of rule-based methods, while its recall exceeds
80%. A notable advantage of rule-based methods is their interpretability, as it is relatively
straightforward to identify the specific rule responsible for a false positive. In contrast,
neural network models function as black boxes, making it challenging not only to
determine the cause of a particular error but also to implement targeted corrections.

This paper first extends previous experiments on re-training the ROBERTa model
(see Section 2.1) and then introduces additional models fine-tuned on data from the
SYN v9 corpus (Kien et al. 2021) available from the LINDAT/CLARIAH-CZ digital
library. Finally, the study includes a comprehensive evaluation of all models using
texts that have served as benchmarks for this task for nearly a decade (see Section 3).

2 COMMA INSERTION USING PRE-TRAINED MODELS

This section introduces various models pre-trained for the task of comma
insertion. One set of experiments was conducted using a model trained and fine-
tuned on web texts, many of which had not undergone any proofreading. Despite
this, the results exceeded expectations, prompting the question of how models pre-
trained or fine-tuned on higher-quality texts would perform.

In (Machura et al. 2022) the typology of the comma insertion place was
comprehensively described. This allows 1) to specify the place (boundary) in the
sentence structure where comma is inserted, 2) to analyze the type of commas that
users of the language omit or overuse, or 3) to evaluate the results of language models
that are pre-trained, namely for the task of inserting commas into text, and then
subsequently improve these models.

Sample of newspaper articles

Typology with 183 sentence commas

# cases frequency [%]
A. comma preceding the connective 04 514
B. comma without the presence of the connective 49 26.8
C. components of multiplied syntactic structure 31 16.0
D. comma might but might not be inserted a 4.4
E. other types (vocative, particles, etc.) 1 05
decimal point —_ _

Tab. 1. Estimated general distribution of commas in Czech texts according to typology
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2.1 RoBERTa - Training on web texts

Machura et al. (2023) examined the feasibility of re-training the RoBERTa
language model, which had been pre-trained on a collection of web data, including
Common Crawl! and texts from the Czech Wikipedia, and fine-tuned with a random
data set from the Czech Common Crawl. The study focused specifically on
improving RoBERTa’s ability to detect commas in Czech vocatives by utilizing
example sentences where the model had previously made errors. To this end,
researchers extracted 170,000 sentences from the csTenTenl7 corpus (Suchomel
2018) and employed two re-training strategies: (i) additional fine-tuning and (ii) an
expanded training dataset, wherein the original large corpus was merged with
a specialized corpus containing vocative phrases. While precision improved, recall
declined significantly, likely due to overfitting to a specific comma type. The
findings underscore the importance of training data distribution, highlighting the
necessity of a broader dataset to preserve the model’s overall functionality. The study
ultimately demonstrates that while re-training RoBERTa is feasible, it requires
careful structuring of the dataset to ensure balanced performance.

Following the vocative experiment, we have developed a fine-tuning dataset
intended to enhance the overall performance of the ROBERTa base model for comma
insertion — not solely for a specific type of comma. To identify RoOBERTa’s strengths
and weaknesses, we conducted a thorough analysis on a dataset comprising 67,378
sentences and 87,379 commas extracted from news articles. The original texts
(referred to as Gold) were presumed to be error-free following proofreading,
although some errors did persist. By providing the model with these texts devoid of
commas, it subsequently inserted 78,146 commas. The output (referred to as Test)
was then compared with Gold using a script, revealing approximately 10,000
sentences where the model’s comma placement diverged from the Gold standard.

Subsequently, we compiled a dataset of these sentences featuring mismatched
commas (see the following Tab. 2), aligning each pair from Gold and Test side by
side for annotation based on the aforementioned typology. Although the number of
sentences identified by the script (10,000) slightly exceeded those annotated (8,890),
this discrepancy likely arises from human annotation error and imperfect sentence
separation by the script, particularly when segregating sentences in category A based
on the connective following the comma.

