
268	

TAILORED FINE-TUNING FOR COMMA INSERTION IN CZECH

JAKUB MACHURA1 – HANA ŽIŽKOVÁ2 – PATRIK STANO3  
– TEREZA VRABCOVÁ4 – DANA HLAVÁČKOVÁ5 – ONDŘEJ TRNOVEC6

1Department Czech Language, Faculty of Arts, Masaryk University, Brno, Czech 
Republic (ORCID: 0000-0002-6623-3064)

2Department of Czech Language, Faculty of Arts, Masaryk University, Brno, Czech 
Republic (ORCID: 0000-0002-6483-6603)

3Department of Machine Learning and Data Processing, Faculty of Informatics, 
Masaryk University, Brno, Czech Republic (ORCID: 0009-0001-8339-6084)

4Department of Machine Learning and Data Processing, Faculty of Informatics, 
Masaryk University, Brno, Czech Republic (ORCID: 0009-0009-5674-3827)

5Department of Czech Language, Faculty of Arts, Masaryk University, Brno, Czech 
Republic (ORCID: 0000-0002-9918-0958)

6Department of Czech Language, Faculty of Arts, Masaryk University, Brno, Czech 
Republic (ORCID: 0009-0009-7756-9661)

MACHURA, Jakub – ŽIŽKOVÁ, Hana – STANO, Patrik – VRABCOVÁ, Tereza – 
HLAVÁČKOVÁ, Dana – TRNOVEC, Ondřej: Tailored Fine-tuning for Comma Insertion in 
Czech. Journal of Linguistics, 2025, Vol. 76, No 1, pp. 268 – 278.

Abstract: Transfer learning techniques, particularly the use of pre-trained Transformers, 
can be trained on vast amounts of text in a particular language and can be tailored to specific 
grammar correction tasks, such as automatic punctuation correction. The Czech pre-trained 
RoBERTa model demonstrates outstanding performance in this task (Machura et al. 2022); 
however, previous attempts to improve the model have so far led to a slight degradation 
(Machura et al. 2023). In this paper, we present a more targeted fine-tuning of this model, 
addressing linguistic phenomena that the base model overlooked. Additionally, we provide 
a comparison with other models trained on a more diverse dataset beyond just web texts.
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1	 INTRODUCTION

Punctuation, along with other graphical markers, plays a crucial role in ensuring 
the accurate comprehension of any text. The automatic insertion of sentence commas 
is typically addressed in two key tasks: (1) punctuation restoration in speech transcripts 
generated by automatic speech recognition (ASR), where reinstating punctuation 
significantly enhances readability, and (2) grammatical error correction in written 
texts, where commas may be either missing or redundant. In Czech, automatic 
punctuation correction is one of the most critical aspects of grammatical error 
correction, as the comma is not only the most frequently used punctuation mark (see 
Švec et al. 2021) but also a fundamental indicator of refined and structured writing.
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For an extended period, the rule-based approach introduced by Kovář et al. (2016) 
demonstrated the highest precision in comma insertion. However, its recall did not 
exceed 60% of all commas. In recent years, advancements in machine learning have led 
to significant improvements in precision. The transformer-based approach proposed in 
(Machura et al. 2022) highlights the prevailing trend of training language models, 
analyzing their errors, and exploring potential refinements. This approach achieves 
precision comparable to or surpassing that of rule-based methods, while its recall exceeds 
80%. A notable advantage of rule-based methods is their interpretability, as it is relatively 
straightforward to identify the specific rule responsible for a false positive. In contrast, 
neural network models function as black boxes, making it challenging not only to 
determine the cause of a particular error but also to implement targeted corrections.

This paper first extends previous experiments on re-training the RoBERTa model 
(see Section 2.1) and then introduces additional models fine-tuned on data from the 
SYN v9 corpus (Křen et al. 2021) available from the LINDAT/CLARIAH-CZ digital 
library. Finally, the study includes a comprehensive evaluation of all models using 
texts that have served as benchmarks for this task for nearly a decade (see Section 3).

2	 COMMA INSERTION USING PRE-TRAINED MODELS

This section introduces various models pre-trained for the task of comma 
insertion. One set of experiments was conducted using a model trained and fine-
tuned on web texts, many of which had not undergone any proofreading. Despite 
this, the results exceeded expectations, prompting the question of how models pre-
trained or fine-tuned on higher-quality texts would perform.

