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Phase methods of measuring physical quantities and phase measuring equipment are widely used in various fields of science and 
technology. The article proposes a signal processing methodology based on a combination of the discrete Hilbert transform (DHT) and 
deterministic, as well as statistical methods of phase measurement. This methodology makes it possible to more fully use the information 
resource of the measuring signal phase in a wide range of the signal-to-noise ratio. It can be used both in computerized measurement and 
testing systems, as well as in the processing of measurement data. The benefits of the DHT are considered. The possibility of using 
statistics of directional data for phase measurements is shown. Circular statistics, such as the mean ring value, circular variance and the 
resulting vector length, were proposed for use in the phase measurements. Some examples of the use of this methodology in measurements 
and non-destructive testing are given. 
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1.  INTRODUCTION 

This paper is an extended and updated version of [1]. It is 
known that the measuring technologies are penetrating 
deeper into various areas of human activity because no 
science is possible without measurements [2]. In particular, 
the development of the concept of the internet of things [3], 
together with the progress in measurement science led to the 
exponential growth of measurement data. The rise of the 
computational power of computers created the opportunity 
to develop methods for measurement data processing to 
improve the accuracy of measurement and their noise 
immunity. This trend is illustrated by research in various 
areas of measurements and testing: measurement of high-
frequency electromagnetic fields, which can have a negative 
impact on both the human body and electronic devices [4], 
precision temperature measurements [5], using fractal 
dimension for investigating surface parameters for fracture 
analysis after bending-torsion fatigue [6].  

In some branches of science and technology, the current 
trend is the creation of measuring instruments and self-
validating sensors [7] and in situ measurements [8], due to 
which there appear appropriate methods: the analysis and 

classification method to evaluate the working condition of 
angle grinders by means of infrared thermography and 
image processing [9], the method of thermocouple self-
verification on operation place [10] and its application [11]. 
Some methods were also developed in other fields of 
science and technology, even without any program 
documents from metrological organizations: the method of 
assessment of the stress-strain-time and strength 
characteristics of geomaterials [12], the new strategy of the 
reliability monitoring of sensor arrays [13], the method of 
designing heat exchangers, which are used to heat or cool 
the material streams [14]. 

Development of computers also led to considerable 
progress in statistics and data processing algorithms [15] 
(the problems in modeling sensor degradation is considered 
and a new method of data fitting is proposed), [16] (the 
method of correlation analysis of natural water quality is 
investigated), including the methods of data science [17] 
(the use of neural networks to correct and compensate for 
sensor errors is proposed), [18] (the fault diagnosis method 
based on the analysis of thermal images is described).  

Among the important areas of measurement science is the 
measurement of phase differences of harmonic and 
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quasiharmonic signals, which might be very suitable for 
developing the methods of self-validation and in situ 
measurements. This paper is devoted to the development of 
such a technique in phase methods of measuring physical 
quantities. 

Using the signal phase as an information parameter allows 
effectively solving many problems in diverse fields of 
science and technology, e.g., in experimental physics, 
radiophysics, radio and radar navigation, 
telecommunications, geodesy, non-destructive testing, etc. 
The expansion of the signal phase application required the 
improvement of both deterministic [19] and statistical [20] 
methods for phase shift measuring. Based on the phase 
methods, many important scientific and technical problems 
related to the accurate measurement of distances, time 
intervals, azimuth, analysis of the characteristics of signal 
fields of different physical nature and others were solved.  

The application of the phase methods required the creation of 
appropriate phase measuring equipment. At the initial stage of 
the development of the phase measuring equipment, the 
measurement conversion of signals’ phase shifts to either the 
rotation angle of the electromechanical instrument’s arm or 
constant voltage [21]. Another classic approach was based on the 
zero-crossing detection and conversion of the signals’ phase 
difference to time intervals. At that time there had already existed 
the accurate voltage measures and time interval measures that 
allowed simplifying the phase measuring equipment. Then later 
the two-phase generators, which generated two coherent signals 
with a fixed phase shift between them, began to be used as a 
measure of signals’ phase shift. This approach determined further 
development of the compensation method of phase 
measurements.  