The table below indicates that while categories A and C pose minimal challenges
for the model, category B presents a moderate level of difficulty. In contrast, categories
D and E are the most problematic. Comparing Tab. 1 with Tab. 2, the challenges
associated with categories D and E are expected, given their lower relative distribution in
the text, which results in a reduced amount of training data and consequently limits the
model’s ability to generalize effectively in these cases. Additionally, category

! https://commoncrawl.org/

270



D necessitates a deeper semantic and pragmatic understanding for accurate comma
insertion. Based on these observations, we prioritized our fine-tuning efforts on more
frequently occurring categories that offer greater potential for improvement.

#cases #cases Category
Typolosy Subcaregory in subcategory _in subcategory _frequency [%]

A comma preceding the 1,777 19.99
connective

- asyndetic structures 1,336
B. comma without the presence of - right periphery of the
the connective embedded clause 1,102 2726 3066

- direct speech or guotation 288

- multiple sentence elements 549
C. components of multiplied or enumeration

: 828 9.31

syntactic structure .

- apposition 279

- non-restrictive attribute 169

- multiple/sequential attribute 146

- comma changing the 179
D. comma might but might not be meaning 1530 17 21
inserted - constructions with véetné 107 :

- constructions with jako 106

- parentheses - 358

- comma is not obligatory 485

- vocatives 129
E. other types 5 355 399

- particles and interjections 226
Errors in Gold 855 962
Errors in Test 396 445
Cannot be determined 423 476
Total 8,890

Tab. 2. Estimated distribution of the mismatched commas of the RoOBERTa base model
(Machura et al. 2022)

With this insight in mind, we compiled two datasets for fine-tuning RoOBERTa.
The first dataset, consisting of 1,313 sentences, was constructed using CQL queries
on the internet corpus csTenTen2023 (Suchomel 2018) in Sketch Engine. Each
sentence in this dataset was manually verified to ensure that it contained the correct
type of comma as required by the CQL query. To identify sentences containing
apposition, we utilized the syntactic function Apos in the syntactically annotated
corpus SYN2020 (Kfen et al. 2020) accessible via KonText (Machalek 2020). The
second dataset, comprising 100,000 sentences, was entirely sourced from the
SYN2020 corpus. This choice was motivated by the assumption that SYN2020 —
composed solely of printed texts (fiction, non-fiction, newspapers, and magazines)
— exhibits a higher linguistic standard compared to an internet corpus such as
csTenTen2023, despite the absence of human verification for comma type accuracy.
The CQL queries used to compile this larger dataset, along with the sentence counts
for each query, are detailed in Tab. 3. Although the relative distribution of sentences
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and the queries for the smaller dataset are largely consistent, minor differences exist
due to the disparate morphological tagsets employed by each corpus manager. Again,
two training strategies were used — (i) additional fine-tuning and (ii) an expanded
training dataset, wherein the original large corpus was merged with a specialized
corpus containing 1,313 or 100,000 sentences — yielding four model variants.