In (Machura et al. 2022) the typology of the comma insertion place was 
comprehensively described. This allows 1) to specify the place (boundary) in the 
sentence structure where comma is inserted, 2) to analyze the type of commas that 
users of the language omit or overuse, or 3) to evaluate the results of language models 
that are pre-trained, namely for the task of inserting commas into text, and then 
subsequently improve these models.

Tab. 1. Estimated general distribution of commas in Czech texts according to typology
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2.1	 RoBERTa – Training on web texts
Machura et al. (2023) examined the feasibility of re-training the RoBERTa 

language model, which had been pre-trained on a collection of web data, including 
Common Crawl1 and texts from the Czech Wikipedia, and fine-tuned with a random 
data set from the Czech Common Crawl. The study focused specifically on 
improving RoBERTa’s ability to detect commas in Czech vocatives by utilizing 
example sentences where the model had previously made errors. To this end, 
researchers extracted 170,000 sentences from the csTenTen17 corpus (Suchomel 
2018) and employed two re-training strategies: (i) additional fine-tuning and (ii) an 
expanded training dataset, wherein the original large corpus was merged with 
a specialized corpus containing vocative phrases. While precision improved, recall 
declined significantly, likely due to overfitting to a specific comma type. The 
findings underscore the importance of training data distribution, highlighting the 
necessity of a broader dataset to preserve the model’s overall functionality. The study 
ultimately demonstrates that while re-training RoBERTa is feasible, it requires 
careful structuring of the dataset to ensure balanced performance.

Following the vocative experiment, we have developed a fine-tuning dataset 
intended to enhance the overall performance of the RoBERTa base model for comma 
insertion – not solely for a specific type of comma. To identify RoBERTa’s strengths 
and weaknesses, we conducted a thorough analysis on a dataset comprising 67,378 
sentences and 87,379 commas extracted from news articles. The original texts 
(referred to as Gold) were presumed to be error-free following proofreading, 
although some errors did persist. By providing the model with these texts devoid of 
commas, it subsequently inserted 78,146 commas. The output (referred to as Test) 
was then compared with Gold using a script, revealing approximately 10,000 
sentences where the model’s comma placement diverged from the Gold standard.

Subsequently, we compiled a dataset of these sentences featuring mismatched 
commas (see the following Tab. 2), aligning each pair from Gold and Test side by 
side for annotation based on the aforementioned typology. Although the number of 
sentences identified by the script (10,000) slightly exceeded those annotated (8,890), 
this discrepancy likely arises from human annotation error and imperfect sentence 
separation by the script, particularly when segregating sentences in category A based 
on the connective following the comma.

The table below indicates that while categories A and C pose minimal challenges 
for the model, category B presents a moderate level of difficulty. In contrast, categories 
D and E are the most problematic. Comparing Tab. 1 with Tab. 2, the challenges 
associated with categories D and E are expected, given their lower relative distribution in 
the text, which results in a reduced amount of training data and consequently limits the 
model’s ability to generalize effectively in these cases. Additionally, category 

1 https://commoncrawl.org/
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D necessitates a deeper semantic and pragmatic understanding for accurate comma 
insertion. Based on these observations, we prioritized our fine-tuning efforts on more 
frequently occurring categories that offer greater potential for improvement.

Tab. 2. Estimated distribution of the mismatched commas of the RoBERTa base model  
(Machura et al. 2022)

With this insight in mind, we compiled two datasets for fine-tuning RoBERTa. 
The first dataset, consisting of 1,313 sentences, was constructed using CQL queries 
on the internet corpus csTenTen2023 (Suchomel 2018) in Sketch Engine. Each 
sentence in this dataset was manually verified to ensure that it contained the correct 
type of comma as required by the CQL query. To identify sentences containing 
apposition, we utilized the syntactic function Apos in the syntactically annotated 
corpus SYN2020 (Křen et al. 2020) accessible via KonText (Machálek 2020). The 
second dataset, comprising 100,000 sentences, was entirely sourced from the 
SYN2020 corpus. This choice was motivated by the assumption that SYN2020 – 
composed solely of printed texts (fiction, non-fiction, newspapers, and magazines) 
– exhibits a  higher linguistic standard compared to an internet corpus such as 
csTenTen2023, despite the absence of human verification for comma type accuracy. 
The CQL queries used to compile this larger dataset, along with the sentence counts 
for each query, are detailed in Tab. 3. Although the relative distribution of sentences 
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and the queries for the smaller dataset are largely consistent, minor differences exist 
due to the disparate morphological tagsets employed by each corpus manager. Again, 
two training strategies were used – (i) additional fine-tuning and (ii) an expanded 
training dataset, wherein the original large corpus was merged with a  specialized 
corpus containing 1,313 or 100,000 sentences – yielding four model variants.

