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In general, manual methods are often used to inspect defects in the production of metal screws. As deep learning shines in the field of visual 
detection, this study employs the You Only Look At CoefficienTs (YOLACT) algorithm to detect the surface defects of the metal screw 
heads. The raw images with different defects are collected by an automated microscopic camera scanning system to build the training and 
validation datasets. The experimental results demonstrate that the trained YOLACT is sufficient to achieve a mean average accuracy of 
92.8 % with low missing and false rates. The processing speed of the trained YOLACT reaches 30 frames per second. Compared with other 
segmentation methods, the proposed model provides excellent performance in both segmentation and detection accuracy. Our efficient deep 
learning-based system may support the advancement of non-contact defect assessment methods for quality control of the screw manufacture. 
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1. INTRODUCTION 

In general, the defect inspections are often performed 
manually and suffer fluctuations in the inspection accuracy, 
speed, and a large number of human resources [1]. A less-
time and labor-intensive automatized method of defect 
inspections is required because the small metal components 
and screws are manufactured in large quantities. The visual 
detection of production components is increasingly relevant 
for quality control in manufacturing industry [2]. The exact 
and constant quality control is crucial, especially for metal 
screws. Recently, machine learning has been applied in many 
industries for surface recognition issues [3], [4]. Several 
machine learning algorithms, such as support vector 
machines, linear discriminant models, and neighbor-based 
models, are trained on feature characterizations from pre-
processed images [5]. Moreover, several non-deep learning-
based methods are also presented, including morphological 
edge detection, autoregressive models, histograms, co-
occurrence matrices, and autocorrelation [6]-[8]. Compared 
with deep learning, the operation of the above-mentioned 
methods is very complicated. Deep learning algorithm plays 
a decisive role in the image recognition, such as face 
recognition, handwriting recognition, and voice recognition 
[9]-[11]. The advantage of deep learning algorithm is high 
detection rate for anomaly objects. Convolutional neural 
network (CNN) has been widely used to solve the complex 
image recognition problems of anomaly detection tasks [12]. 
Various image recognition-based techniques have been 
proposed in the field of surface detection. A vision inspection 
system is developed to acquire railway images and the 

contour extraction of anomalies [13], [14]. An image 
recognition system based on threshold segmentation and 
morphological opening calculation is developed for 
identifying internal screw threads [15]. However, the strong 
disturbances of the measured images lead a high under-
segmentation and result in the decrease of recognition 
accuracy. The improvement of the image recognition 
algorithm is further required. 

There are two main ways for the design of object 
recognition model. Two-stage network has the attention of 
the recognition accuracy, such as region-based fully 
convolutional networks (R-FCN) and faster region 
convolution neural networks (R-CNN) [16]. One-stage 
network has the attention of the recognition speed, such as 
You Only Look Once (YOLO) [17] and single shot multiBox 
detector (SSD) [18]. Mask R-CNN is an instance 
segmentation model based on the improvement of faster R-
CNN, which is two-stage instance segmentation [19]. In the 
two-stage model, the re-pooling operations are logically 
serial to map features by the bounding box, and it is an 
arduous task to speed up. The You Only Look At 
CoefficienTs (YOLACT) is a one-stage instance 
segmentation model based on the one-stage object detector 
[20], [21]. The YOLACT algorithm abandons the implicit 
feature location step and separates the instance segmentation 
tasks into two parallel subtasks. A series of prototype masks 
is generated for covering the entire image. A series of linear 
combination coefficients is predicted for each instance. 
During inference, the corresponding predicted mask 
coefficient for each instance is used to simply multiply and 
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add with the prototype mask. The final mask for each instance 
is cropped and thresholded according to the bounding box. In 
this study, a real-time method based on YOLACT is proposed 
for identifying different defects in metal screws. An optical 
microscopic scanning system is developed for automatic 
surface defect inspection. Three significant advantages of the 
deep learning-based YOLACT model are fast speed, high 
mask quality, and strong universality. This model of 
prototype mask generation and mask coefficients can be 
applied to many popular products in real industrial processes. 

