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In information security systems, the algorithm of the Blum-Blum-Shub (BBS) generator, which is based on the use of a one-way function 
and is a cryptographically secure pseudorandom number generator, became widespread. In this paper, the problem of the analysis of modified 
algorithms of the BBS generator operation is considered to improve their statistical characteristics, namely, the sequence repetition period. 
It has been established that in order to improve the characteristics of the classic BBS algorithm, it is necessary to systematize approaches to 
change the recurrent equation itself, the relationship between the current and the previous members of the sequence. For this purpose, a 
generalized unified model of the modification of the classical BBS algorithm is derived. The repetition period with computational complexity 
were analyzed for classical algorithm and 80 proposed modifications. A gain in statistical characteristics is improved with slight increase in 
the required computing power of the system. The proposed modified BBS pseudorandom sequence generator can be used in training of 
students when teaching cryptographic stability of information security systems. The study of this generator combines the knowledge of 
students acquired in both digital electronics and mathematics. 

Keywords: Pseudorandom sequence, pseudorandom sequence generators, one-way functions, Blum-Blum-Shub generators, computational 
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1. INTRODUCTION 

Modern industry and science need more and more accurate 
sensors, equipment and systems [1]-[4]. Recent 
improvements often use the means of artificial intelligence 
[3], [5]. The new concept of the Internet of Things [6], [7] 
opens new possibilities. For instance, it makes the local 
systems [8] global [9] and their update does not need much 
extra resources. However, the issues of quality of service [7] 
as well as safety and security of data are now of primary 
importance [10]. That is why recently the methods and the 
devices that improve safety and security got considerable 
attention in scientific studies.  

The pseudorandom sequence generators (PRSG), that 
include the pseudorandom number generators (PRNG) and 
the pseudorandom bit generators (PRBG), are used in various 
fields of technology in the information security systems. The 
PRNG can be classified according to different features: by the 
method of implementation (software, hardware), for 
resistance to disclosure (cryptographically secure, 
cryptographically insecure), or according to the algorithms on 

which they operate (based on the elementary functions, based 
on the shift registers, based on the one-way functions, etc.) 
[11]-[19]. 

In the information security systems, the algorithm of the 
Blum-Blum-Shub (BBS) generator (by the names of authors 
Lenore Blum, Manuel Blum, and Michael Shub), which is 
cryptographically secure PRNG (CSPRNG) [20]-[24], was 
proposed by the authors in 1986 [25] and became widespread 
[24], [26]-[33]. The principle of BBS generators is based on 
the use of the one-way function, which is crypto secured, and 
aimed, first of all, for the program implementation.  

There are several modifications of the BBS generator 
algorithms [22], [34], [35], each of which is aimed at 
improving some of their characteristics, the main of which 
are: crypto security, statistical characteristics (including the 
repetition period of the output sequence), speed, and volume 
of key information (length of the key). In [23], an algorithm 
is proposed in which the number-module of the recurrence 
equation is modified. In this case, special attention is drawn 
to the possibility of increasing the speed by forming at each 
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stroke not one, but a few bits of the original sequence. 
Changing the algorithm of the BBS generator may also be in 
the modification of the recurrent equation itself. This 
possibility is little investigated, which confirms the relevance 
of this work. 

The purpose of the work is to study modified BBS generator 
algorithms. At the same time, the main attention is paid to the 
study of repetition periods of the initial sequence and the 
definition of the computational complexity. 

In this paper, the problem of the analysis of modified 
algorithms of the BBS generator operation is considered to 
improve their statistical characteristics, namely, the sequence 
repetition period. 

