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Abstract: This paper proposes a new diagnosis technique for predicting the big data of roller bearing multi-level fault, which uses the deep 
learning method for the feature representation of the vibration signal and an optimized machine learning model. First, vibration feature 
extraction by stacked auto-encoders (VFE-SAE) with two layers in roller bearing fault signals is proposed. The unsupervised learning 
algorithm in VFE-SAE is used to reveal significant properties in the vibration data, such as nonlinear and non-stationary properties. The 
extracted features can provide good discriminability for fault diagnosis tasks. Second, a classifier model is optimized based on least squares 
support vector machine classification and particle swarm optimization (LSSVM-PSO). This model is used to perform supervised fine-tuning 
and classification; it is trained with the labelled features to identify the target data. Especially, using transfer learning, the performance of 
the bearing fault diagnosis technique can be fine-tuned. In other words, the features of the target vibration signal can be extracted by the 
learning of feature representation, which is dependent on the weight matrix of hidden layers of the VFE-SAE method. The experimental 
results (by analyzing the roller bearing vibration signals with multi-status fault) demonstrate that VFE-SAE based feature extraction in 
conjunction with the LSSVM-PSO classification is more accurate than other popular classifier models. The proposed VFE-SAE – LSSVM-
PSO method can effectively diagnose bearing faults with 97.76 % accuracy, even when using 80 % of the target data. 

Keywords: Multi-level fault, SAE transfer learning, vibration feature, deep learning; LSSVM-PSO classifier model. 

1. INTRODUCTION 
Roller bearings play a crucial role in rotating machinery, 

and their working condition can seriously influence 
equipment performance. Accordingly, it is necessary to 
monitor the bearing conditions and identify faults to avoid 
fatal system breakdowns and thus prevent economic losses 
and injury [1]. Therefore, a reliable automatic system that 
monitors roller bearing health conditions is very beneficial to 
industry applications. 

Feature extraction is an important stage in the classification 
of vibration data, and suitably extracted features can increase 
the ability to distinguish between similar classes, thereby 
improving classification performance. Generally, signal 
analysis methods have been successfully applied for feature 
extraction of vibration data. These methods aim to distinguish 
unusual data characteristics, e.g., the time-domain parameters 
of kurtosis, skewness, root mean square [2], [3]; and the 
frequency-domain analysis methods of the fast Fourier 
transform (FFT) [4]; and the time-frequency domain analysis 
methods of the Hilbert-Huang transform, local characteristic-
scale decomposition (LCD), local mean decomposition 
(LMD), and empirical mode decomposition (EMD) [5]-[9]. 
However, feature extraction based on signal analysis is 
required to obtain deep knowledge of vibration analysis and 
identify roller bearing fault mechanism. 

The learning of feature representation can reveal 
significant data features. Previous linear methods are 
normally used for this purpose, e.g., principal component 
analysis (PCA) and linear discriminant analysis (LDA) [10]-
[12], but these methods fail to model nonlinear data 
structures. Manifold learning methods, which are proposed 
for nonlinear feature extraction, can characterize the 
nonlinear relationships between data points [13], [14]. 
However, they can only process a limited number of data 
points due to their high computational complexity. Recently, 
deep learning methods have been the subject of attention for 
many researchers, as they can process large scale and high-
dimensional datasets [1], [15]-[17] and learn the nonlinear 
feature representation. Therefore, in this work, we propose a 
deep learning stacked auto-encoder (SAE) network for 
vibration feature extraction (VFE; VFE-SAE) in bearing fault 
diagnosis, which can obtain high-level features and improve 
the separation capability of data. In VFE-SAE, the vibration 
features are extracted from the original vibration signal as an 
activation function after unsupervised layer intelligent 
training by SAE. Due to the learning of feature representation 
based on transfer learning [18], the target data features are 
extracted automatically. In the previous layer intelligent 
training of SAE, the weight matrix at the hidden layers is used 
to extract the features as the transfer learning. The extracted 
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features are then used to identify the actual work status by the 
trained classifier model. 