2. EXPERIMENTAL SYSTEM & METHODS 
It is important to obtain high-quality raw images for 

building the dataset and reliable defect detection. However, a 
regular camera has difficulty in capturing the surface defects 
with adequate resolution. Screw is usually a metal material 
and the screw surface may reflect light randomly, which 
affects the image quality. Moreover, some screw surface 
defects are narrow, which cannot be seen by naked human 
eyes. In this study, a monocular microscope scanning 
imaging system with an industrial camera and coaxial ring 
light is utilized for raw image acquisitions. Fig.1. shows the 
experimental configuration of the microscope scanning 
imaging system. An industrial camera (Hayear HY-5200) 
with resolution of 4608 × 3456 pixels and a 12 mm lens 
(Hayear HM2012-10M) is employed in the imaging system. 
The distance between the screw and lens is about 90 mm. A 
ring light (Hayear HY-209-144B) is beneficial for 
eliminating the shadows of metal rough surface. 

 

Fig.1.  Experimental monocular microscope scanning imaging 
system for raw screw image acquisitions. 

It is a challenge to receive enough images for training the 
YOLACT model. If training datasets are insufficient, 
overfitting could quickly occur and the model learns the data 
by memorization. To avoid this, the basic concept is to create 
more different training images by data augmentation [22]. 

Fig.2. shows several samples of the raw images of the screw 
surface defects captured by the imaging system. The metal 
screws M6 with GB819 cross countersunk head are shown in 
Fig.2.a). The geometrical profiles of the metric screws are 
defined by the International Organization for Standardization. 
The defect types of screw surfaces include stripped screws, 
surface-damaged screws, unprocessed screws, and surface-
dirty screws. The raw images are collected under various 
defect types and lighting conditions. The image resolution is 
550 × 300 pixels and is saved in JPG format. The 1440 
qualified raw images are selected for building up the dataset. 
The image rotation, shear, flip, zoom and shift changes are 
implemented to increase the diversity of the train images. The 
total number of image datasets is 3200 after data 
augmentation. 90 % of images are randomly picked for 
training model, and the validation dataset is produced by 
10 % of images. 

 

Fig.2.  Raw surface images of the metal screw head: a) defect-free 
screws, b) stripped screws, c) surface-damaged screws, 
d) unprocessed screws, and e) surface-dirty screws. 

In this work, the YOLACT model is used to extract the 
morphological contours of the screw defects. The network 
architecture of the YOLACT model is shown in Fig.3. The 
default size of input raw images is 550 × 300 pixels. The 
default backbone network is the deep residual learning 
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combined with feature pyramid networks [23], [24]. The 
feature maps extracted by the backbone network are 
transmitted into two parallel branches. The first branch of the 
prediction head receives all-size feature maps, and predicts 
the object location, category, and mask coefficients. The 
redundant objects are removed by fast non-maximum 
suppression (NMS) [25]. The second branch of the protonet 
receives the largest-size feature map, and creates multiple 
prototype masks. The prototype masks are linearly mixed 
mask coefficients to obtain the mask conformable to each 
object. The object detection box is used to crop the 
corresponding masks. The final mask is obtained by 
thresholding, and can be used to extract the outer contours of 
the screw defects. In the experiment, a core processor (Intel 
i9-10920X) is employed in conjunction with a graphics card 
(NVIDIA GeForce RTX 3080 Ti). The operating system is 
Windows 10, the Python version is 3.7, and the NVIDIA 
parallel computing platform is CUDA 1.1. The model is 
conducted using the open source deep learning framework of 
Pytorch 1.9.0. 

 

Fig.3.  Network architecture of the screw defect extraction based on 
the YOLACT model. 

3. RESULTS & DISCUSSIONS 
The experimental dataset is a large image database collected 

by our automatic scanning imaging system. The selected 
screw images include the variations in lighting and posture. 
Four categories of screw defects are labeled in order to extract 
the key contours of surface defects. The LabelMe tool is used 
to complete the labeling of surface defects in the images [26]. 
The 2880 screw images are selected as the training set, and 
the 320 screw images are used as the verification set. The 
YOLACT model is trained by the above dataset. Table 1. 
shows the training parameters. The size of input image in the 
network is max_size = 550 × 300 pixels. The number of 
iterations is lr_steps, where the learning rate decays during 
the training. The maximum number of training iterations is 
max_iter. The number of images processed in the same batch 
is batch_size. 