2. CLASSIC BBS ALGORITHM 
The model of the classic Blum-Blum-Shub algorithm is 

based on the following equation [25]: 

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛2 𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀, (1) 

where M is the key that results from the product of two 
numbers of Blum, p and q: 

 𝑀𝑀 = 𝑝𝑝 ⋅ 𝑞𝑞. (2) 

The Blum numbers are odd prime numbers for which the 
following condition is fulfilled [21]: 

 𝑝𝑝 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑞𝑞 ≡ 3(𝑚𝑚𝑚𝑚𝑚𝑚 4), 𝑝𝑝 ≠ 𝑞𝑞. (3) 

The lower is the output from expression (4), the higher is 
the maximum value of the repetition period. 

 𝐺𝐺𝐺𝐺𝐺𝐺(𝜑𝜑(𝑝𝑝 − 1),𝜑𝜑(𝑞𝑞 − 1)), (4) 

where GCD(a, b) – greatest common divisor for a and b, 
( )aϕ - Euler function for a. 

At each step of the algorithm, the output data is obtained by 
taking either a parity bit or one or more least significant bits. 

To use this model, it is necessary to set limits on which its 
input and output data are located. Since the equation (1) uses 
the result remaining from an integer division with the key M, 
at each step the input parameter and the result of iteration lie 
in the following ranges: 

 𝑥𝑥𝑛𝑛 ∈ [0:𝑀𝑀), 𝑥𝑥𝑛𝑛+1 ∈ [0:𝑀𝑀). (5) 

Since the value of the key M does not change during 
iterations, equation (1) has one input parameter: 

 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛), (6) 

then the repetition period of the classical algorithm lies in the 
next range: 

 𝛲𝛲 ∈ [1:𝑀𝑀 − 1). (7) 

Given the expression (7), maximum value of the classic 
algorithm repetition period is the following: 

 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑀𝑀 − 1) − 1 = 𝑀𝑀 − 2. (8) 

The special Blum numbers are odd prime numbers for 
which the following condition is fulfilled [27], [28]: 

𝑝𝑝 = 2 ⋅ 𝑝𝑝1 + 1 = 4 ⋅ 𝑝𝑝2 + 3, 
𝑞𝑞 = 2 ⋅ 𝑞𝑞1 + 1 = 4 ⋅ 𝑞𝑞2 + 3, (9) 

where p1, p2, q1, q2 are odd prime numbers too. 
For the special key M, which uses the special Blum 

numbers, p and q, maximum value of the classic algorithm 
repetition period could be calculated from the following 
expression: 

 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 2 ∙ 𝑝𝑝2 ∙ 𝑞𝑞2. (10) 

To evaluate the quality of modifications, we calculate the 
one iteration computational complexity of the classic BBS 
algorithm. 

For the following form of expression – 

 𝑥𝑥𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 𝑀𝑀, (11) 

the computational complexity is calculated as follows [28]: 

 𝑂𝑂(𝑀𝑀(𝑛𝑛) ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑦𝑦⌉), (12) 

where n – the number of bits of the number x, M(n) – 
computational complexity of the selected multiplication 
algorithm. 

Let the computational complexity of the chosen 
multiplication algorithm have the following value: 

 𝑀𝑀(𝑛𝑛) = 𝑛𝑛2. (13) 

Since the maximum number of bits x is equal to the number 
of bits of the M key: 

 𝑛𝑛 = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉. (14) 

The variable y from expression (12) takes the following 
value for equation (1): 

 𝑦𝑦 = 2. (15) 

Considering equations (13), (14), (15), the expression (12) 
takes the following form: 

 𝑂𝑂(⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉2). (16) 

Having carried out the analysis of the classical model (1), 
we can distinguish the following disadvantages: 
• According to equation (16), the operations of squaring 

and remainder of integer division require a lot of system 
resources [38]. In addition, this dependence is quadratic. 

• For each value in a sequence, only a limited number of 
bits can be used, which is calculated using the following 
equation [22]: 

 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀. (17) 
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• To ensure a minimum level of cryptographic keys 
necessary to use a length greater than 1024 bits. [39]. 

