Joint approximation by Dirichlet $L$-functions

Authors

  • Antanas Laurinčikas Vilnius University
  • Darius Šiaučiūnas Siauliai Academy Vilnius University

DOI:

https://doi.org/10.1515/ms-2022-0004

Keywords:

Dirichlet L-functions, joint universality, functional independence, weak convergence

Abstract

In the paper, collections of analytic functions are simultaneously approximated by collections of shifts of Dirichlet $L$-functions $\left(L(s+i\gamma_1(\tau), \chi_1),\right.$ $\left. \dots, L(s+i\gamma_r(\tau), \chi_r)\right)$, with arbitrary Dirichlet characters $\chi_1,\dots, \chi_r$. The differentiable functions $\gamma_1(\tau), \dots, \gamma_r(\tau)$ and their derivatives satisfy certain growth conditions. The obtained results extend those of [17].

Author Biographies

Antanas Laurinčikas, Vilnius University

Institute of Mathematics
Faculty of Mathematics and Informatics
Vilnius University
Naugarduko str. 24
LT-03225 Vilnius
LITHUANIA

Darius Šiaučiūnas, Siauliai Academy Vilnius University

Institute of Regional Development
Siauliai Academy
Vilnius University
P. Visinskio str. 25
LT-76351 Siauliai
LITHUANIA

Published

2022-02-16

Issue

Section

Articles - Other topics