
MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

DOI: 10.2478/msr-2022-0018

143

Development of Modified Blum-Blum-Shub Pseudorandom
Sequence Generator and its Use in Education
Shanshan Yu 1, Przystupa Krzysztof 2, Lingyu Yan1, Volodymyr Maksymovych 3, Roman Stakhiv 3,
Andrii Malohlovets 3, Orest Kochan1,3
1Hubei University of Technology, Wuhan, China; yuss@hbut.edu.cn, ORCID: 0000-0002-5164-3132 (S.Y.),
yanlingyu@hbut.edu.cn ORCID 0000-0003-2468-3881 (L.Y.).
2Department of Automation, Lublin University of Technology, Nadbystrzycka 36, Lublin 20-618, Poland;
k.przystupa@pollub.pl, ORCID: 0000-0003-4361-2763
3 Lviv Polytechnic National University, 12 Bandera Str., Lviv, Ukraine, volodymyr.maksymovych@gmail.com,
roman.i.stakhiv@lpnu/ua, andrii.s.malohlovets@lpnu.ua, orest.v.kochan@lpnu.ua

In information security systems, the algorithm of the Blum-Blum-Shub (BBS) generator, which is based on the use of a one-way function
and is a cryptographically secure pseudorandom number generator, became widespread. In this paper, the problem of the analysis of modified
algorithms of the BBS generator operation is considered to improve their statistical characteristics, namely, the sequence repetition period.
It has been established that in order to improve the characteristics of the classic BBS algorithm, it is necessary to systematize approaches to
change the recurrent equation itself, the relationship between the current and the previous members of the sequence. For this purpose, a
generalized unified model of the modification of the classical BBS algorithm is derived. The repetition period with computational complexity
were analyzed for classical algorithm and 80 proposed modifications. A gain in statistical characteristics is improved with slight increase in
the required computing power of the system. The proposed modified BBS pseudorandom sequence generator can be used in training of
students when teaching cryptographic stability of information security systems. The study of this generator combines the knowledge of
students acquired in both digital electronics and mathematics.

Keywords: Pseudorandom sequence, pseudorandom sequence generators, one-way functions, Blum-Blum-Shub generators, computational
complexity.

1. INTRODUCTION

Modern industry and science need more and more accurate
sensors, equipment and systems [1]-[4]. Recent
improvements often use the means of artificial intelligence
[3], [5]. The new concept of the Internet of Things [6], [7]
opens new possibilities. For instance, it makes the local
systems [8] global [9] and their update does not need much
extra resources. However, the issues of quality of service [7]
as well as safety and security of data are now of primary
importance [10]. That is why recently the methods and the
devices that improve safety and security got considerable
attention in scientific studies.

The pseudorandom sequence generators (PRSG), that
include the pseudorandom number generators (PRNG) and
the pseudorandom bit generators (PRBG), are used in various
fields of technology in the information security systems. The
PRNG can be classified according to different features: by the
method of implementation (software, hardware), for
resistance to disclosure (cryptographically secure,
cryptographically insecure), or according to the algorithms on

which they operate (based on the elementary functions, based
on the shift registers, based on the one-way functions, etc.)
[11]-[19].

In the information security systems, the algorithm of the
Blum-Blum-Shub (BBS) generator (by the names of authors
Lenore Blum, Manuel Blum, and Michael Shub), which is
cryptographically secure PRNG (CSPRNG) [20]-[24], was
proposed by the authors in 1986 [25] and became widespread
[24], [26]-[33]. The principle of BBS generators is based on
the use of the one-way function, which is crypto secured, and
aimed, first of all, for the program implementation.

There are several modifications of the BBS generator
algorithms [22], [34], [35], each of which is aimed at
improving some of their characteristics, the main of which
are: crypto security, statistical characteristics (including the
repetition period of the output sequence), speed, and volume
of key information (length of the key). In [23], an algorithm
is proposed in which the number-module of the recurrence
equation is modified. In this case, special attention is drawn
to the possibility of increasing the speed by forming at each

 Journal homepage: https://content.sciendo.com

mailto:yuss@hbut.edu.cn
mailto:yanlingyu@hbut.edu.cn
mailto:volodymyr.maksymovych@gmail.com
mailto:roman.i.stakhiv@lpnu/ua
mailto:andrii.s.malohlovets@lpnu.ua
mailto:orest.v.kochan@lpnu.ua
https://content.sciendo.com/view/journals/msr/msr-overview.xml

MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

144

stroke not one, but a few bits of the original sequence.
Changing the algorithm of the BBS generator may also be in
the modification of the recurrent equation itself. This
possibility is little investigated, which confirms the relevance
of this work.

The purpose of the work is to study modified BBS generator
algorithms. At the same time, the main attention is paid to the
study of repetition periods of the initial sequence and the
definition of the computational complexity.

In this paper, the problem of the analysis of modified
algorithms of the BBS generator operation is considered to
improve their statistical characteristics, namely, the sequence
repetition period.

2. CLASSIC BBS ALGORITHM
The model of the classic Blum-Blum-Shub algorithm is

based on the following equation [25]:

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛2 𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀, (1)

where M is the key that results from the product of two
numbers of Blum, p and q:

 𝑀𝑀 = 𝑝𝑝 ⋅ 𝑞𝑞. (2)

The Blum numbers are odd prime numbers for which the
following condition is fulfilled [21]:

 𝑝𝑝 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑞𝑞 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑝𝑝 ≠ 𝑞𝑞. (3)

The lower is the output from expression (4), the higher is
the maximum value of the repetition period.