3. MODIFICATIONS OF THE BBS ALGORITHM 
The classic algorithm could be improved through 

modification of its model (1). 
Summarizing possible approaches for improving 

characteristics, they could be grouped by the location of the 
changes into the following groups: 

Changing the dependency of the next member of the 
sequence from the previous one. The effectiveness of this 
method has been partially considered in the work [34]. 

Changing of the М key. Methods and effectiveness of this 
approach are considered in [35]. 

Improving the classic algorithm speed could be achieved 
through transformation of operations with their equivalents, 
for example, using the Montgomery algorithm, which was 
considered in [21], [35], [40]. 

Approaches that change the relationship between current 
and previous members of the sequence were systematized to 
improve the characteristics of the classic BBS algorithm. To 
do this, we present a generalized unified modification model 
based on equation (6) with the addition of parameters a and 
b: 

 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑎𝑎, 𝑏𝑏). (18) 

The parameter a has significant impact on the iteration 
result, so this parameter will be called "major". The value of 
this parameter is in the following range: 

 𝑎𝑎 ∈ [0: (𝑀𝑀 − 1)2). (19) 

The parameter b has less significant impact on the iteration 
result, so this parameter will be called "minor". The value of 
this parameter is in the following range: 

 𝑏𝑏 ∈ [0: 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀). (20) 

A complete unified modification model is obtained by 
extending equation (1) to equation (18). This model is 
presented below: 

 𝑥𝑥𝑛𝑛+1 = (𝑥𝑥𝑛𝑛2 + 𝑎𝑎 + 𝑏𝑏)𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀. (21) 

From the expression (16), the computational complexity of 
one iteration of the modified algorithm, (21), is as follows: 

 𝑂𝑂(⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉2 + 𝐴𝐴(𝑎𝑎) + 𝐵𝐵(𝑏𝑏)), (22) 

where A(a) - computational complexity of the selected 
parameter a, B(b) - computational complexity of the selected 
parameter b. Computational complexities A(a) and B(b) 
include the operation of adding to in equation (21). 

Consider the effect of the major parameter   considering that 
the minor parameter b is equal to b0. For the given 
mathematical model, the parameter has the following value 
b0: 

 𝑏𝑏0 = 0. (23) 

Given the condition (23), equation (21) takes the following 
form: 

 𝑥𝑥𝑛𝑛+1 = (𝑥𝑥𝑛𝑛2 + 𝑎𝑎)𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀. (24) 

Let the major parameter a1 be determined by the following 
equation: 

 𝑎𝑎1 = 𝑥𝑥𝑛𝑛. (25) 

Based on the principles (24) and (25), we can determine the 
range of possible values of the input parameters used in the 
formation of this model. Since the principles (24) and (25) are 
generalized to the expression (6), the range of possible values 
of the input parameters is determined by the expression (5). 
According to this, repetition period corresponds to the 
repetition period of the classic algorithm (7). 

Since (25) does not contain additional operations and the 
value of xn is available, the computational complexity of one 
iteration is equal to the computational complexity of the 
operation of adding parameter A, which is in the range (19): 

 𝐴𝐴(𝑎𝑎1) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2(2 ⋅ 𝑀𝑀)⌉. (26) 

Let the major parameter a2 be determined by the following 
equation:  

 𝑎𝑎2 = 𝑥𝑥𝑛𝑛−1, (27) 

where xn-1 – result value from the previous iteration of the 
algorithm. The range of possible values of parameter xn-1 lies 
within (5). Considering the principles (24) and (27), current 
iteration result depends on the current and previous iteration 
values (28).  

 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1). (28) 

As the result of the operation depends on a set of input 
parameters, the repetition period of the modified algorithm is 
in the following range: 

 𝛲𝛲 ∈ [1:(𝑀𝑀 − 1)2). (29) 

Given the expression (29), the maximum value of the 
classic algorithm repetition period is as follows: 

 𝛲𝛲𝑚𝑚𝑚𝑚𝑚𝑚 = (𝑀𝑀 − 1)2 − 1. (30) 

Since receiving parameter a2 similar to parameter a1 on the 
side of the computational complexity, as well as the ranges of 
their values lying within (5), the complexity of operation a2 
corresponds to the expression (26). 