Aiming at the objective of identification of target vibration 
data, a classifier model is necessary which is constructed to 
identify the extracted features. Popular classification 
methods, e.g., 𝑘𝑘-nearest-neighbor (k-NN) [19], artificial 
neural networks (ANNs) [20]-[22], or support vector 
machines (SVM) [20], [23], have been successfully applied 
to vibration data. However, k-NN and ANN have a number 
of problems, e.g., restricted by training sample size, the over-
fitting problem, and parameter setting. SVM method, which 
has great generalization capability for the problem of training 
sample size can solve the problem of over-fitting based on 
structural risk minimization principle and local optimal 
solution. 

The least squares support vector machine (LSSVM) was 
proposed by Suykens in 1999 [24] and has been successfully 
employed to diagnose faults in machinery. In fact, a number 
of experiments have proven that LSSVM achieves a good 
compromise between accuracy and generalization 
performance. For example, Ref. [25]-[27] applied LSSVM to 
identify the fault statuses in roller bearings; in [28] LSSVM 
is used to diagnose the faults of centrifugal pump; Ref. [29] 
used LSSVM in multi-fault diagnosis for rotating machinery. 
LSSVM can be applied not only to the classification problem 
but also to the case of regression. LSSVM possess features 
that characterize the maximum margin algorithm, in which, a 
non-linear kernel function is introduced by linear learning 
machine mapping the low-dimensional inseparable feature 
space into high-dimensional separable feature space. 
Therefore, in this study, we finally choose LSSVM as a 
classification model for bearing fault diagnosis. We also used 
a particle swarm optimization (PSO) algorithm to optimize 
the parameter pair (𝛾𝛾,𝜎𝜎) of LSSVM (LSSVM-PSO). The 
LSSVM-PSO model is advantageous because it combines the 
regression analysis and generalization performance of the 
basic LSSVM model with the PSO parameter pair (𝛾𝛾,𝜎𝜎), 
which is trained depending on the labelled training feature set. 
The trained LSSVM-PSO model is then used to identify the 
vibration features of the target data based on VFE-SAE, 
which is hereafter expressed as the diagnosis technique in this 
study (VFE-SAE - LSSVM-PSO). 

The rest of the paper is organized as follows: Section 2 
presents the singular auto-encoder (AE) architecture; 
Section 3 presents the proposed VFE-SAE method for feature 
extraction of training data and target data; Section 4 presents 
the proposed VFE-SAE - LSSVM-PSO diagnosis technique, 
the optimal LSSVM-PSO model is constructed to classify the 
high-level vibration feature; Section 5 analyzes and discusses 
the experimental results of the proposed technique based on 
roller bearing vibration data with multi-level faults; and 
Section 6 outlines the conclusions. 

2. SINGULAR AUTO-ENCODER ARCHITECTURE 
An auto-encoder (AE) is a particular neural network 

architecture, which works as an unsupervised learning 
algorithm. Fig.1. shows a three-layer auto-encoder,  
i.e., an input layer, hidden layer, and output layer,  
which has two stages: encoder and decoder.  
In the auto-encoder, the input layer 𝑓𝑓 = {𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛}, hidden 

layer ℎ = {ℎ1, ℎ2, … , ℎ𝑚𝑚},𝑚𝑚 ≪ 𝑛𝑛  and output layer 
𝑓𝑓 = �𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛� are sequentially connected. The auto-
encoder is trained to replicate its input at its output. 

The encoder stage accomplishes feature representation 
from the high-dimensional input 𝑓𝑓 = {𝑓𝑓1, 𝑓𝑓2, … , 𝑓𝑓𝑛𝑛} to low-
dimensionality data in the hidden layer, ℎ =
{ℎ1, ℎ2, … , ℎ𝑚𝑚}(𝑚𝑚 ≪ 𝑛𝑛). Similar to the mapping, the input 
and hidden layers are connected by the feed-forward 
activation function ℎ = 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝑊𝑊(1). 𝑓𝑓 + 𝑏𝑏(1)) in which 
𝑊𝑊(1) is weight matrix and 𝑏𝑏(1) is a bias vector. In other 
words, each input of vector 𝑓𝑓 is transformed into hidden 
representation ℎ which can compactly express the features of 
the input. In contrast, the decoder stage is implemented to 
reconstruct the input 𝑓𝑓. At this stage, the input data ℎ back 
map the output data 𝑓𝑓 with high-level feature representation. 
The activation function 𝑓𝑓 = 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺(𝑊𝑊(2). 𝑙𝑙 + 𝑏𝑏(2)) is 
used to connect the ℎ data with 𝑓𝑓 data. The weight matrix 
𝑊𝑊(2) = �𝑊𝑊(1)�

𝑇𝑇
 is referred to tied weights and the 𝑏𝑏(2) is the 

bias vector in the decoder stage. 