The YOLACT algorithm is compared with the traditional 
mask R-CNN algorithm for verifying the superiority of the 
proposed method. The identical dataset is employed to train 
these two models. Fig.4. shows the training accuracy and loss 
of the YOLACT model and traditional mask R-CNN with 

20000 iterations. Experimental results indicate that the 
accuracy and loss tend to be stable after 20000 iterations. It is 
clearly stated that the accuracy of the proposed YOLACT 
method is much higher than the traditional mask R-CNN 
method. The accuracy of the YOLACT training is close to 
100 % after 4000 iterations. It can be seen from Fig.4.b) that 
the loss rate of the proposed YOLACT reduces rapidly, which 
is better than that of the traditional mask R-CNN. The loss 
rate of the proposed YOLACT is close to 0, when the number 
of iterations is about 20000. The YOLACT model has 
achieved excellent training without relying too much on the 
dataset and overfitting.  

Table 1.  Training parameters. 

Parameter Value 
max_size 550 × 300 pixels 
lr_steps (280000, 600000, 700000, 750000) 
max_iter 800000 
batch_size 5 

 

Fig.4.  a) Accuracy and b) Loss of the trained YOLACT model and 
traditional mask R-CNN model with 20000 iterations. 

Table 2.  Average precision of the screw defect detection. 

IOU All 0.50 0.55 0.60 0.65 0.70 
Box 40.11 44.46 44.46 44.46 44.46 44.46 
Mask 41.37 44.46 44.46 44.46 44.46 44.46 
IOU 0.75 0.80 0.85 0.90 0.95  
Box 44.46 43.97 41.65 33.17 15.62  
Mask 44.36 44.12 43.04 38.58 21.36  
 
Table 2. shows the average precisions (AP) of the box data 

and mask data performed by the YOLACT model. The 
intersection over union (IOU) is a measurement based on the 
Jaccard Index that estimates the overlap between two 
bounding boxes [27]. A ground truth bounding box and a 
predicted bounding box are required for the calculation. By 
setting the IOU threshold, we can easily evaluate if the 
detection is correct or incorrect. For the accuracy of the mask 
and bounding boxes, the high AP values are displayed 
between 0.50 overlap and 0.85 overlap. The lowest AP values 
of the bounding box and mask are 15.62 and 21.36 at 0.95 
overlap, respectively. The overall values of mean average 
precision (mAP) are 40.11 and 41.37 for the bounding box 
and mask. These training results clarify that the YOLACT 
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model is well recognized for classifying screw defect types 
with high accuracy and high reliability. Fig.5. shows the 
detection results of the proposed YOLACT model. The label 
displayed on the bounding box is analyzed to distinguish the 
defect types of screw surfaces. These detection results can be 
used well in recognition due to the high accuracy and high 
reliability of classifying screw defect types. It can be 
considered in Fig.5.b) that the wear condition of the screw 
surface is the reason that influences the accuracy of the 
model. In addition, the unknown patterns also affect the 
coverage of the bounding box of the screw surfaces. 

 

Fig.5.  Detection results of a) the trained YOLACT model and b) the 
traditional mask R-CNN model for screw defect surfaces. 

4. CONCLUSION 
The surface defects of the metal screws yield great threats 

to mechanical system, which lead to serious strength 
reduction. Several current image-level defect classification 
methods only provide qualitative defect data, but they cannot 
estimate various surface defects in a reliable manner. In this 
work, a robust deep learning-based technique using a state-
of-the-art YOLACT model is proposed to automatically 
detect the defects on screw surfaces on pixel-level. The 
scanning microscopic camera system equipped with coaxial 
ring light is developed to acquire high-quality raw images. 
The experimental results confirm that such network 
architecture has excellent potential in detecting the defect 
features of screw head without the needs of any pre-
processing treatment. A satisfactory performance is achieved 
as exhibited by a mean average accuracy of 92.8 %. In 
comparison with the mask R-CNN algorithm, the YOLACT 
model has better performance for both segmentation and 
detection accuracy. However, further works are still required 
to combine a lightweight optical microscopic system with a 
robot manipulator for realizing onsite screw defect 
inspection. The pixel-level segmentation information with 
spatial position distributions and defect sizes will be 

incorporated in the analysis model for evaluating the defect-
caused strength degradation and judging the probability of 
fracture. 
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