Based on equation (21), we introduce the concept of an 
intermediate value xtemp, which is obtained by dividing the 
expression (21) into static and variable input data (31) (32). 
The intermediate value of xtemp is used for the modifications 
a3, a4, a5, a6. 

 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 = 𝑥𝑥𝑛𝑛2 + 𝑎𝑎 + 𝑏𝑏, (31) 

 𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀. (32) 
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Given equations (5), (19) and (20), the intermediate value 
lies in the following range: 

 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 ∈ [0: 2 ⋅ (𝑀𝑀 − 1)2 + 2 ⋅ 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀). (33) 

Let the major parameter a3 be determined by the following 
equation: 

 𝑎𝑎3 = 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡, (34) 

where xtemp – intermediate value from the previous iteration 
of the algorithm. 

Given the previous sentence and equations (31) and (32), 
xn-1 and xtemp are separated by integer division by static key 
M, so the following statement is true: 

 𝑥𝑥𝑛𝑛+1 = 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡) ≈ 𝑓𝑓(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑛𝑛−1). (35) 

Since equation (35) is equivalent to equation (28), the 
repetition period of the a3, a4, a5, a6 modification of the 
algorithm lies in the range (29). 

Let the major parameter a4 be determined by the following 
equation:  

 𝑎𝑎4 = (𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 << 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀) >> 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀, (36) 

where a<<b – the left logical shift number a of b bits, a>>b 
– the right logical shift number a of b bits. 

Let the major parameter a5 be determined by the following 
equation: 

 𝑎𝑎5 = 𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 >> 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀. (37) 

Let the major parameter a6 be determined by the following 
equation: 

 𝑎𝑎6 = (𝑥𝑥𝑡𝑡𝑡𝑡𝑚𝑚𝑡𝑡 >> 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀) << 𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀. (38) 

The parameters a3, a4, a5, a6 only select the resulting bits, 
then the parameters a3, a4, a5, a6 are similar to the parameter 
on the side of the computational complexity. Since the ranges 
of the values of the parameters a4, a5 lie within (5), the 
computational complexity of a4, a5 corresponds to the 
expression (26). Since the ranges of the values of the 
parameters a3, a6 lie within (33), the computational 
complexity of a3, a6 corresponds to the expression (26).  

The modifications a7, a8 use combinations xn and xn-1, and 
therefore, they can be generalized to equation (28), hence, it 
follows that the repetition period of the algorithm 
modifications lies in (29). 

Let the major parameter a7 be determined by the following 
equation: 

 𝑎𝑎7 = 𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛−1. (39) 

Since (39) contains an additional operation and values xn 
and xn-1 are available, the computational complexity of one 
iteration is equal to the computational complexity of the 
addition operations xn and xn-1, as well as the parameter a7, 

(41), the value of which, considering the limits of the input 
parameters (5), lies within (40).  

 𝑎𝑎7 ∈ [0: 2 ⋅ (𝑀𝑀 − 1)). (40) 

 𝐴𝐴(𝑎𝑎7) = 2 ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉. (41) 

Let the major parameter a8 be determined by the following 
equation: 

 𝑎𝑎8 = 𝑥𝑥𝑛𝑛&𝑥𝑥𝑛𝑛−1, (42) 

where “&” – the bitwise multiplication operation, “AND”. 
Since obtaining the parameter a8 is analogous to parameter 

a7 on the side of the computational complexity, but the result 
of the calculation of a8 lies in (5), then the computational 
complexity of one iteration is equal to the complexity: 

 𝐴𝐴(𝑎𝑎8) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ + ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ = 2 ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅
𝑀𝑀⌉.  (43) 

Consider the effect of the minor parameter  considering that 
the major parameter a is equal to a0, which has the following 
value: 

 𝑎𝑎0 = 0. (44) 