 𝐺𝐺𝐺𝐺𝐺𝐺(𝜑𝜑(𝑝𝑝 − 1),𝜑𝜑(𝑞𝑞 − 1)), (4)

where GCD(a, b) – greatest common divisor for a and b,
()aϕ - Euler function for a.

At each step of the algorithm, the output data is obtained by
taking either a parity bit or one or more least significant bits.

To use this model, it is necessary to set limits on which its
input and output data are located. Since the equation (1) uses
the result remaining from an integer division with the key M,
at each step the input parameter and the result of iteration lie
in the following ranges:

 𝑥𝑥𝑛𝑛 ∈ [0:𝑀𝑀), 𝑥𝑥𝑛𝑛+1 ∈ [0:𝑀𝑀). (5)

Since the value of the key M does not change during
iterations, equation (1) has one input parameter:

 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛), (6)

then the repetition period of the classical algorithm lies in the
next range:

 𝛲𝛲 ∈ [1:𝑀𝑀 − 1). (7)

Given the expression (7), maximum value of the classic
algorithm repetition period is the following:

 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑀𝑀 − 1) − 1 = 𝑀𝑀 − 2. (8)

The special Blum numbers are odd prime numbers for
which the following condition is fulfilled [27], [28]:

𝑝𝑝 = 2 ⋅ 𝑝𝑝1 + 1 = 4 ⋅ 𝑝𝑝2 + 3,
𝑞𝑞 = 2 ⋅ 𝑞𝑞1 + 1 = 4 ⋅ 𝑞𝑞2 + 3, (9)

where p1, p2, q1, q2 are odd prime numbers too.
For the special key M, which uses the special Blum

numbers, p and q, maximum value of the classic algorithm
repetition period could be calculated from the following
expression:

 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 2 ∙ 𝑝𝑝2 ∙ 𝑞𝑞2. (10)

To evaluate the quality of modifications, we calculate the
one iteration computational complexity of the classic BBS
algorithm.

For the following form of expression –

 𝑥𝑥𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀, (11)

the computational complexity is calculated as follows [28]:

 𝑂𝑂(𝑀𝑀(𝑛𝑛) ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑦𝑦⌉), (12)

where n – the number of bits of the number x, M(n) –
computational complexity of the selected multiplication
algorithm.

Let the computational complexity of the chosen
multiplication algorithm have the following value:

 𝑀𝑀(𝑛𝑛) = 𝑛𝑛2. (13)

Since the maximum number of bits x is equal to the number
of bits of the M key:

 𝑛𝑛 = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉. (14)

The variable y from expression (12) takes the following
value for equation (1):

 𝑦𝑦 = 2. (15)

Considering equations (13), (14), (15), the expression (12)
takes the following form:

 𝑂𝑂(⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉2). (16)

Having carried out the analysis of the classical model (1),
we can distinguish the following disadvantages:
• According to equation (16), the operations of squaring

and remainder of integer division require a lot of system
resources [38]. In addition, this dependence is quadratic.

• For each value in a sequence, only a limited number of
bits can be used, which is calculated using the following
equation [22]:

 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀. (17)

MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

145

• To ensure a minimum level of cryptographic keys
necessary to use a length greater than 1024 bits. [39].

3. MODIFICATIONS OF THE BBS ALGORITHM
The classic algorithm could be improved through

modification of its model (1).
Summarizing possible approaches for improving

characteristics, they could be grouped by the location of the
changes into the following groups:

Changing the dependency of the next member of the
sequence from the previous one. The effectiveness of this
method has been partially considered in the work [34].

Changing of the М key. Methods and effectiveness of this
approach are considered in [35].

Improving the classic algorithm speed could be achieved
through transformation of operations with their equivalents,
for example, using the Montgomery algorithm, which was
considered in [21], [35], [40].

Approaches that change the relationship between current
and previous members of the sequence were systematized to
improve the characteristics of the classic BBS algorithm. To
do this, we present a generalized unified modification model
based on equation (6) with the addition of parameters a and
b:

 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑎𝑎, 𝑏𝑏). (18)

The parameter a has significant impact on the iteration
result, so this parameter will be called "major". The value of
this parameter is in the following range:

 𝑎𝑎 ∈ [0: (𝑀𝑀 − 1)2). (19)

The parameter b has less significant impact on the iteration
result, so this parameter will be called "minor". The value of
this parameter is in the following range:

 𝑏𝑏 ∈ [0: 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀). (20)

A complete unified modification model is obtained by
extending equation (1) to equation (18). This model is
presented below:

 𝑥𝑥𝑛𝑛+1 = (𝑥𝑥𝑛𝑛2 + 𝑎𝑎 + 𝑏𝑏)𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀. (21)

From the expression (16), the computational complexity of
one iteration of the modified algorithm, (21), is as follows:

 𝑂𝑂(⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉2 + 𝐴𝐴(𝑎𝑎) + 𝐵𝐵(𝑏𝑏)), (22)

where A(a) - computational complexity of the selected
parameter a, B(b) - computational complexity of the selected
parameter b. Computational complexities A(a) and B(b)
include the operation of adding to in equation (21).