comma definition CaL query # cases
), [lemma = ")"]lemma = ""] 5.000
- [lemma =""lemma = "\""] 7.000
flemma = "V [lemma =","] 3,000
.a [lemma = ","][lemma ="a"] 5.000
. aby [lemma = "."][lemma = "aby" ] 2,000
, ale [lemma = ","][lemma = "ale"] 3,000
,co [lemma = ","]lemma = "co"] 2,000
L Ei [lemma = ","][lemma = "&i"] 2,000
. jak [lemma = ", "][lemma = Tjak"] 2,000
. jako [lemma = ","][lemma = "jako"] 2,000
, kam [lemma = ","]lemma = "kam"] 2,000
. kde [lemma = " "J[lemma = “kde"] 2,000
, kdyZ [lemma = "."][lemma = "kdyZ7] 2,000
, (predloZka) kiery [lemma = " "[[{0, 1}{lemma = "kierj"] 3,000
. neba [lemma = "."][lemma = "nebo”] 4,000
,nei [lemma = = "][lemma = "ne"] 2,000
, profoZe [lemma = ","Jlemma = "protoZe”] 2,000
, Ze [lemma = ","]lemma = "Ze"] 3,000
. [lemma = ""]lemma = "a" lemma = "I" [lemma = "nebo” Jlemma =
. (alilmebo) dokonce “dokonce"] 2,000
lemma = ~,"lemma= "bud"][*[word = ","]lemma = "anebo" | lemma =
bud - . aneboinebo “nebo’] within <s/> 400
, at — nebo/ti [word = ""][word = "at"][*[word = ","][word = "nebo" | word = "&"] within <s/= 1,000
[word = ""|[tag !=").*" & tag '="P[149EJKQ].*" & tag |="T.*"&lag |="R.*" & tag
asyndeton 1="D.* & word != ""Jword I="," 9,000
[word = ""][tag = "J.*"| tag="P[142EJKQ].*"| tag=" !
embedded clause "% tag =" * [tag = "V.*"|[word I="" & word tag = "V.*" = 8,600
" “Iltag 1= "J.*" & tag |="P[149EJKQ] *" & tag 1="D.*"] within <s/>
multiple sentence . i A e -
element (nouns) 1:[pos="N"]lword=""] 2:[pos="N"] & 1.case = 2.case 3,000
multiple senfence . = e = =
element (adjectives) 1:[pos="A"]word=""] 2:[pos="A"] & 1.case = 2.case 2,000
multiple sentence . o - . e =
clement (verbs) 1[pos="V"][word=","] Z:[pos="V"] & 1.1ag = 2.tag 2.000
appositicn [afun = "Apos" & word=","] 6,000
constructions with jako [lemma=","]lemmal="jako {0, 1}{lemma="jako] 3,000
, vEetné lemma = ","Jlemma = "viein&"] 3,000
particles and interjections [tag="1T].*"Jllemma=","][lemma=","]{tag="TIT].*"] 4000

Tab. 3. List of CQL queries for compilation of 100,000 sentence dataset

2.2 Fine-tuning with SYN v9

To investigate the effectiveness of fine-tuning for automatic comma insertion in
Czech text, we trained three different transformer-based models: RobeCzech-base
(Straka et al. 2021), XLM-RoBERTa-large (Conneau et al. 2020), and mT5-large
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(Xue et al. 2021). The RobeCzech-base and XLM-RoBERTa-large models were
fine-tuned as token classification models, where the objective was to predict whether
a given token should be followed by a comma. The mT5-large model was fine-tuned
as a text-to-text model with the objective of adding commas to a text without any
commas.

Training Setup: Each model was trained using the SYN v9 dataset (Kien et al.
2021), available in the LINDAT repository, which was filtered to include only lines
containing at least one comma. SYN v9 was chosen because the training of the
RoBERTa baseline model was done on random texts from the internet and achieved
quite good results, so the idea was to use texts that had mostly undergone some
proofreading and might contain a wider variety of comma types. The dataset from
SYN v9 was selected for its diverse curated content, as prior research (Machura et
al. 2023) demonstrated that fine-tuning on an unfiltered Common Crawl dataset
yielded significant results. However, even here, the comma type is random and may
not match the frequency distribution of each comma type. Models were trained on
datasets of 100,000, 300,000, and 500,000 lines from SYN v9, with experiments
conducted using various numbers of training epochs. The best-performing
hyperparameters for each model are listed below. Training and evaluation were
performed on a single Nvidia A40 GPU, employing the AdamW optimizer and cross-
entropy loss function.

RobeCzech-base XLM-RoBERTa-large mT5-large
Dataset size 300k 300k 500k
Batch size 448 100 8
Learning rate 1e-5 1e-5 2e-5
Number of epochs 300 100 20

Tab. 4. The best hyperparameters for individual models

Preprocessing steps included tokenization using the respective model’s
tokenizer, as well as ensuring that quotation marks were tokenized as a separate
token, and an optional transformation during evaluation where quotation marks were
removed from the text. The impact of this transformation was analyzed in the
evaluation phase (see Section 3).