Given the condition (44), equation (21) takes the following 
form: 

 𝑥𝑥𝑛𝑛+1 = (𝑥𝑥𝑛𝑛2 + 𝑏𝑏)𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀. (45) 

Let the minor parameter b1 be determined by the following 
equation: 

 𝑏𝑏1 = ∑ 𝑥𝑥𝑛𝑛[𝑖𝑖]𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀
𝑖𝑖=0 , (46) 

where xn[i] – the i-th bit of xn number. 
Considering the above, equation (45), and also equation 

(46), the range of possible values lies in (5). Since equation 
(46) is generalized to equation (6), the repetition period 
corresponds to the repetition period of the classic algorithm, 
equation (7). 

Since the result (46) lies in (20) and the value of xn is 
available, the computational complexity of one iteration is 
equal to the computational complexity (14) - the operation of 
adding a bit of the number xn to an amount, the value of which 
lies within (5): 

 𝐵𝐵(𝑏𝑏1) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ + (⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉ − 1) ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉. (47) 

Let the minor parameter b2 be determined by the following 
equation: 

 𝑏𝑏2 = ∑ 𝑥𝑥𝑛𝑛−1[𝑖𝑖]𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀
𝑖𝑖=0 . (48) 

The range of possible values lies in (20). Given equations 
(45) and (48), equation (18) takes the form (28). 

Given the ranges of input values: equations (5) and (20), - 
the repetition period for this algorithm modification lies in the 
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following range: 

 𝛲𝛲 ∈ [1:(𝑀𝑀 − 1)(𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀 − 1)). (49) 

Since receiving the parameter b2 similar to the parameter b1 
on the side of the computational complexity, the complexity 
of operation b2 corresponds to the expression (47). 

The minor modifications b3 and b4 use the remainder of the 
integer division of the module 2, hence the range of possible 
values lies in the next range: 

 𝑏𝑏3, 𝑏𝑏4 ∈ [0: 2). (50) 

Let the minor parameter b3 be determined by the following 
equation: 

 𝑏𝑏3 = �∑ 𝑥𝑥𝑛𝑛[𝑖𝑖]𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀
𝑖𝑖=0 �𝑚𝑚𝑚𝑚𝑚𝑚 2. (51) 

Considering the above, equation (45), and also equation 
(51), the range of possible values lies in (5). Since equation 
(51) is generalized to equation (6), the repetition period 
corresponds to the repetition period of the classic algorithm, 
equation (7). 

Let the minor parameter b4 be determined by the following 
equation:  

 𝑏𝑏4 = �∑ 𝑥𝑥𝑛𝑛−1[𝑖𝑖]𝑙𝑙𝑙𝑙𝑙𝑙2𝑀𝑀
𝑖𝑖=0 �𝑚𝑚𝑚𝑚𝑚𝑚 2. (52) 

Given equations (45) and (52), equation (18) takes the form 
(28). 

Given the ranges of input values: equations (5) and (50), - 
the repetition period for this algorithm modification lies in the 
following range: 

 𝛲𝛲 ∈ [1: 2 ⋅ (𝑀𝑀 − 1)). (53) 

Since the reception of the parameters b3 and b4 is similar to 
the parameter b1 on the side of the complexity of the 
calculation, but the result of computing b3 and b4 lies in (50), 
the computational complexity of one iteration is as follows:  

 𝐵𝐵(𝑏𝑏3) = 𝐵𝐵(𝑏𝑏4) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ + (⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀⌉ − 1). (54) 

The minor modifications b5, b6, b7, b8 use the sum of bits on 
even or odd positions, and therefore the range of possible 
values lies in the next range: 

 𝑏𝑏5, 𝑏𝑏6, 𝑏𝑏7, 𝑏𝑏8 ∈ [0: ⌈(𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀)/2⌉). (55) 

Let the minor parameter b5 be determined by the following 
equation: 

 𝑏𝑏5 = ∑ 𝑥𝑥𝑛𝑛[2 ⋅ 𝑖𝑖]⌈(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀)/2⌉
𝑖𝑖=0 . (56) 

Considering the above, equation (45), and also equation 
(56), the range of possible values lies in (5). Since equation 
(56) is generalized to equation (6), the repetition period 
corresponds to the repetition period of the classic algorithm, 
equation (7). 