The current stage of development of phase measurements is 
associated with the use of digital signal processing [22]-[24]. The 
measurements of phase differences based on the discrete Fourier 
transform [24] and the method based on the sine-wave-fitting 
[25] are being actively improved. The methods of estimation of 
phase difference based on data extension and the Hilbert 
transform were presented in [22], [26]. In general, in recent 
decades there was an increase in the number of publications on 
phase measurements [27]-[31]. The latest studies showed the 
Hilbert transform can considerably improve noise immunity of 
measuring systems [22], [26].  

In many technical applications, the result of phase 
measurements is stochastic. There are various reasons for this: 
unstable, probabilistic nature of the signal source; noise in the 
signal transmission channel; noise in phase measuring 
equipment, and so on. Therefore, there is a need for using 
statistical processing of phase data to improve the metrological 
characteristics of the phase measurement results. The methods of 
statistical analysis of random variables are well known. They are 
well studied and simple for hardware implementation which 
contributes to their wide use in the phase measurement 
techniques. However, the transfer of the methods of statistical 
analysis of random variables to the field of measurements of 
phase differences to process the signal has its limitations. This is 
because the phase of periodic signals has the natural periodicity 

of 2, and thus for the phase difference there is a mathematical 

operation  2 mod2k     , 0, 1, 2, ...k    . This 

feature should be taken into account when justifying the 
algorithms for processing phase data, and when forming the 
measurement result. 

To obtain the measurement result as a set of quantity values 
being attributed to a measurand together with any other available 
relevant information [32], it is necessary to use two measures. 
The first is a material measure used to obtain the measurement 
quantity value. It is a measuring instrument reproducing or 
supplying quantities of one or more given kinds, each with an 
assigned quantity value. The second is a probability measure that 
is generated by a certain probability distribution. It is used to 
estimate the measurement uncertainty as a non-negative 
parameter characterizing the spread of quantity values being 
attributed to a measurand. To obtain the correct results of the 
phase measurements, it is necessary to adhere to the concept of 
harmonization of these measures [33] and to reconcile them with 
the circular nature of the phase as a measurand.  

Nowadays, the achievements of computer technology and 
digital signal processing have created the preconditions for 
improving the methodology of phase measurement processing, 
implementation of complex algorithms for statistical processing 
of phase data, and more complete use of the information resource 
of the signal phase. 

This article discusses the method of obtaining and analyzing 
the signal phase based on a combination of the discrete Hilbert 
transform (DHT), which allows obtaining a sample of signal 
phases, and their statistical processing as well as the ability of this 
method to more fully disclose the information resource of the 
signal phase. In addition, the article shows the analogy of the 
statistical analysis of angular and phase data, considers the 
calculations of the phase deterministic and stochastic 
characteristics, and gives examples of their application in various 
measurements and non-destructive testing. 
 
2.  FORMULATION OF THE PROBLEM 

A phase measurement experiment is performed. Both the 
measurement signal and the reference signal are represented 
by the expressions as follows 

 

     
   

cos 2 ( ),

cos 2 , ,r r r o

u t U t ft t n t

u t U ft t T

     
   

            (1) 

 
where U(t) and (t) are an envelope and a phase of the 
measurement signal u(t), respectively; Ur and rare the 
amplitude and the initial phase of the reference signal ur(t), 
respectively; t, T0 are time and time interval of signal 
observation, respectively; f is the frequency of the harmonic 
signals; n(t) is the implementation of white noise with zero 
expectation and variance. The functions U(t), (t) are 
slowly changing functions of t.  

Fourier transform exists for signals (1). After digitization of 
these signals, they are represented by samples 

   [ ], 1, , [ ], 1, ru j j J u j j J ,  int o sJ T T , sT  is 
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a sampling interval. It is necessary to consider the use of the 
signal phase to calculate the derived characteristics and to 
confirm their efficiency for measurements and non-destructive 
testing. 

The material of the article is presented in the following order: 
the DHT and its application for signal phase calculation; 
probabilistic space and model of random angles and random 
phase shift of signals; some circular statistics for the use in the 
phase measurement; probability distributions of random angles 
for the use in the phase measurements; application of the 
proposed methodology in some applied problems of phase 
measurements and non-destructive testing (NDT); conclusions. 