Consider the effect of the major parameter considering that
the minor parameter b is equal to b0. For the given
mathematical model, the parameter has the following value
b0:

 𝑏𝑏0 = 0. (23)

Given the condition (23), equation (21) takes the following
form:

 𝑥𝑥𝑛𝑛+1 = (𝑥𝑥𝑛𝑛2 + 𝑎𝑎)𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀. (24)

Let the major parameter a1 be determined by the following
equation:

 𝑎𝑎1 = 𝑥𝑥𝑛𝑛. (25)

Based on the principles (24) and (25), we can determine the
range of possible values of the input parameters used in the
formation of this model. Since the principles (24) and (25) are
generalized to the expression (6), the range of possible values
of the input parameters is determined by the expression (5).
According to this, repetition period corresponds to the
repetition period of the classic algorithm (7).

Since (25) does not contain additional operations and the
value of xn is available, the computational complexity of one
iteration is equal to the computational complexity of the
operation of adding parameter A, which is in the range (19):

 𝐴𝐴(𝑎𝑎1) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2(2 ⋅ 𝑀𝑀)⌉. (26)

Let the major parameter a2 be determined by the following
equation:

 𝑎𝑎2 = 𝑥𝑥𝑛𝑛−1, (27)

where xn-1 – result value from the previous iteration of the
algorithm. The range of possible values of parameter xn-1 lies
within (5). Considering the principles (24) and (27), current
iteration result depends on the current and previous iteration
values (28).

 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1). (28)

As the result of the operation depends on a set of input
parameters, the repetition period of the modified algorithm is
in the following range:

 𝛲𝛲 ∈ [1:(𝑀𝑀 − 1)2). (29)

Given the expression (29), the maximum value of the
classic algorithm repetition period is as follows:

 𝛲𝛲𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑀𝑀 − 1)2 − 1. (30)

Since receiving parameter a2 similar to parameter a1 on the
side of the computational complexity, as well as the ranges of
their values lying within (5), the complexity of operation a2
corresponds to the expression (26).

Based on equation (21), we introduce the concept of an
intermediate value xtemp, which is obtained by dividing the
expression (21) into static and variable input data (31) (32).
The intermediate value of xtemp is used for the modifications
a3, a4, a5, a6.

 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 = 𝑥𝑥𝑛𝑛2 + 𝑎𝑎 + 𝑏𝑏, (31)

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀. (32)

MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

146

Given equations (5), (19) and (20), the intermediate value
lies in the following range:

 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 ∈ [0: 2 ⋅ (𝑀𝑀 − 1)2 + 2 ⋅ 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀). (33)

Let the major parameter a3 be determined by the following
equation:

 𝑎𝑎3 = 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡, (34)

where xtemp – intermediate value from the previous iteration
of the algorithm.

Given the previous sentence and equations (31) and (32),
xn-1 and xtemp are separated by integer division by static key
M, so the following statement is true:

 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡) ≈ 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1). (35)

Since equation (35) is equivalent to equation (28), the
repetition period of the a3, a4, a5, a6 modification of the
algorithm lies in the range (29).

Let the major parameter a4 be determined by the following
equation:

 𝑎𝑎4 = (𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 << 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀) >> 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀, (36)

where a<<b – the left logical shift number a of b bits, a>>b
– the right logical shift number a of b bits.

Let the major parameter a5 be determined by the following
equation:

 𝑎𝑎5 = 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 >> 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀. (37)

Let the major parameter a6 be determined by the following
equation:

 𝑎𝑎6 = (𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 >> 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀) << 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀. (38)

The parameters a3, a4, a5, a6 only select the resulting bits,
then the parameters a3, a4, a5, a6 are similar to the parameter
on the side of the computational complexity. Since the ranges
of the values of the parameters a4, a5 lie within (5), the
computational complexity of a4, a5 corresponds to the
expression (26). Since the ranges of the values of the
parameters a3, a6 lie within (33), the computational
complexity of a3, a6 corresponds to the expression (26).

The modifications a7, a8 use combinations xn and xn-1, and
therefore, they can be generalized to equation (28), hence, it
follows that the repetition period of the algorithm
modifications lies in (29).

Let the major parameter a7 be determined by the following
equation:

 𝑎𝑎7 = 𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛−1. (39)

Since (39) contains an additional operation and values xn
and xn-1 are available, the computational complexity of one
iteration is equal to the computational complexity of the
addition operations xn and xn-1, as well as the parameter a7,

(41), the value of which, considering the limits of the input
parameters (5), lies within (40).