 

Fig.1.  Illustration of deep auto-encoding. 

The auto-encoder is optimized by constructing it with the 
�𝑊𝑊(1),𝑊𝑊(2), 𝑏𝑏(1), 𝑏𝑏(2)� parameter set, which aims to 
minimize the reconstruction error at the output. The cost 
function can be expressed as follows: 

 𝐶𝐶 = 1
𝑁𝑁
∑ ∑ �𝑓𝑓𝑖𝑖

(𝑛𝑛) − 𝑓𝑓𝑖𝑖
(𝑛𝑛)�

2
𝑖𝑖

𝑁𝑁
𝑛𝑛 + 𝜆𝜆 ∗ Ω𝑊𝑊 + 𝛽𝛽 ∗ Ω𝑆𝑆, (1) 

where 𝑖𝑖 is the number of variables in input data, 𝑁𝑁 is the 
number of training samples, denotingthe 𝐿𝐿2 regularization 
term defined by (2), Ω𝑆𝑆 is the sparsity regularization term 
defined by (3), 𝜆𝜆 is the coefficient for the Ω𝑊𝑊, 𝛽𝛽 is the 
coefficient for the Ω𝑆𝑆. 

Main ideas, theory and mathematical formulations, include 
the data on the measuring method and instruments as well as 
experimental results. This part should be accompanied by 
exact references. 

 Ω𝑊𝑊 = ∑ ∑ ∑ �𝑊𝑊𝑖𝑖𝑖𝑖
(𝑘𝑘)�

2
𝑖𝑖𝑖𝑖𝑘𝑘 , (2) 
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 Ω𝑆𝑆 = ∑ ∑ 𝐾𝐾𝐿𝐿�𝜌𝜌 ∥ 𝑝𝑝𝑖𝑖
(𝑘𝑘)�𝑖𝑖𝑘𝑘 , (3) 

where 𝑝𝑝𝑖𝑖
(𝑘𝑘) is the mean activation for unit 𝑗𝑗 in layer 𝑘𝑘, 𝜌𝜌 is the 

desired mean activation. 𝐾𝐾𝐿𝐿 is the Kullback-Leibler 
divergence, which is defined as follows. 

 𝐾𝐾𝐿𝐿�𝜌𝜌 ∥ 𝑝𝑝𝑖𝑖
(𝑘𝑘)� = 𝜌𝜌 log 𝜌𝜌

𝑝𝑝𝑗𝑗
(𝑘𝑘) + (1 − 𝜌𝜌) log 1−𝜌𝜌

1−𝑝𝑝𝑗𝑗
(𝑘𝑘) . (4) 

Indeed, each auto-encoder is trained independently and the 
feature data (which contain most of the important input 
information) is extracted from the auto-encoder in the hidden 
layer’s nodes. In doing so, the data is successfully mined for 
information. The obtained feature data serves as input for the 
next auto-encoder, in which higher-level feature 
representation is generated. 

3. PROPOSED VFE-SAE METHOD 
A stacked auto-encoder (SAE) is a deep learning network, 

which consists of multiple layers of AEs. This deep learning 
network architecture represents the input data features based 
on unsupervised layer-wise training. SAE is applied to 
bearing vibration data as vibration feature extraction. 

A. Stacked auto-encoders (SAE) 
Auto-encoders can be stacked to build deep learning 

network which has more than one hidden layer [30]. Fig.2. 
shows a typical example of SAE structure, which includes 
two encoding layers and two decoding layers. At the encoding 
stage, the output of the first encoding layer acts as the input 
data of the second encoding layer. Supposing there are 𝑁𝑁 
hidden layers in the encoding part, we have the activation 
function of the 𝑘𝑘 − 𝑡𝑡ℎ encoding layer: 

 ℎ(𝑘𝑘+1) = 𝑓𝑓𝑒𝑒�𝑊𝑊(𝑘𝑘+1)𝑦𝑦(𝑘𝑘) + 𝑏𝑏(𝑘𝑘+1)� (5) 

 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1 , 

where the input 𝑦𝑦(0) is the original data 𝑥𝑥; the output ℎ(𝑘𝑘) of 
the last encoding layer are the high-level features extracted 

by the SAE network. At the decoding stage, the output of the 
first decoding layer is regarded as the input of the second 
decoding layer. The decoding function of the 𝑘𝑘 − 𝑡𝑡ℎ 
decoding layer is. 