 
3.  DISCRETE HILBERT TRANSFORM AND ITS APPLICATION TO 

CALCULATE THE SIGNAL PHASE  

The DHT and the concept of “analytical signal” introduced 
on its basis are widely used for theoretical studies of 
periodic processes and phenomena [34], [35]. The discrete 
analytical sequence [36], [37] is determined as 

       z j u j iu j , where  u j  is the DHT of  u j  and 

1i   . The simplest method for calculating the DHT is 
the spectral method. It can be found in [38]. Using the 
definition of a discrete analytical sequence one can find the 
discrete instantaneous phase of the sequence u[j] 

 

     
     

1ˆ tan

0,5 2 sign 1 sign .

j u j u j

u j u j

  

  




          (2) 

 
Function (2) has a sawtooth shape and changes 

periodically within the range of [0, 2π). Thus, it can be 
considered as a wrapped phase of a signal. The discrete 
instantaneous unwrapped phase can be obtained from (2) 
 

      ˆ ˆ ˆ2j j g j     ,                    (3) 

 

where   ˆg j  is a step function, which increases by one 

each time the phase changes from 2 to 0. Equation (3) 

estimates the instantaneous unwrapped phase   2  ft t
 
of 

the signal u(t) as a function of time. If necessary, the estimate of 

the unwrapped phase  ̂ r j  of the signal ur[j] can also be 

obtained according to (3), having determined  ru j  as the 

DHT of  ru j  prior to this.  

The discrete instantaneous phase shift is determined as 
follows 

   ˆ ˆ̂   j rj j  .                          (4) 

 
Equation (4) also allows calculating the phase difference if 

(t) = const:  ̂  j r . When r = 0 and the signal 

frequency is known, then the discrete instantaneous phase 
shift can be obtained as follows 

  ˆˆ 2 , 1,    j sj fT j j J  .               (5) 

 
Using the unwrapped phase (3), one can get the 

instantaneous signal frequency according to the following 
formula  

 

      ˆ ˆ 1 mod 2ˆ , 2,
2π

    
 

s

j j
f j j J

T
.    (6) 

 
Thus, the use of the DHT allows one to simultaneously 

obtain the large samples of an instantaneous amplitude, 
phase, phase shifts, and frequency of the analyzed signal. 
This creates the preconditions for more correct use of 
statistical methods of their processing. Graphical 
representation of the algorithms for obtaining samples and 
calculating circular statistics for phase and angular 
measurements is given in Fig.1.a) and Fig.1.b). 

 

 
a) 

 

 
b) 
 

Fig.1.  Graphical representation of algorithms for calculating circular 
statistics for phase a) and angular b) measurements. 

 
If in the angular measurements (Fig.1.b)) the quantity 

value of the angular is determined using the physical angle 
measure such as circular scales, limbs, etc., the DHT allows 
one to determine the quantity value of the signal phase 
without any physical measures (Fig.1.a)).  

The DHT has other important properties suitable for phase 
measurements. These are as follows: 

- due to the fact that the DHT has the property of linearity 
[34] and has the magnitude of the transfer function equal 
to unity, the signals  u j ,  ru j  are determined 

without distortions of the measure of appropriate signals 

 u j , ur[j]; 

- the phase (2) and phase shift (3) measurements do not 
require the use of a physical measure of phase; 

- due to the fact that sT  << 1/f, it is possible to determine 

the phase changes of the signals on the time intervals 
significantly shorter than the signal period (4); 
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-  the ability to determine the phase of a phase-modulated 
signal or phase-shift keying signal (5); 

- to use the phase and phase shifts of the signals to obtain 
some deterministic characteristics: the instantaneous 
wrapped phase and unwrapped phase of the signal (2), 
(3); the instantaneous phase shift of signals (4), (5); the 
instantaneous signal frequency (5); 

-  to use the large samples of phase difference (4) of 
significant volume J to obtain circular statistics such as 
trigonometric moment, circular mean; length of the 
resultant vector, circular variance, etc. (these circular 
statistics will be discussed below). 
 