 𝑎𝑎7 ∈ [0: 2 ⋅ (𝑀𝑀 − 1)). (40)

 𝐴𝐴(𝑎𝑎7) = 2 ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉. (41)

Let the major parameter a8 be determined by the following
equation:

 𝑎𝑎8 = 𝑥𝑥𝑛𝑛&𝑥𝑥𝑛𝑛−1, (42)

where “&” – the bitwise multiplication operation, “AND”.
Since obtaining the parameter a8 is analogous to parameter

a7 on the side of the computational complexity, but the result
of the calculation of a8 lies in (5), then the computational
complexity of one iteration is equal to the complexity:

 𝐴𝐴(𝑎𝑎8) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ + ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ = 2 ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅
𝑀𝑀⌉. (43)

Consider the effect of the minor parameter considering that
the major parameter a is equal to a0, which has the following
value:

 𝑎𝑎0 = 0. (44)

Given the condition (44), equation (21) takes the following
form:

 𝑥𝑥𝑛𝑛+1 = (𝑥𝑥𝑛𝑛2 + 𝑏𝑏)𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀. (45)

Let the minor parameter b1 be determined by the following
equation:

 𝑏𝑏1 = ∑ 𝑥𝑥𝑛𝑛[𝑖𝑖]𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀
𝑖𝑖=0 , (46)

where xn[i] – the i-th bit of xn number.
Considering the above, equation (45), and also equation

(46), the range of possible values lies in (5). Since equation
(46) is generalized to equation (6), the repetition period
corresponds to the repetition period of the classic algorithm,
equation (7).

Since the result (46) lies in (20) and the value of xn is
available, the computational complexity of one iteration is
equal to the computational complexity (14) - the operation of
adding a bit of the number xn to an amount, the value of which
lies within (5):

 𝐵𝐵(𝑏𝑏1) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ + (⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉ − 1) ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉. (47)

Let the minor parameter b2 be determined by the following
equation:

 𝑏𝑏2 = ∑ 𝑥𝑥𝑛𝑛−1[𝑖𝑖]𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀
𝑖𝑖=0 . (48)

The range of possible values lies in (20). Given equations
(45) and (48), equation (18) takes the form (28).

Given the ranges of input values: equations (5) and (20), -
the repetition period for this algorithm modification lies in the

MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

147

following range:

 𝛲𝛲 ∈ [1:(𝑀𝑀 − 1)(𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀 − 1)). (49)

Since receiving the parameter b2 similar to the parameter b1
on the side of the computational complexity, the complexity
of operation b2 corresponds to the expression (47).

The minor modifications b3 and b4 use the remainder of the
integer division of the module 2, hence the range of possible
values lies in the next range:

 𝑏𝑏3, 𝑏𝑏4 ∈ [0: 2). (50)

Let the minor parameter b3 be determined by the following
equation:

 𝑏𝑏3 = �∑ 𝑥𝑥𝑛𝑛[𝑖𝑖]𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀
𝑖𝑖=0 �𝑚𝑚𝑚𝑚𝑚𝑚 2. (51)

Considering the above, equation (45), and also equation
(51), the range of possible values lies in (5). Since equation
(51) is generalized to equation (6), the repetition period
corresponds to the repetition period of the classic algorithm,
equation (7).

Let the minor parameter b4 be determined by the following
equation:

 𝑏𝑏4 = �∑ 𝑥𝑥𝑛𝑛−1[𝑖𝑖]𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀
𝑖𝑖=0 �𝑚𝑚𝑚𝑚𝑚𝑚 2. (52)

Given equations (45) and (52), equation (18) takes the form
(28).

Given the ranges of input values: equations (5) and (50), -
the repetition period for this algorithm modification lies in the
following range:

 𝛲𝛲 ∈ [1: 2 ⋅ (𝑀𝑀 − 1)). (53)

Since the reception of the parameters b3 and b4 is similar to
the parameter b1 on the side of the complexity of the
calculation, but the result of computing b3 and b4 lies in (50),
the computational complexity of one iteration is as follows:

 𝐵𝐵(𝑏𝑏3) = 𝐵𝐵(𝑏𝑏4) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ + (⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉ − 1). (54)

The minor modifications b5, b6, b7, b8 use the sum of bits on
even or odd positions, and therefore the range of possible
values lies in the next range:

 𝑏𝑏5, 𝑏𝑏6, 𝑏𝑏7, 𝑏𝑏8 ∈ [0: ⌈(𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀)/2⌉). (55)

Let the minor parameter b5 be determined by the following
equation:

 𝑏𝑏5 = ∑ 𝑥𝑥𝑛𝑛[2 ⋅ 𝑖𝑖]⌈(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀)/2⌉
𝑖𝑖=0 . (56)

Considering the above, equation (45), and also equation
(56), the range of possible values lies in (5). Since equation
(56) is generalized to equation (6), the repetition period
corresponds to the repetition period of the classic algorithm,
equation (7).

Let the minor parameter b6 be determined by the following
equation:

 𝑏𝑏6 = ∑ 𝑥𝑥𝑛𝑛−1[2 ⋅ 𝑖𝑖]⌈(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀)/2⌉
𝑖𝑖=0 . (57)

Given equations (45) and (57), equation (18) takes the form
(28).

Given the ranges of input values: equations (5) and (55), -
the repetition period for this algorithm modification lies in the
following range:

 𝛲𝛲 ∈ [1:(𝑀𝑀 − 1) ⋅ ⌈(𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀)/2⌉). (58)

Let the minor parameter b7 be determined by the following
equation:

 𝑏𝑏7 = ∑ 𝑥𝑥𝑛𝑛[2 ⋅ 𝑖𝑖 + 1]⌈(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀)/2⌉
𝑖𝑖=0 . (59)

Considering the above, equation (45), and also equation
(59), the range of possible values lies in (5). Since equation
(59) is generalized to equation (6), the repetition period
corresponds to the repetition period of the classic algorithm,
equation (7).