Let the minor parameter b6 be determined by the following 
equation:  

 𝑏𝑏6 = ∑ 𝑥𝑥𝑛𝑛−1[2 ⋅ 𝑖𝑖]⌈(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀)/2⌉
𝑖𝑖=0 . (57) 

Given equations (45) and (57), equation (18) takes the form 
(28). 

Given the ranges of input values: equations (5) and (55), - 
the repetition period for this algorithm modification lies in the 
following range: 

 𝛲𝛲 ∈ [1:(𝑀𝑀 − 1) ⋅ ⌈(𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀)/2⌉). (58) 

Let the minor parameter b7 be determined by the following 
equation: 

 𝑏𝑏7 = ∑ 𝑥𝑥𝑛𝑛[2 ⋅ 𝑖𝑖 + 1]⌈(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀)/2⌉
𝑖𝑖=0 . (59) 

Considering the above, equation (45), and also equation 
(59), the range of possible values lies in (5). Since equation 
(59) is generalized to equation (6), the repetition period 
corresponds to the repetition period of the classic algorithm, 
equation (7). 

Let the minor parameter b8 be determined by the following 
equation: 

 𝑏𝑏8 = ∑ 𝑥𝑥𝑛𝑛−1[2 ⋅ 𝑖𝑖 + 1]⌈(𝑙𝑙𝑙𝑙𝑙𝑙2 𝑀𝑀)/2⌉
𝑖𝑖=0 . (60) 

Given equations (45) and (60), equation (18) takes the form 
(28). 

Given the ranges of input values: equations (5) and (20), - 
the repetition period for this algorithm modification lies in the 
range (58). 

Since the acquisition of parameters b5, b6, b7, b8 is similar 
to the parameter b1 on the side of the complexity of the 
calculation, but the result of computing b5, b6, b7, b8 lies in 
(55), the computational complexity of one iteration is as 
follows: 

 𝐵𝐵(𝑏𝑏5) = 𝐵𝐵(𝑏𝑏6) = 𝐵𝐵(𝑏𝑏7) = 𝐵𝐵(𝑏𝑏8) = ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 2 ⋅ 𝑀𝑀⌉ 
+(⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀 /2⌉ − 1) ⋅ ⌈𝑙𝑙𝑚𝑚𝑙𝑙2 𝑀𝑀 /2⌉. (61) 

4. SIMULATION RESULTS 
For the experiment, all the keys in length from 5 to 9 bits 

were chosen, that are satisfying the condition (3), and are 
presented in Table 1. 

The initial values, seeds s, for each key were taken 
according to the following equation [21]: 

 𝑠𝑠 ∈ [2:𝑀𝑀 − 1]. (62) 

Since the models depend on a pair of values, (28), for the 
calculation of the repetition period, it was considered that the 
repetition period is a sequence in which a pair of values, 
current and previous values of the iterations, were repeated. 

Due to (62), and the classic algorithm, and the number of 
modifications - 80, 739 206 periods were found. 
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Table 1.  M keys for the BBS generator. 