The most important derived features of a signal phase are 
given in Fig.2. 
 

 
 

Fig.2.  The classification of the derived features of the signal phase. 

 
The deterministic characteristics include: 
- the wrapped phase of the signal, it is determined in a 

discrete form according to (2); 
- the unwrapped phase of the signal, it is determined in a 

discrete form according to (3); 
- the phase shift of the signal, it is determined in a discrete 

form according to (4); 
- the frequency (6); 
- the phase-modulated signal and phase-shift keyed signal, 

they are determined in a discrete form according to (4), 

where  ̂ r j  is the unwrapped phase of the 

unmodulated reference signal. 
The sample circular statistics will be discussed in section 4. 
 
4.  PROBABILISTIC SPACE AND MODEL OF RANDOM ANGLES 

AND RANDOM PHASE DIFFERENCES 

In the case of estimating the parameters of harmonic 
signals, which are the components of the additive mixture 
with noise, the problem of processing random phase shifts 
occurs. Since the models of random angles are similar to the 
models of random phase shifts [33], the methods of 
statistical processing of angular data [36], [37] can be 
applied to them.  

One of the main objects of statistical analysis of circular 
data is a vector z  that can have different directions on the 

Q plane. Fig. 3a shows the set of vectors , 1,7j j z  as an 

example. Since the modulus of the vector is irrelevant for 
angular observations, the directions on the Q plane are given 
by vectors of unit length. The direction of vectors 

, 1,j j Jz  is considered in the theory of probabilities of 

random angles as an elementary random event j . The 

probabilistic content of the experiment with unit vectors will 
not change if we transfer the beginning of all vectors to 
point O on the Q plane and consider the corresponding set of 
collinear vectors (Fig.3.b)). 

The set of all possible events , 1, j j J  forms a sample 

space  1,... ,... ,   j J , which is reflected by the 

points on a unit circle (Fig.3.b)). 
 

 
                          a)                                                 b) 

Fig.3.  Display of the elementary events on the plane Q a) and on 
the unit circle b). 

 
In the space  , we set a random angle as a numerical 

function    0, 2    . To do this we use the cylindrical 

coordinates [33]. In the general case, the set of elements in 
space   has the power of a continuum. The infinite number 
of directions of the vector z  significantly complicates the 
presentation of the experimental results. 

It is more practical to divide the space of directions on the 
plane into a finite set of n events, which correspond to 
certain sectors. All vectors within each sector are considered 
to correspond to one elementary event (Fig.4.). 
 

 

Fig.4.  Determination of a random angle. 
 

For a random phase difference, one can formally use the 
same probability space and model. The difference is that the 
input value in this model is the phase difference. 

The same probabilistic space in the form of a unit circle 
has a random phase difference. Therefore, the methods of 
angular data analysis can be applied to it and the sample 
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circular characteristics can be determined. The most 
important sample circular characteristics in phase 
measurements are discussed below. 
 
5.  QUANTITATIVE CHARACTERISTICS OF THE RANDOM PHASE 

DIFFERENCE ESTIMATED FROM THE SAMPLE 

According to the results of measurements, the sample of 

phase differences  1φ , ... φ , ... φ , φ [0, 2π)j M j , of size 

M is obtained. This sample is considered as the realization 
of random angles having a certain continuous probability 
density function. The quantitative characteristics of the 
sample of the phase differences are determined as follows. 

A.  The sample trigonometric moment of order n relative to 
a given phase difference  0 , 2 π  is determined by the 

formula as follows: 
 

( )1

1

ˆ ( )

ˆ ( )

ˆˆ ˆ( ) ( ) ( )

j

n

M
iu

n
j

im
n n n

f M e

a ib r e

 





  

     


                (7) 

 
and the sample cosine and sine moments of order n are 
calculated according to the formulas: 
 

   1

1

ˆ cos
M

n j
j

a M n



        ,               (8) 

 

   1

1

ˆ sin
M

u j
j

b M n



        .                (9) 

 
Sample characteristic function is a complex-valued 

sequence   ˆ 0 , 0, 1, 2,...nf n    , all of whose 

trigonometric moments of the sample are determined with 
respect to the zero direction 0 . 