Let the minor parameter b8 be determined by the following
equation:

 𝑏𝑏8 = ∑ 𝑥𝑥𝑛𝑛−1[2 ⋅ 𝑖𝑖 + 1]⌈(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀)/2⌉
𝑖𝑖=0 . (60)

Given equations (45) and (60), equation (18) takes the form
(28).

Given the ranges of input values: equations (5) and (20), -
the repetition period for this algorithm modification lies in the
range (58).

Since the acquisition of parameters b5, b6, b7, b8 is similar
to the parameter b1 on the side of the complexity of the
calculation, but the result of computing b5, b6, b7, b8 lies in
(55), the computational complexity of one iteration is as
follows:

 𝐵𝐵(𝑏𝑏5) = 𝐵𝐵(𝑏𝑏6) = 𝐵𝐵(𝑏𝑏7) = 𝐵𝐵(𝑏𝑏8) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉
+(⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀 /2⌉ − 1) ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀 /2⌉. (61)

4. SIMULATION RESULTS
For the experiment, all the keys in length from 5 to 9 bits

were chosen, that are satisfying the condition (3), and are
presented in Table 1.

The initial values, seeds s, for each key were taken
according to the following equation [21]:

 𝑠𝑠 ∈ [2:𝑀𝑀 − 1]. (62)

Since the models depend on a pair of values, (28), for the
calculation of the repetition period, it was considered that the
repetition period is a sequence in which a pair of values,
current and previous values of the iterations, were repeated.

Due to (62), and the classic algorithm, and the number of
modifications - 80, 739 206 periods were found.

MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

148

Table 1. M keys for the BBS generator.

Blum
number

Key
length,
bits

Key
value

Key GCD
value

P Q
1 3 7 5 21 1
2 3 11 6 33 1
3 3 19 6 57 1
4 3 23 7 69 1
5 7 11 7 77 2
6 3 31 7 93 1
7 3 43 8 129 1
8 7 19 8 133 2
9 3 47 8 141 1
10 7 23 8 161 2
11 3 59 8 177 1
12 3 67 8 201 1
13 11 19 8 209 2
14 3 71 8 213 1
15 11 23 8 253 2
16 7 43 9 301 2
17 3 103 9 309 1
18 3 107 9 321 1
19 7 47 9 329 2
20 11 31 9 341 4
21 3 127 9 381 1
22 3 131 9 393 1
23 7 59 9 413 2
24 3 139 9 417 1
25 19 23 9 437 2
26 3 151 9 453 1
27 7 67 9 469 2
28 11 43 9 473 4

Since there are 81 combinations for 28 keys, we need to

calculate relative average value of repetition period. Given
equations (8) and (62), the relative average value of the
repetition period for one key will be calculated as follows:

 𝑃𝑃𝑚𝑚𝑎𝑎𝑙𝑙(𝑀𝑀) = ∑ 𝑃𝑃(𝑀𝑀,𝑠𝑠𝑖𝑖)𝑀𝑀−3
0

(𝑀𝑀−3)⋅(𝑀𝑀−2)
, (63)

where P(M, s) – the repetition period for key M and initial
value s. Relative average value of repetition period for one
modification will be calculated as follows:

 𝑃𝑃𝑚𝑚𝑎𝑎𝑙𝑙𝑀𝑀𝑙𝑙𝑎𝑎 =
∑ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀)𝑛𝑛−1
0

𝑛𝑛
, (64)

where n - number of keys.
Table 2. contains PavgMod that were calculated for each

modification.
Regarding condition (9), there is only one special key in

Table 1. - row 15. Its maximal theoretic repetition period per
equation (10) is 20. Maximal theoretic value according to
equation (63) is 7.9861 %. But its empirical value in input
range defined by (62) is 6.9919 %.

From Table 2., 76 modifications are better than the classic
algorithm, but 4 modifications are worse. Also, the results for

the 8 modifications are significantly higher. These
modifications relate to the expression (28), whose repetition
period is in the range (29). Given the previous sentence and
equation (30), relative average value of the repetition period
for one key will be calculated as follows:

 𝑃𝑃𝑚𝑚𝑎𝑎𝑙𝑙(𝑀𝑀) = ∑ 𝑃𝑃(𝑀𝑀,𝑠𝑠𝑖𝑖)𝑀𝑀−3
0

(𝑀𝑀−3)⋅((𝑀𝑀−1)2−1)
. (65)

PavgMod for equations (63) and (65) are listed in Table 3.

Fig.1. The average relative value of the period to (7) for the length
of the keys.

Fig.2. The average relative value of the period to (29) for the length
of the keys.

Since output for equation (30) contains quadratic
dependency on key, PavgMod for (63) will have it too, this
could be seen with split PavgMod per key bits length. The
result of previous sentence is available in Fig.1.

PavgMod for (65) per key bits length is available in Fig.2.
Table 2. and Table 3. show that the most successful are the

modifications that use combinations of the parameters that
consist of the a2 and a7 major parameters together with the b1,
b3, b5, b7 minor parameters.

From the foregoing and equations (27) and (39) for the a2
and a7 major parameters, it follows that the major parameter
must directly depend on the previous iteration value, xn-1.