 𝑧𝑧(𝑘𝑘+1) = 𝑓𝑓𝑑𝑑 ��𝑊𝑊(𝑁𝑁−𝑘𝑘)�
𝑇𝑇
𝑧𝑧(𝑘𝑘) + 𝑏𝑏′(𝑘𝑘+1)� (6) 

 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1 , 

where the input 𝑧𝑧(0) of the first decoding layer is the output 
𝑦𝑦(𝑁𝑁) of the last encoding layer; the output 𝑧𝑧(𝑁𝑁) of the last 
decoding layer is the reconstruction of the original data 𝑥𝑥; 
𝑓𝑓𝑒𝑒, 𝑓𝑓𝑑𝑑 are the transfer functions of encoding and decoding, 
respectively. 𝑓𝑓𝑒𝑒 , 𝑓𝑓𝑑𝑑 are defined by (7). 

 𝑓𝑓(𝑥𝑥) = 1
1+𝑒𝑒−𝑧𝑧

 . (7) 

 

Fig.2. Deep learning SAE network based on two AE. 

B. Proposed VFE-SAE based feature extraction 
Vibration signal pre-processing is required by using the 

FFT method which can reveal the transient events or shocks 
defined as the mechanical disturbances of fault. Based on the 
transformed data, VFE-SAE will extract the significant 
features of vibration signal which can generate the best results 
of diagnosis accuracy. 

 

Fig.3.  Proposed VFE-SAE method-based feature extraction. 
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Fig.3. shows the proposed VFE-SAE method for extracting 
the features. At the stage of feature presentation learning, 
SAE is trained as the wise layers with a collection of vibration 
signals corresponding to bearing conditions without label. 
The vibration data is pre-processed into frequency domain 
data and is used in SAE to train the unlabeled data. The output 
of the SAE is the best of features. While the labelled data is 
used in fine-tuning of the classification model. At the feature 
extraction stage of target data, the optimized weighs at the 
hidden layer are transformed for extracting the target features 
as a learning process. The extracted feature data is then fed to 
the well-trained classifier model to identify the target data. 

The feature extraction process based on VFE-SAE is 
provided as follows: 

Step 1: Prepare data for training SAE. This data is 
collected from the history vibration data. 

Step 2: Train the first auto-encoder which includes the first 
encoding layer and the last decoding layer. The network 
weights 𝑊𝑊(1), 𝑏𝑏(1) and the features ℎ(1) which are the output 
of the first encoding layer can be obtained. 

Step 3: Use ℎ(𝑘𝑘) as the input data to train the (𝑘𝑘 +  1) − 𝑡𝑡ℎ 
encoding layer. Thus, 𝑊𝑊, 𝑏𝑏(𝑘𝑘+1)and the features ℎ(𝑘𝑘+1) can 
be obtained, where 𝑘𝑘 =  1, 2, . . . ,𝑁𝑁 −  1 and 𝑁𝑁 is the number 
of hidden layers in the deep learning network. 

After the layer-wise training is repeated in the number of 
initializations of auto-encoder, the SAE training process is 
completed. In the last auto-encoder, the encoded output 
features are extracted at the hidden layer which represent the 
highest-level characteristic designed by the initial procedure. 

4. PROPOSED FAULT DIAGNOSIS TECHNIQUE BASED ON VFE-
SAE AND LSSVM-PSO 

The VFE-SAE method-based feature extraction is 
combined with an optimal classifier model to exploit the 
effectiveness of a vibration data diagnosis technique, in 
which the basic LSSVM model is used to build the classifier 
with the parameter pair optimized by the PSO algorithm, i.e., 
LSSVM-PSO. The flowchart of the proposed diagnosis 
technique is depicted in Fig.5. 