B.  Sample circular mean is calculated by the formula 
 

   с 0.5 2 1arctg S C signS signC               (10) 

 
where  

1 1

1 1
cos , sin

M M

j j
j j

C M S M 

 
      .           (11) 

 
The result of a separate phase measurement j  can be 

represented by the corresponding unit vector 

 expj jOP i 


 in the XY Cartesian coordinate system as 

illustrated in Fig.5. The vector jOP


 has Cartesian 

cos ,sinj j     and polar  1, j  coordinates, respectively.  

The sample circular mean с  has the following 

mechanical interpretation. If the same “mass" M-1 is 

attributed to all points cos ,sinj j    , then the point 

 cos ,sinс с   will be the "center of mass" of this system.  

 

 
 

Fig.5.  Display of the phase difference φ j
on the unit circle. 

 
C.  Mean resultant length of the vector is calculated 

according to the formula 
 

2 2r C S  .                                (12) 

 
D.  Sample circular variance 

 

 1V r   .                                (13) 

 
E.  Sample circular standard deviation  

 

 2 ln(1 ) 2 lnV r       .               (14) 

 
F.  Sample median phase difference (direction). It is the 

phase difference which corresponds to the point of the circle 
P such that the diameter PQ divides the statistic value into 
two halves, and in the vicinity of P there is a maximum 
concentration of values. 

G.  Sample asymmetry  
 

 2 22
1 3/2 3/2

sin 0 2( ) r m mb m
g

V V

     .            (15) 

 
J.  Sample kurtosis  
 

4 4
2 2 2

2 2 2

( ) (1 ) cos (0) 2 (1 )a m V r m n V
g

V V

    
   .       (16) 

 
6.  PROBABILITY DISTRIBUTIONS OF RANDOM ANGLES FOR 

THE USE IN PHASE MEASUREMENTS 

Any measurement result consists of one measured value 
and an expanded measurement uncertainty with a stated 
coverage probability [32]. The coverage probability, as well 
as the coverage factor and coverage interval, can be 
evaluated from probability density functions. The 
probability distribution functions of random phase 
differences are the same as those of random angles. One of 
the characteristic features of the circle as a space, on which 
the probability distributions are formed, is the property of 
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periodicity (with the period of 2) of the laws of the 
probability density distribution of random phase difference. 
As a rule, the density distributions of random phase 
differences are considered within the interval [0, 2. 

 
The von Mises probability distribution [36], [37] is 

determined by the formula: 
 

      0| , exp cos 2    Mp k k I k  ,      (17) 

 

where 0I  is the modified Bessel function of the first kind 

and zeroth order;   is the circular mean direction of a 

random angle,   ; k  is the concentration parameter 

of a random angle in the vicinity of  , 0k  . 

The plots of the functions pM(for various parameter values 
are shown in Fig.6. 

 

 

Fig.6. Examples of von Mises probability density functions.  
 

This distribution is one-vertex and symmetric with respect to 
the mean value of μ, which is the mathematical expectation of 
this distribution. 

When increasing the parameter k, the von Mises distribution 
concentrates around μ (if k = 2 and μ = 0.5π, the distribution is 
almost completely concentrated on the arc from 0 to 3 rad, and if 

0k  - converges to the uniform one). 
 
The wrapped Normal distribution [36], [37] refers to the 

family of wrapped distributions ("wrapped" on a unit circle) 
formed by the nonlinear transformation of a random variable 
 into a random angle  of the form 

    mod2       K  , where K is the scale conversion 

coefficient. This transformation leads to the transformation 
of the laws of distribution on a straight line into the laws of 
probability wrapped distribution of random angles. If  
has a probability distribution density p(x), then a continuous 
random angle  also distributed continuously with the 
density is given as follows: 

 

   2 2




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j

p p j  .                 (18) 

In general, the function  2p    is asymmetric with respect 

to the middle of the interval [0, 2, and at its ends acquires 

the same values:    
2

0 lim  
 p p .  