From the foregoing and equations (46), (51), (56), (59) for
the b1, b3, b5, b7 minor parameters, it follows that the minor
parameter must be a combination of the current value, xn.

MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

149

Table 2. Average relative repetition period of the period for the classic algorithm and modifications of the BBS generator.

Index of PavgMod, % # Index of PavgMod, % # Index of PavgMod, %
a b a b a b

1 0 0 7.2952 28 3 0 6.4960 55 6 0 46.9421
2 0 1 10.1275 29 3 1 9.9349 56 6 1 88.6475
3 0 2 20.6734 30 3 2 20.9172 57 6 2 98.3819
4 0 3 7.1232 31 3 3 8.8297 58 6 3 64.8248
5 0 4 9.6952 32 3 4 12.2593 59 6 4 82.6788
6 0 5 8.8592 33 3 5 9.6094 60 6 5 78.5479
7 0 6 16.3713 34 3 6 18.1217 61 6 6 90.8849
8 0 7 7.9332 35 3 7 9.8660 62 6 7 78.4829
9 0 8 14.7875 36 3 8 17.4116 63 6 8 91.5243
10 1 0 5.7875 37 4 0 6.4960 64 7 0 374.6296
11 1 1 9.0671 38 4 1 9.9349 65 7 1 14022.2353
12 1 2 21.0732 39 4 2 20.9172 66 7 2 182.1908
13 1 3 8.1752 40 4 3 8.8297 67 7 3 13037.6050
14 1 4 11.3888 41 4 4 12.2593 68 7 4 142.0743
15 1 5 9.1021 42 4 5 9.6094 69 7 5 13206.1112
16 1 6 17.6384 43 4 6 18.1217 70 7 6 154.7777
17 1 7 9.2927 44 4 7 9.8660 71 7 7 13018.1933
18 1 8 17.7612 45 4 8 17.4116 72 7 8 190.6706
19 2 0 214.4532 46 5 0 77.2653 73 8 0 263.3034
20 2 1 13103.4792 47 5 1 72.2712 74 8 1 307.3031
21 2 2 158.6466 48 5 2 101.3708 75 8 2 116.1185
22 2 3 15546.2871 49 5 3 74.9338 76 8 3 344.3523
23 2 4 165.7766 50 5 4 86.6606 77 8 4 152.7034
24 2 5 13252.9975 51 5 5 90.9435 78 8 5 326.2900
25 2 6 144.2575 52 5 6 103.4514 79 8 6 112.3834
26 2 7 13503.6419 53 5 7 82.6686 80 8 7 307.8142
27 2 8 176.3226 54 5 8 96.2355 81 8 8 136.0933

Table 3. Average relative values of BBS modification period with
quadratic character.

Index of PavgMod for
(63), %

PavgMod for
(65), % a b

71 7 7 13018.1933 48.6041
67 7 3 13037.6050 49.9731
20 2 1 13103.4792 49.4746
69 7 5 13206.1112 45.8159
24 2 5 13252.9975 49.0195
26 2 7 13503.6419 48.7998
65 7 1 14022.2353 50.2448
22 2 3 15546.2871 56.1337

5. CONCLUSIONS
In the given work, the analysis of modified algorithms work

of BBS generators is carried out. As a result, it has been
established that in order to improve the characteristics of the
classic BBS algorithm, it is necessary to systematize
approaches to change the relationship between the current
and the previous members of the sequence. For this purpose,
the generalized unified model of the modification of the
classic BBS algorithm is derived.

The proposed model made it possible to improve the
statistical characteristics of the classic BBS algorithm, in
particular, the sequence repetition period.

For the analysis of the sequence repetition period based on

the classic algorithm and the 80 proposed modifications, 739
206 tests were performed. As a result of this research, it was
established:
1. For the keys of 5 to 9 bits the repetition period is on

average 7.2952 % of the key value.
2. 95 % of the proposed modifications have a more efficient

repetition period compared to the classic algorithm.
3. 10 % of the modifications of the classic BBS algorithm

have a much longer period of repetition, which has
quadratic dependency.

4. A gain in statistical characteristics is improved with slight
increase in the required computing power of the system.

Implementation and study of the proposed modified BBS
pseudorandom sequence generator by students of the
direction of training of cybersecurity allows them to solve
information security problems, in particular, generating
cryptographic keys, hashing passwords, generating network
protocol keys, and user authentication.

REFERENCES
[1] Krolczyk, G., Gajek, M., Legutko, S. (2013). Predicting

the tool life in the dry machining of duplex stainless
steel. Eksploatcja i Niezawodnosc-Maintenance and
Reliability, 15, 62-65.

MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

150

[2] Jun, S., Kochan, O. (2015). Common mode noise
rejection in measuring channels. Instruments and
Experimental Techniques, 58 (1), 86-89.

[3] Glowacz, A. (2021). Thermographic fault diagnosis of
ventilation in BLDC motors. Sensors, 21 (21), 7245.
https://doi.org/10.3390/s21217245

[4] Jun, S., Kochan, O., Kochan, R. (2016). Thermocouples
with built-in self-testing. International Journal of
Thermophysics, 37 (4), 1-9.
https://doi.org/10.1007/s10765-016-2044-2

[5] Wang, J., Przystupa, K., Maksymovych, V., Stakhiv,
R., Kochan, O. (2020). Computer modelling of two-
level digital frequency synthesizer with Poisson
probability distribution of output pulses. Measurement
Science Review, 20 (2), 65-72.
https://doi.org/10.2478/msr-2020-0009

[6] Greengard, S. (2015). The Internet of Things. MIT
Press, ISBN 9780262527736.