Tab. 3. List of CQL queries for compilation of 100,000 sentence dataset

2.2	 Fine-tuning with SYN v9
To investigate the effectiveness of fine-tuning for automatic comma insertion in 

Czech text, we trained three different transformer-based models: RobeCzech-base 
(Straka et al. 2021), XLM-RoBERTa-large (Conneau et al. 2020), and mT5-large 



Jazykovedný časopis, 2025, roč. 76, č. 1	 273

(Xue et al. 2021). The RobeCzech-base and XLM-RoBERTa-large models were 
fine-tuned as token classification models, where the objective was to predict whether 
a given token should be followed by a comma. The mT5-large model was fine-tuned 
as a text-to-text model with the objective of adding commas to a text without any 
commas.

Training Setup: Each model was trained using the SYN v9 dataset (Křen et al. 
2021), available in the LINDAT repository, which was filtered to include only lines 
containing at least one comma. SYN v9 was chosen because the training of the 
RoBERTa baseline model was done on random texts from the internet and achieved 
quite good results, so the idea was to use texts that had mostly undergone some 
proofreading and might contain a wider variety of comma types. The dataset from 
SYN v9 was selected for its diverse curated content, as prior research (Machura et 
al. 2023) demonstrated that fine-tuning on an unfiltered Common Crawl dataset 
yielded significant results. However, even here, the comma type is random and may 
not match the frequency distribution of each comma type. Models were trained on 
datasets of 100,000, 300,000, and 500,000 lines from SYN v9, with experiments 
conducted using various numbers of training epochs. The best-performing 
hyperparameters for each model are listed below. Training and evaluation were 
performed on a single Nvidia A40 GPU, employing the AdamW optimizer and cross-
entropy loss function.

Tab. 4. The best hyperparameters for individual models

Preprocessing steps included tokenization using the respective model’s 
tokenizer, as well as ensuring that quotation marks were tokenized as a separate 
token, and an optional transformation during evaluation where quotation marks were 
removed from the text. The impact of this transformation was analyzed in the 
evaluation phase (see Section 3).

2.3	 Grammatical Error Correction (GEC)
In this experiment, we explore the application of the sequence-to-labels 

approach to grammatical error correction (GEC) for restoring missing commas in the 
text. This approach was inspired by the sequence labeling methods often used for the 
named entity recognition (NER) task (Kumar et al. 2023), as well as parts of the 
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GEC implementation of the grammarly/GeCToR architecture (Omelianchuk et al. 
2020). Unlike in the more common sequence-to-sequence approach where the output 
is only the corrected input text, this approach returns both the corrected text and the 
labels showing where the changes have occurred, making it easier to interpret the 
model’s decision.

We have prepared the training and evaluation datasets by introducing synthetic 
mistakes in the text, namely removing all commas from the text. Output of our 
preprocessing were pairs of documents:

●	 plain-text document (all commas were removed)
●	 label document where each word is tagged with a corresponding label:
	 $KEEP: The word is correct and should not be changed.
	 $MISSING_PUNCT_,: A comma should be inserted after this word.

Using the prepared training and evaluation datasets, we have fine-tuned a pre-
trained RobeCzech-base model (Straka et al. 2021), tokenizing our datasets using the 
base model’s tokenizer. To properly align the tokens with the reference word-level 
labels, the original word’s label is duplicated across all corresponding tokens. During 
the fine-tuning process we evaluate the models’ performance using the precision, 
recall, and F1-score for the $MISSING_PUNCT_, label class. At the end of the fine-
tuning we evaluate the model with the highest F1-score during training on the test 
dataset. As the model predicts labels per token, during post-processing we convert 
the token-level predictions back into word-level labels, aggregating predictions for 
each word and selecting the predicted label with the highest frequency. If multiple 
labels have the same frequency, one is arbitrarily selected.

2.4	 GPT-4o
For comparison, we also conducted an initial experiment in comma insertion 

using a generative language model GPT-4o-2024-08-06 (OpenAI 2024)2. Employing 
a temperature setting of 0.1 and a prompt instructing the model – “You are an expert 
in writing sentence commas in Czech and always respond in JSON format. Your task 
is to add missing commas to sentences” – the model demonstrated promising 
performance. A notable issue with this approach, however, was that the model 
occasionally modified the sentences beyond merely adding commas (e.g. altering or 
inserting words, correcting grammar), thereby complicating direct sentence 
comparisons. Modified sentences accounted for about 3%. This challenge could 
potentially be mitigated by refining the prompt or implementing a feedback loop to 
ensure that only commas are modified.