2.3 Grammatical Error Correction (GEC)

In this experiment, we explore the application of the sequence-to-labels
approach to grammatical error correction (GEC) for restoring missing commas in the
text. This approach was inspired by the sequence labeling methods often used for the
named entity recognition (NER) task (Kumar et al. 2023), as well as parts of the
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GEC implementation of the grammarly/GeCToR architecture (Omelianchuk et al.
2020). Unlike in the more common sequence-to-sequence approach where the output
is only the corrected input text, this approach returns both the corrected text and the
labels showing where the changes have occurred, making it easier to interpret the
model’s decision.

We have prepared the training and evaluation datasets by introducing synthetic
mistakes in the text, namely removing all commas from the text. Output of our
preprocessing were pairs of documents:

e plain-text document (all commas were removed)

e label document where each word is tagged with a corresponding label:
$KEEP: The word is correct and should not be changed.
$MISSING PUNCT ,: A comma should be inserted after this word.

Using the prepared training and evaluation datasets, we have fine-tuned a pre-
trained RobeCzech-base model (Straka et al. 2021), tokenizing our datasets using the
base model’s tokenizer. To properly align the tokens with the reference word-level
labels, the original word’s label is duplicated across all corresponding tokens. During
the fine-tuning process we evaluate the models’ performance using the precision,
recall, and F1-score for the SMISSING PUNCT _, label class. At the end of the fine-
tuning we evaluate the model with the highest F1-score during training on the test
dataset. As the model predicts labels per token, during post-processing we convert
the token-level predictions back into word-level labels, aggregating predictions for
each word and selecting the predicted label with the highest frequency. If multiple
labels have the same frequency, one is arbitrarily selected.

24 GPT-4o

For comparison, we also conducted an initial experiment in comma insertion
using a generative language model GPT-40-2024-08-06 (OpenAl 2024)>. Employing
a temperature setting of 0.1 and a prompt instructing the model — “You are an expert
in writing sentence commas in Czech and always respond in JSON format. Your task
is to add missing commas to sentences” — the model demonstrated promising
performance. A notable issue with this approach, however, was that the model
occasionally modified the sentences beyond merely adding commas (e.g. altering or
inserting words, correcting grammar), thereby complicating direct sentence
comparisons. Modified sentences accounted for about 3%. This challenge could
potentially be mitigated by refining the prompt or implementing a feedback loop to
ensure that only commas are modified.

? https://chat.openai.com/
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3 EXPERIMENTAL RESULTS

The dataset presented in Kovar et al. (2016) was utilized to evaluate and
compare the methods described above. These texts were specifically designed for
automatic comma insertion. As the dataset remains unchanged, the current results
can be directly compared with previous evaluations. In total, seven texts of varying
nature and style were used, as shown in Tab. 5.

Testing set #words |# commas
Selected blogs 20,883 1,805
Internet Language Reference Book (ILRB) 3039 417
Horoscopes 2015 57,101 5,101
Karel Capek — selected novels 46 489 5498
Simona Monyova — Zenu ani kvétinou 33,112 3,156
J. K. Rowling — Harry Potter 1 (translation) 74,783 7,461
Neil Gaiman — The Graveyard Book (translation) 55,444 5573
Overall 290,851 29,011

Tab. 5. Statistics of the test data for automatic comma insertion

The highest F1 score (93.1%) was achieved by the fine-tuned RobeCzech-base
model when quotation marks were removed in preprocessing. The model
outperformed the RoBERTa baseline model in terms of recall but exhibited lower
precision. It is worth noting that in all RoOBERTa baseline model experiments, post-
processing was required for fiction texts, as the model consistently placed a comma
after closing quotation marks in direct speech, despite the correct placement being
before them. Overall, GPT-40 achieved the highest recall (92.0%); however, this
came at the cost of precision, as it produced nearly 4,500 false positives (85.6%).