[7] Jun, S., Przystupa, K., Beshley, M., Kochan, O.,
Beshley, H., Klymash, M., Pieniak, D.A. (2020). Cost-
efficient software based router and traffic generator for
simulation and testing of IP network. Electronics, 9 (1),
40. https://doi.org/10.3390/electronics9010040

[8] Su, J., Kochan, O., Wang, C., Kochan, R. (2015).
Theoretical and experimental research of error of
method of thermocouple with controlled profile of
temperature field. Measurement Science Review, 15 (6),
304-312. https://doi.org/10.1515/msr-2015-0041

[9] Fraczyk, A., Jaworski, T., Urbanek, P., Kucharski, J.
(2014). The design for a smart high frequency generator
for induction heating of loads. Przegląd
Elektrotechniczny [Electrical Review], 2, 20-23. DOI
10.12915/pe.2014.02.6.

[10] Song, W., Beshley, M., Przystupa, K., Beshley, H.,
Kochan, O., Pryslupskyi, A., Su, J. (2020). A software
deep packet inspection system for network traffic
analysis and anomaly detection. Sensors, 20 (6), 1637.
https://doi.org/10.3390/s20061637

[11] Maksymovych, V., Shabatura, M., Harasymchuk, O.,
Karpinski, M., Jancarczyk, D., Sawicki, P. (2022).
Development of additive Fibonacci generators with
improved characteristics for cybersecurity needs.
Applied Sciences, 12 (3), 1519.
https://doi.org/10.3390/app12031519

[12] Mandrona, M., Maksymovych, V., Harasymchuk, O.,
Kostiv, Y. (2014). Generator of pseudorandom bit
sequence with increased cryptographic security.
Metallurgical and Mining Industry, 5, 25-29.

[13] Maksymovych, V., Harasymchuk, O., Karpinski, M.,
Shabatura, M., Jancarczyk, D., Kajstura, K. (2021). A
new approach to the development of additive Fibonacci
generators based on prime numbers. Electronics, 10,
2912. https://doi.org/10.3390/electronics10232912

[14] Mandrona, M., Maksymovych, V. (2017). Comparative
analysis of pseudorandom bit sequence generators.
Journal of Automation and Information Sciences, 49
(3), 78-86.
https://doi.org/10.1615/JAutomatInfScien.v49.i3.90

[15] Maksymovych, V., Harasymchuk, O., Mandrona, M.
(2017). Designing generators of Poisson pulse
sequences based on the additive Fibonacci generators.
Journal of Automation and Information Sciences, 49
(12), 1-12.

[16] Maksymovych, V., Mandrona, M., Garasimchuk, O.,
Kostiv, Y. (2016). A study of the characteristics of the
fibonacci modified additive generator with a delay.
Journal of Automation and Information Sciences, 48
(11), 76-82.

[17] Maksymovych, V., Harasymchuk, O., Opirskyy, I.
(2018). The designing and research of generators of
Poisson pulse sequences on base of Fibonacci modified
additive generator. In Advances in Computer Science
for Engineering and Education. Springer, 43-53.
https://doi.org/10.1007/978-3-319-91008-6_5

[18] Maksymovych, V., Mandrona, M., Harasymchuk, O.
(2020). Dosimetric detector hardware simulation model
based on modified additive Fibonacci generator. In
Advances in Computer Science for Engineering and
Education II. Springer, Vol. 938, 162-171.
https://doi.org/10.1007/978-3-030-16621-2_15

[19] Maksymovych, V., Mandrona, M., Kostiv, Y.,
Harasymchuk, O. (2017). Investigating the statistical
characteristics of Poisson pulse sequences generators
constructed in different ways. Journal of Automation
and Information Sciences, 49 (10), 11-19.

[20] Agerblad, J., Andersen, M. (2013). Provably secure
pseudo-random generators. Thesis, School of
Computer Science and Communication, The Royal
Institute of Technology, Stockhol, Sweden. http://
urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134830.

[21] Junod, P. (1999). Cryptographic secure pseudo-random
bits generation: The Blum-Blum-Shub generator.
http://crypto.junod.info/bbs.pdf

[22] Shrestha, B. (2016). Multiprime Blum-Blum-Shub
pseudorandom number generator. Thesis, Naval
Postgraduate School, Monterey, CA.
https://apps.dtic.mil/dtic/tr/fulltext/u2/1030047.pdf

[23] Divyanjali, Ankur, Pareek, V. (2014). An overview of
cryptographically secure pseudorandom number
generators and BBS. In IJCA Proceedings of the
International Conference on Advances in Computer
Engineering and Applications ICACEA, 19-28.