The density of the wrapped normal distribution is given as 
follows 
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        (19) 

 
where μ is the mathematical expectation; σ is the standard 
deviation of the random variable    . This law has the 

important property: the sum of the independent angles 

1


n

i
i

, each of which has a distribution (19), also has the 

same distribution, but with different characteristics. In 
addition to the wrapped normal distribution, the central limit 
theorem holds on the circle: for independent random angles, 
which have the same probability distribution function, the 
probability distribution of the normalized sum of angles 
approaches to the wrapped normal distribution. 

Examples of probability density plots of the wrapped 
Normal distribution for various values of the parameters are 
shown in Fig.7.a) and Fig.7.b), From these plots it can be 
seen that the wrapped normal distribution is one-vertex and 
symmetrical with respect to  m od 2    . 

 

 
 

Fig.7.  Density of the wrapped Normal probability distribution of 
random angles with various parameters. 

 
If     distribution converges to the uniform 

distribution with the density function of 1 2  , an increase 

of μ leads to a shift in the maximum of the function towards 
big angles. Within the interval of  0 , 2 , distribution (22) 

has two inflection points. 
An appropriate choice of the parameters of the wrapped 

normal distribution allows giving a reasonable 
approximation for it by the von Mises distribution 

Some other typical circle distributions, such as the 
uniform, triangular are presented in [36], [37].  
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The use of these distributions allows more correctly 
determining the standard uncertainty, coverage factor, 
coverage interval and coverage probability, which are 
necessary to estimate the accuracy of the phase 
measurements. 

 
7.  APPLICATION EXAMPLES 

The DHT method is suitable for many applications, 
including NDT. In particular, the application of the 
proposed method of signal processing for pulsed eddy 
current test (PECT) problems is considered below. 

 
A.  Application of phase signal characteristics for 
evaluating the diameter 

The experiments were performed with the testing object 
(TO) in the form of cylindrical samples and with the eddy 
current probe (ECP). Two sets of samples of size 11 were 
made of aluminum and bronze (specific conductivities  

74.87 10  al Sm/m, and 72.75 10  br Sm/m, 

respectively, with the diameter from 34 to 35 mm with a 
step of 0.1 mm). The experiment was to determine the 
diameter of the TO using the value of frequency of natural 
oscillations of the ECP signal. This signal was obtained as a 
TO response to the pulse electromagnetic excitation field 
[39], [40]. 

The ECP signal is shown in Fig.8. It has the form of 
damped harmonic oscillations. The frequency and 
attenuation of the oscillations have been determined by the 
phase and envelope of the probe signals, respectively. The 
probe signal phase from the sample with D = 34 mm is 
shown in Fig.9.  

 

 
 

Fig.8.  The plot of the ECP signal. 
 
 

 
 

Fig.9.  Examples of functions  Ф t


 (1) and  ФL t


 (2), D = 34 mm.  

It is considered that the function  Ф t


 has a linear nature 

and the frequency determination was performed using its 

linear trend  ФL t


 [41]: 

 

   ΔФ ,
,

2 πΔ
L

L
T D

f T D
T


 



 ,                    (20) 

 

where  ΔФ ,L T D


 is the accumulated phase of the ECP 

signal during the time interval 2 1T t t   . The function 

 ФL t


 can be obtained, e.g., by the Bartlett-Cenoa method. 

Examples of functions  ФL t


 for aluminum specimens 

with the diameters of 34.7 mm and 34.0 mm are given in 
Fig.10. as curves 1 and 2, respectively. 

The plot of the function for sets of aluminum (curve 1) and 
bronze (curve 2) samples is presented in Fig.11. 
Comparative analysis of the obtained data shows that it is 
possible to determine the diameter of the samples by the 
proposed method with the absolute error of 0.1 mm (the 
relative error of 0.3 %). 
 

 
 

Fig.10.  Examples of functions  Ф


L t for aluminum specimens with 

the diameters of 34.7 mm (1) and 34.0 mm (2), respectively. 

 

 
 

Fig.11.  Functions of  f D : for aluminum a) and bronze b) TO. 