# Blum 
number 

Key 
length, 
bits 

Key 
value  

Key GCD 
value 

P Q 
1 3 7 5 21 1 
2 3 11 6 33 1 
3 3 19 6 57 1 
4 3 23 7 69 1 
5 7 11 7 77 2 
6 3 31 7 93 1 
7 3 43 8 129 1 
8 7 19 8 133 2 
9 3 47 8 141 1 
10 7 23 8 161 2 
11 3 59 8 177 1 
12 3 67 8 201 1 
13 11 19 8 209 2 
14 3 71 8 213 1 
15 11 23 8 253 2 
16 7 43 9 301 2 
17 3 103 9 309 1 
18 3 107 9 321 1 
19 7 47 9 329 2 
20 11 31 9 341 4 
21 3 127 9 381 1 
22 3 131 9 393 1 
23 7 59 9 413 2 
24 3 139 9 417 1 
25 19 23 9 437 2 
26 3 151 9 453 1 
27 7 67 9 469 2 
28 11 43 9 473 4 
 
Since there are 81 combinations for 28 keys, we need to 

calculate relative average value of repetition period. Given 
equations (8) and (62), the relative average value of the 
repetition period for one key will be calculated as follows: 

 𝑃𝑃𝑚𝑚𝑎𝑎𝑙𝑙(𝑀𝑀) = ∑ 𝑃𝑃(𝑀𝑀,𝑠𝑠𝑖𝑖)𝑀𝑀−3
0

(𝑀𝑀−3)⋅(𝑀𝑀−2)
, (63) 

where P(M, s) – the repetition period for key M and initial 
value s. Relative average value of repetition period for one 
modification will be calculated as follows: 

 𝑃𝑃𝑚𝑚𝑎𝑎𝑙𝑙𝑀𝑀𝑙𝑙𝑎𝑎 =
∑ 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎(𝑀𝑀)𝑛𝑛−1
0

𝑛𝑛
, (64) 

where n - number of keys. 
Table 2. contains PavgMod that were calculated for each 

modification. 
Regarding condition (9), there is only one special key in 

Table 1. - row 15. Its maximal theoretic repetition period per 
equation (10) is 20. Maximal theoretic value according to 
equation (63) is 7.9861 %. But its empirical value in input 
range defined by (62) is 6.9919 %. 

From Table 2., 76 modifications are better than the classic 
algorithm, but 4 modifications are worse. Also, the results for  

the 8 modifications are significantly higher. These 
modifications relate to the expression (28), whose repetition 
period is in the range (29).  Given the previous sentence and 
equation (30), relative average value of the repetition period 
for one key will be calculated as follows: 

 𝑃𝑃𝑚𝑚𝑎𝑎𝑙𝑙(𝑀𝑀) = ∑ 𝑃𝑃(𝑀𝑀,𝑠𝑠𝑖𝑖)𝑀𝑀−3
0

(𝑀𝑀−3)⋅((𝑀𝑀−1)2−1)
. (65) 

PavgMod for equations (63) and (65) are listed in Table 3.  

 

Fig.1.  The average relative value of the period to (7) for the length 
of the keys. 

 

Fig.2.  The average relative value of the period to (29) for the length 
of the keys. 

Since output for equation (30) contains quadratic 
dependency on key, PavgMod for (63) will have it too, this 
could be seen with split PavgMod per key bits length. The 
result of previous sentence is available in Fig.1. 

PavgMod for (65) per key bits length is available in Fig.2. 
Table 2. and Table 3. show that the most successful are the 

modifications that use combinations of the parameters that 
consist of the a2 and a7 major parameters together with the b1, 
b3, b5, b7 minor parameters. 

From the foregoing and equations (27) and (39) for the a2 
and a7 major parameters, it follows that the major parameter 
must directly depend on the previous iteration value, xn-1. 

From the foregoing and equations (46), (51), (56), (59) for 
the b1, b3, b5, b7 minor parameters, it follows that the minor 
parameter must be a combination of the current value, xn. 
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Table 2.  Average relative repetition period of the period for the classic algorithm and modifications of the BBS generator. 