[24] Sodhi, G.K., Gaba, G.S. (2017). DNA and Blum Blum
Shub random number generator based security key
generation algorithm. International Journal of Security
and its Applications, 11 (4), 1-10.
http://dx.doi.org/10.14257/ijsia.2017.11.4.01

[25] Blum, L., Blum, M., Shub, M. (1983). Comparison of
two pseudo-random number generators. In Advances in
Cryptology: Proceedings of Crypto 82. Springer, 61-78.
http://dx.doi.org/10.1007/978-1-4757-0602-4_6

[26] Kapur, V., Paladi, S.T., Dubbakula, N. (2015). Two
level image encryption using pseudo random number
generators. International Journal of Computer
Applications, 115 (12), 1-4.
http://dx.doi.org/10.5120/20200-2446

https://doi.org/10.3390/s21217245
https://doi.org/10.1007/s10765-016-2044-2
https://doi.org/10.2478/msr-2020-0009
https://doi.org/10.3390/electronics9010040
https://doi.org/10.1515/msr-2015-0041
https://doi.org/10.3390/s20061637
https://doi.org/10.3390/app12031519
https://doi.org/10.3390/electronics10232912
https://doi.org/10.1615/JAutomatInfScien.v49.i3.90
https://doi.org/10.1007/978-3-319-91008-6_5
https://doi.org/10.1007/978-3-030-16621-2_15
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134830
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-134830
http://crypto.junod.info/bbs.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/1030047.pdf
http://dx.doi.org/10.14257/ijsia.2017.11.4.01
http://dx.doi.org/10.1007/978-1-4757-0602-4_6
http://dx.doi.org/10.5120/20200-2446

MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 3, 143-151

151

[27] Aissa, B., Khaled, M., Lakhdar, G. (2014).
Implementation of Blum Blum Shub generator for
message encryption. In Proceedings of the
International Conference on Control, Engineering and
Information Technology (CEIT’14). IPCO, 118-123.

[28] Lopez, P., Millan, E., van der Lubbe, J., Entrena, L.
(2010). Cryptographically secure pseudorandom bit
generator for RFID tags. In 2010 International
Conference for Internet Technology and Secured
Transactions. IEEE, 1-6.

[29] Panda, A., Ray, K. (2018). Design and FPGA prototype
of 1024-bit Blum-Blum-Shub PRBG architecture. In
2018 IEEE International Conference on Information
Communication and Signal Processing (ICICSP).
IEEE, 38-43, DOI 10.1109/ICICSP.2018.8549715.

[30] Rock, A. (2005). Pseudorandom number generators for
cryptographic applications. Thesis, Universität
Salzburg, Salzburg, Austria. https://cutt.ly/sPSuTVt

[31] Hassan, N. (2017). Color images encryption using
cipher system with different types of random number
generator. International Journal of Innovative Research
in Computer and Communication Engineering, 5 (5).

[32] Omorog, C.D., Gerardo, B.D., Medina, R.P. (2018).
Enhanced pseudorandom number generator based on
Blum-Blum-Shub and elliptic curves. In 2018 IEEE
Symposium on Computer Applications and Industrial
Electronics (ISCAIE). IEEE, 269-274, DOI
10.1109/ISCAIE.2018.8405483.

[33] Siahaan, A.P.U. (2016). Blum Blum Shub in generating
key in RC4. The International Journal of Science &
Technoledge, 4 (10), 1-5.

[34] Malohlovets, A., Maksymovych, V. (2017). Research
of methods for improving statistical characteristics for
cryptographically strong BBS pseudorandom number
and bit generators. In Proceedings of the 6th
International Academic Technical Conference
“Information and Information Systems Security”, Lviv,
Ukraine, 73-74.

[35] Gawande, K., Mundle, M. (1999). Various
implementations of Blum Blum Shub pseudo-random
sequence generator. http://koclab.cs.ucsb.edu/teaching/
cren/project/2005past/gawande-mundle.pdf

[36] Blum, L., Blum, M., Shub, M. (1986). A simple
unpredictable pseudorandom number generator. SIAM
Journal on Computing, 15 (2), 364-383.
https://doi.org/10.1137/0215025

[37] Markov, I., Saeedi, M. (2012). Constant-optimized
quantum circuits for modular multiplication and
exponentiation. Quantum Information & Computation,
12 (5-6), 1-28.

[38] Sewak, K., Rajput, P., Panda, A.K. (2012). FPGA
implementation of 16 bit BBS and LFSR PN sequence
generator: A comparative study. In 2012 IEEE Students'
Conference on Electrical, Electronics and Computer
Science. IEEE, 769-773. DOI 10.1109/SCEECS.2012.
6184758.

[39] Sidorenko, A., Schoenmakers, B. (2005). Concrete
security of the Blum-Blum-Shub pseudorandom
generator. In Cryptography and Coding: 10th IMA
International Conference. Springer, Vol. 3796, 355-
375. https://doi.org/10.1007/11586821_24

[40] Malohlovets, A., Maksymovych, V. (2016). Research
of the methods for improving performance for
cryptographically strong BBS pseudorandom bit
sequences generators. In Proceedings of the 6th
International Youth Science Forum “Litteris et
Artibus”, Lviv, Ukraine, 54-55.

Received January 01, 2022
Accepted February 28, 2022

https://cutt.ly/sPSuTVt
http://koclab.cs.ucsb.edu/teaching/%20cren/project/2005past/gawande-mundle.pdf
http://koclab.cs.ucsb.edu/teaching/%20cren/project/2005past/gawande-mundle.pdf
https://doi.org/10.1137/0215025
https://doi.org/10.1007/11586821_24