In the RoBERTa experiments (Section 3.1), an increase in training data
consistently improved precision, reaching up to 98.2%; however, recall decreased
significantly. The incorporation of additional datasets likely disrupted the frequency
distribution of different comma types, leading the model to insert fewer commas
with greater confidence. Notably, fine-tuning with the selected dataset, which was
specifically designed to target phenomena ignored by the ROBERTa baseline model,
yielded unexpected results, as all evaluation metrics declined.

Results of models from Section 3.2 — the RobeCzech-base and XLM-RoBERTa-
large models showed improved performance when quotation marks were removed in
preprocessing, while mT5-large achieved a better result with quotations included.
A plausible hypothesis is that quotation marks can serve as useful syntactic cues for
larger language models, aiding in the recognition of grammatical structures. For
smaller models with more limited capacity, such as RobeCzech-base, they may act
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as a source of noise or distraction. Despite being the smallest model, RobeCzech-
base outperformed both XLM-RoBERTa-large and mTS5. Its best performance
surpasses a result reported in (Machura et al. 2022), while the other models failed to
surpass this benchmark. The superior performance of RobeCzech-base suggests that
a model specifically designed for Czech text may be more effective for this task than
larger multilingual models. Further analysis could explore whether additional fine-
tuning techniques or architectural modifications might enhance the performance of
the larger models.

Section | Model Precision [%] | Recall [%] F1[%]
31 RoBERTa baseline 959 89.3 925
RoBERTa — Fine-tuning (1,313) 948 884 915
RoBERTa — Fine-tuning (100,000) 95.7 875 91.4
RoBERTa — Extended data (1,313) 97.8 79.3 876
RoBERTa — Extended data (100,000) 98.2 758 855
32 RobeCzech-base 943 885 914
RobeCzech-base “* 94.5 91.7 931
XLM-RoBERTa-large 946 859 90.0
XLM-RoBERTa-large “™* 94.8 88.0 91.3
mT5-large 951 859 90.3
mT5-large “™* 956 841 895
3.3 Grammatical Error Correction 95.5 84.8 89.8
34 GPT-4o 8586 92.0 88.7

“** Evaluation without quotation marks

Tab. 6. Results of all mentioned models

4 CONCLUSION

The primary objective of this study was to develop a tailored dataset that
incorporates linguistic phenomena overlooked by the RoBERTa baseline model.
However, selecting the most frequently missing comma types to construct
a retraining dataset did not lead to an improvement in the model’s original
performance.

The second objective was to compare models trained on web-based data —
which, not having been proofread, often might contain false positives — with models
trained on texts from the SYN v9 corpus, which are presumed to be of higher quality.
The RobeCzech-base model fine-tuned on SYN v9 data outperformed the previous
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RoBERTa model overall, but achieved a slightly lower precision. Further
improvement could be achieved by filtering the SYN v9 dataset to be more
representative of the natural frequency distribution of commas in Czech.

Additionally, an interesting comparison was made with GPT-40 and
Grammatical Error Correction (GEC), both of which demonstrated comparable or
superior performance in certain metrics. Nevertheless, their overall F1 scores
remained relatively average.

In the next phase of this research, we will seek to identify the optimal
composition of training data that encompasses all comma types in accordance with
their natural frequency distribution, thereby maximizing recall. Simultaneously, the
dataset must be balanced to achieve the highest possible precision, as the model
must learn not only where to insert a comma—such as before a connective or other
relevant token—but also where a comma should not be placed. For instance, while
more than 4% of all commas in the SYN2020 corpus precede the conjunction ale
‘but’, in over one-quarter of all instances where ale ‘but’ appears, a comma is not
required. Since neural networks function as a black box, we cannot determine with
certainty whether this approach will produce the desired results. However, we
believe that precisely constructing a balanced training dataset from SYN corpora
could improve the functionality of the tested models.
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