# Index of PavgMod, % # Index of PavgMod, % # Index of PavgMod, % 
a b a b a b 

1 0 0 7.2952 28 3 0 6.4960 55 6 0 46.9421 
2 0 1 10.1275 29 3 1 9.9349 56 6 1 88.6475 
3 0 2 20.6734 30 3 2 20.9172 57 6 2 98.3819 
4 0 3 7.1232 31 3 3 8.8297 58 6 3 64.8248 
5 0 4 9.6952 32 3 4 12.2593 59 6 4 82.6788 
6 0 5 8.8592 33 3 5 9.6094 60 6 5 78.5479 
7 0 6 16.3713 34 3 6 18.1217 61 6 6 90.8849 
8 0 7 7.9332 35 3 7 9.8660 62 6 7 78.4829 
9 0 8 14.7875 36 3 8 17.4116 63 6 8 91.5243 
10 1 0 5.7875 37 4 0 6.4960 64 7 0 374.6296 
11 1 1 9.0671 38 4 1 9.9349 65 7 1 14022.2353 
12 1 2 21.0732 39 4 2 20.9172 66 7 2 182.1908 
13 1 3 8.1752 40 4 3 8.8297 67 7 3 13037.6050 
14 1 4 11.3888 41 4 4 12.2593 68 7 4 142.0743 
15 1 5 9.1021 42 4 5 9.6094 69 7 5 13206.1112 
16 1 6 17.6384 43 4 6 18.1217 70 7 6 154.7777 
17 1 7 9.2927 44 4 7 9.8660 71 7 7 13018.1933 
18 1 8 17.7612 45 4 8 17.4116 72 7 8 190.6706 
19 2 0 214.4532 46 5 0 77.2653 73 8 0 263.3034 
20 2 1 13103.4792 47 5 1 72.2712 74 8 1 307.3031 
21 2 2 158.6466 48 5 2 101.3708 75 8 2 116.1185 
22 2 3 15546.2871 49 5 3 74.9338 76 8 3 344.3523 
23 2 4 165.7766 50 5 4 86.6606 77 8 4 152.7034 
24 2 5 13252.9975 51 5 5 90.9435 78 8 5 326.2900 
25 2 6 144.2575 52 5 6 103.4514 79 8 6 112.3834 
26 2 7 13503.6419 53 5 7 82.6686 80 8 7 307.8142 
27 2 8 176.3226 54 5 8 96.2355 81 8 8 136.0933 

Table 3.  Average relative values of BBS modification period with 
quadratic character. 

# Index of PavgMod for 
(63), % 

PavgMod for 
(65), % a b 

71 7 7 13018.1933 48.6041 
67 7 3 13037.6050 49.9731 
20 2 1 13103.4792 49.4746 
69 7 5 13206.1112 45.8159 
24 2 5 13252.9975 49.0195 
26 2 7 13503.6419 48.7998 
65 7 1 14022.2353 50.2448 
22 2 3 15546.2871 56.1337 

5. CONCLUSIONS 
In the given work, the analysis of modified algorithms work 

of BBS generators is carried out. As a result, it has been 
established that in order to improve the characteristics of the 
classic BBS algorithm, it is necessary to systematize 
approaches to change the relationship between the current 
and the previous members of the sequence. For this purpose, 
the generalized unified model of the modification of the 
classic BBS algorithm is derived. 

The proposed model made it possible to improve the 
statistical characteristics of the classic BBS algorithm, in 
particular, the sequence repetition period. 

 
For the analysis of the sequence repetition period based on 

the classic algorithm and the 80 proposed modifications, 739 
206 tests were performed. As a result of this research, it was 
established: 
1. For the keys of 5 to 9 bits the repetition period is on 

average 7.2952 % of the key value. 
2. 95 % of the proposed modifications have a more efficient 

repetition period compared to the classic algorithm. 
3. 10 % of the modifications of the classic BBS algorithm 

have a much longer period of repetition, which has 
quadratic dependency. 

4. A gain in statistical characteristics is improved with slight 
increase in the required computing power of the system.  

Implementation and study of the proposed modified BBS 
pseudorandom sequence generator by students of the 
direction of training of cybersecurity allows them to solve 
information security problems, in particular, generating 
cryptographic keys, hashing passwords, generating network 
protocol keys, and user authentication. 
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