2 https://chat.openai.com/
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3	 EXPERIMENTAL RESULTS

The dataset presented in Kovář et al. (2016) was utilized to evaluate and 
compare the methods described above. These texts were specifically designed for 
automatic comma insertion. As the dataset remains unchanged, the current results 
can be directly compared with previous evaluations. In total, seven texts of varying 
nature and style were used, as shown in Tab. 5.

Tab. 5. Statistics of the test data for automatic comma insertion

The highest F1 score (93.1%) was achieved by the fine-tuned RobeCzech-base 
model when quotation marks were removed in preprocessing. The model 
outperformed the RoBERTa baseline model in terms of recall but exhibited lower 
precision. It is worth noting that in all RoBERTa baseline model experiments, post-
processing was required for fiction texts, as the model consistently placed a comma 
after closing quotation marks in direct speech, despite the correct placement being 
before them. Overall, GPT-4o achieved the highest recall (92.0%); however, this 
came at the cost of precision, as it produced nearly 4,500 false positives (85.6%).

In the RoBERTa experiments (Section 3.1), an increase in training data 
consistently improved precision, reaching up to 98.2%; however, recall decreased 
significantly. The incorporation of additional datasets likely disrupted the frequency 
distribution of different comma types, leading the model to insert fewer commas 
with greater confidence. Notably, fine-tuning with the selected dataset, which was 
specifically designed to target phenomena ignored by the RoBERTa baseline model, 
yielded unexpected results, as all evaluation metrics declined.

Results of models from Section 3.2 – the RobeCzech-base and XLM-RoBERTa-
large models showed improved performance when quotation marks were removed in 
preprocessing, while mT5-large achieved a  better result with quotations included. 
A plausible hypothesis is that quotation marks can serve as useful syntactic cues for 
larger language models, aiding in the recognition of grammatical structures. For 
smaller models with more limited capacity, such as RobeCzech-base, they may act 
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as a source of noise or distraction. Despite being the smallest model, RobeCzech-
base outperformed both XLM-RoBERTa-large and mT5. Its best performance 
surpasses a result reported in (Machura et al. 2022), while the other models failed to 
surpass this benchmark. The superior performance of RobeCzech-base suggests that 
a model specifically designed for Czech text may be more effective for this task than 
larger multilingual models. Further analysis could explore whether additional fine-
tuning techniques or architectural modifications might enhance the performance of 
the larger models.

Tab. 6. Results of all mentioned models

4	 CONCLUSION

The primary objective of this study was to develop a  tailored dataset that 
incorporates linguistic phenomena overlooked by the RoBERTa baseline model. 
However, selecting the most frequently missing comma types to construct 
a  retraining dataset did not lead to an improvement in the model’s original 
performance.

The second objective was to compare models trained on web-based data – 
which, not having been proofread, often might contain false positives – with models 
trained on texts from the SYN v9 corpus, which are presumed to be of higher quality. 
The RobeCzech-base model fine-tuned on SYN v9 data outperformed the previous 
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RoBERTa model overall, but achieved a  slightly lower precision. Further 
improvement could be achieved by filtering the SYN v9 dataset to be more 
representative of the natural frequency distribution of commas in Czech.

Additionally, an interesting comparison was made with GPT-4o and 
Grammatical Error Correction (GEC), both of which demonstrated comparable or 
superior performance in certain metrics. Nevertheless, their overall F1 scores 
remained relatively average.

In the next phase of this research, we will seek to identify the optimal 
composition of training data that encompasses all comma types in accordance with 
their natural frequency distribution, thereby maximizing recall. Simultaneously, the 
dataset must be balanced to achieve the highest possible precision, as the model 
must learn not only where to insert a comma—such as before a connective or other 
relevant token—but also where a comma should not be placed. For instance, while 
more than 4% of all commas in the SYN2020 corpus precede the conjunction ale 
‘but’, in over one-quarter of all instances where ale ‘but’ appears, a comma is not 
required. Since neural networks function as a black box, we cannot determine with 
certainty whether this approach will produce the desired results. However, we 
believe that precisely constructing a balanced training dataset from SYN corpora 
could improve the functionality of the tested models.
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