 
The application of statistical processing methods to signal 

phase characteristics in the case of pulsed excitation allows 
decreasing the uncertainty of measuring the diameter of an 
object by more than 5 times in comparison with the case of 
ECP excitation by a harmonic signal. 
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B.  Determining a crack using the phase signal 
characteristics   

The aluminum plate with cracks of various depths (from 
0.1 mm to 3 mm) with the width of 1 mm was used as the test 
specimen (TS) (Fig.12.). In order to determine the influence of 
TS parameters on the natural frequency of the probe signal, the 
scanning of the TS was performed with a step of 1 mm along 
the object length using a multidifferential probe [42], [43].  

 

 
 

Fig.12.  The test specimen. 

 
According to the results of the TS scan, the set of probe 

signals was obtained, from which the value of frequency was 
selected with respect to coordinates. 

The distribution of the frequency of ECP natural 
oscillations near the coordinates of cracks with the depths of 
3, 2, 1.5, and 1 mm (the coordinates of 14, 32, 50, 68 mm, 
respectively) is illustrated in Fig.13. 

 

 
 

Fig.13.  Dependence of ECP signal frequency on the coordinate. 

 
The dependence in Fig.13. shows that in the locations of 

cracks there is a drop of the frequency of ECP natural 
oscillations near the crack and a rise directly above it. 

Using the frequency of natural oscillations of the ECP 
signal as an informative parameter allows increasing the 
probability of determining a crack by approximately 10-
15 %. 

 
C.  The evaluation of a phase difference measurement result 

The problem is formulated as follows [20]. The random 

phase difference    0, 2     of two signals is 

measured. It has the wrapped normal distribution (22). The 
measurement is performed under constant conditions. The 

sample  1φ , ...φ , ...φ , φ [0, 2π)j M j   is obtained, where 

M is the sample size. It is considered as a realization of the 

random vector  1ψ , ...ψ , ...ψj M  with independent random 

components that have the same distribution as    . It is 

necessary to determine the measurement result. 
The algorithm for determining the measurement result 

includes the following steps: 
1. calculation of the sums C and S (11); 
2. calculation of the sample circular mean с  (10); 

3. verification if the sample circular mean is correctly 
determined using the condition as follows [36]  

 

 c
1

sin 0
M

j
j

     ;                     (21) 

 
4. calculation of the sample circular variance V (13); 
5. calculation of the sample circular standard deviation 

(14); 
6. calculation of the standard uncertainty 

с
u  of the 

sample mean 
 

    
с

u M    ;                       (22) 

 
7. justification of the coverage probability Pcov; 
8. determination of the coverage factor k [20]; 
9. calculation of the expanded uncertainty for the phase 

measurement:  
сcovU ku ; 

10. calculation of the coverage interval for the coverage 
probability Pcov  

 

 с cov mod 2U                       (23) 

 
Determination of the coverage interval and the 

corresponding coverage probability for the circular data is 
shown in Fig.14. 

 

 
 
Fig.14.  Graphical representation of the coverage interval and 
coverage probability in the case of circular data processing. 
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Example. Let us measure a random phase shift that has the 
wrapped Normal distribution. According to the sample 
volume M = 100, the sums are determined: 0.0879 C , 

0.5964S .It is necessary to calculate the coverage 
interval for the coverage probability of 0.95.  

According to the above algorithm we have the following 
results: 

   с

0.5964
2 1 1 ( 1) 1.717 rad

0.0879 2


      arctg , 

 2 21 0.0879 0.5964 0.3972    V , 

 2ln 1 2ln0.6028 1.006      V , 

с
1.006 100 0.1006    u M  rad. 

In the case of M = 100, the distribution of the averaged 
phase shift can be approximated by the Gaussian 
distribution. As Pcov = 0.95, the coverage factor k is equal to 
2, then 

сcov 2 0,1006 0.20U ku    rad. 

Answer: the coverage interval for the coverage probability 

of 0.95 is equal:  1.72 0.20  rad. 

The proposed method evaluation of a phase difference 
measurement result assumes the use of several uncorrelated 
results of measuring the phase shift during one signal 
period, in contrast to traditional evaluation methods, which 
are focused on measuring one phase result per period. Thus, 
the described method improves the uncertainty by 4-5 times. 

 
D.  Application of the mean resultant length of the vector for 
pulsed echo-method of ultrasonic measurements of the 
thickness  

This method is based on the determination of the time 
delay   required for the propagation of the ultrasonic signal 
inside the testing object [44]. The thickness of the testing 
object can be determined as 0.5  h c . It is assumed that 
the propagation velocity с  of the ultrasonic wave in two 
directions between the surface and the bottom of the object 
is known. The value of   is usually estimated by the time 
interval between the envelopes of the two back wall 
ultrasonic signals. This method is very noise sensitive. 

The general signal model of such measurements is 
represented by the top formula in (1).  It is assumed that 
U(t) > 0 for a limited time interval covers one or some more 
periods of the signal (1). 

In case of structural materials testing with significant 
ultrasonic attenuation, there is a problem of detecting noisy 
ultrasonic pulse signals. This problem is effectively solved 
by using the mean resultant vector length for time interval 
measuring. 

The proposed method of thickness measurement is based 
on such operations: forming an ultrasonic initial pulse, 
applying it to the TO, measuring the signal after its 
propagation through the object and reflection from the 
opposite side (back wall), determining the unwrapped phase 
of the echo-signals (3)), calculating the phase difference 

between the echoes and initial signals (4), processing the 
signals using the sliding window (with Mw sample size), and 
calculating the lengths of the resultant vector (12) as a 
function of time, determining the time interval   between 
two successive maxima of this function. 

In case of obtaining a sequence of attenuated echo-signals, 
the thickness of the testing object is calculated by the 
following formula:  1,0.5 1    kh c k , where 1,k  - the 

time interval between the first and k-th echo-signal. 
According to this, the root-mean-square value of the error of 

time interval quantization decreases by the factor of 1k  . 
The plots of typical experimental data and calculated 

functions are shown in Fig.15. The frequency of the filling 
signal was 2.23 MHz. 
 

 
a) 
 

 
b) 
 

 
c) 
 

 
 
 
 
 

 
 
 

Fig.15.  The plots of experimental results: a) - sequence  u j ;  

b) - sequence  A j ; c) - sequence  Wr j ,M . 

 
In this experiment, the echo signals on the noise 

background are difficult to distinguish using the signal 

envelope        2 2
A j u j u j    after the ninth pulse 

(see Fig.15.b)). However, the plot of the sequence 

 Wr j ,M  indicates that 13 echo-signals are easily detected 

in this experiment (see Fig.15.c)).  
The considered applications do not exhaust all possible 

variants of use of the signal phase and its features in 
computerized systems of measurement and testing. 
Particularly in the field of surface metrology [45], [46]. 

 
8.  CONCLUSIONS 

The following conclusion can be made from this research. 
The DHT-based method of phase measurements in 

conjunction with statistical processing of angular data makes 
it possible to more fully use the information hidden in the 
signal phase and to propose the use of several new features, 
which expands the information base of phase measurements. 
In particular, it allows: 
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- simultaneously determining the phase, frequency and 
amplitude of signals, which is important for many technical 
applications; 

- carrying out the phase analysis of signal when a phase 
difference is a slowly changing time function; 

- obtaining samples of phase values, phase differences, 
amplitudes and frequencies of significant volumes and 
applying the statistical processing methods to them, which is 
important for the analysis of signals under noise. 

The advantages of the DHT for phase measurements, as 
well as probabilistic space and model of random phase 
differences, are given. The possibility of using the 
theoretical basis of directional statistics data in phase 
measurements is justified.  

Presented examples of using signal phase applied in 
measurements and NDT demonstrate the increasing of the 
uncertainty 5 times during measuring the diameter and 
increasing probability of determining a crack by 10-15 %. 
Also, the proposed method of evaluation of a phase 
difference improves the uncertainty 4-5 times. 

Future work will encompass both the issues of computer 
modeling of the different algorithms in processing circular 
data and the use of the derived statistical features of a signal 
phase difference in the various physical experiments. In 
particular, in the field of surface metrology [42], [43].  
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