A. LSSVM-PSO classification model 
A diagnosis model is constructed to identify the target 

vibration data by the proposed feature representation. The 
LSSVM-PSO model takes the advantages of the basic 
LSSVM, i.e., regression analysis and generalization with the 
parameter pair (𝛾𝛾,𝜎𝜎) optimized by the PSO algorithm, which 
is trained depending on the labeled training feature set as fine-
tuning. This trained LSSVM-PSO model is then used to 
identify the vibration features of the target data as the 
classifying pattern. 

A.1.  LSSVM classifier 
LSSVM introduces a least squares linear system into the 

SVM, which was initially put forward by Suykens in 1999 
[24]. LSSVM has solved the convex optimization problems 
outlined below (which attempt to identify an optimal 
separating hyperplane) with good generalization.  

Suppose that {(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)|𝑖𝑖 = 1,2, … , 𝑙𝑙} is the training set of 
samples 𝑙𝑙. The sample of 𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝑙𝑙 corresponds to the 

category of 𝑦𝑦𝑖𝑖 ∈ (−1,1); the objective function and 
constraint condition are thus shown as follows: 

 �
𝑚𝑚𝑖𝑖𝑛𝑛(𝐽𝐽𝐿𝐿𝑆𝑆) 𝑤𝑤𝑖𝑖𝑡𝑡ℎ  𝐽𝐽𝐿𝐿𝑆𝑆(𝑤𝑤, 𝑒𝑒) = 1

2
𝑤𝑤𝑇𝑇𝑤𝑤 + 1

2
𝛾𝛾 ∑ 𝑒𝑒𝑖𝑖2𝑙𝑙

𝑖𝑖=1

𝑠𝑠. 𝑡𝑡.  𝑦𝑦𝑖𝑖 = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏 + 𝑒𝑒𝑖𝑖 ,   𝑖𝑖 = 1,2, … , 𝑙𝑙     
, (8) 

where 𝑒𝑒𝑖𝑖 is the slack variable and 𝛾𝛾 ≥ 0 is the penalty factor 
or regularization parameter. 

The 𝛾𝛾 value will influence the training result of the 
LSSVM model: a low value reflects a high number of training 
errors, whereas a high value does not permit any slack 
variables and consequently increases model complicity. 
Therefore, it is critical to find a proper value for 𝛾𝛾, and it is a 
vital LSSVM tuning parameter that should be adjusted 
conscientiously. 

Defining the Lagrange function: 

 𝐿𝐿(𝑤𝑤, 𝑏𝑏, 𝑒𝑒,𝛼𝛼) = 1
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 1

2
𝛾𝛾 ∑ 𝑒𝑒𝑖𝑖2𝑙𝑙

𝑖𝑖=1 − ∑ 𝛼𝛼𝑖𝑖(𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) +𝑙𝑙
𝑖𝑖=1

+𝑏𝑏 + 𝑒𝑒𝑖𝑖 − 𝑦𝑦𝑖𝑖),  (9) 

where 𝛼𝛼𝑖𝑖 is the Lagrange multiplier, which can be positive or 
negative. The optimum condition is as follows: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕

= 0  ⇒ 𝑤𝑤 = ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝜑𝜑(𝑥𝑥𝑖𝑖)𝑙𝑙
𝑖𝑖=1              

𝜕𝜕𝐿𝐿
𝜕𝜕𝜕𝜕

= 0  ⇒ ∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝑙𝑙
𝑖𝑖=1 = 0                         

𝜕𝜕𝐿𝐿
𝜕𝜕𝑒𝑒𝑖𝑖

= 0  ⇒ 𝛼𝛼𝑖𝑖 = 𝛾𝛾𝑒𝑒𝑖𝑖                                   
𝜕𝜕𝐿𝐿
𝜕𝜕𝛼𝛼𝑖𝑖

= 0  ⇒ 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏 + 𝑒𝑒𝑖𝑖 − 𝑦𝑦𝑖𝑖 = 0

. (10) 

The matrix equation can be easily obtained as follows: 

 �
0 𝑌𝑌𝑇𝑇

𝑌𝑌 Ω + 𝐼𝐼
𝛾𝛾
� �𝑏𝑏𝛼𝛼� = �0𝐼𝐼 ̅�, (11) 

where: 𝑌𝑌𝑇𝑇 = [𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑙𝑙]; 𝐼𝐼 is the unit matrix 𝐼𝐼 ̅ =
[1,2, … , 𝑙𝑙]𝑇𝑇, 𝛼𝛼 = [𝛼𝛼1,𝛼𝛼2, … ,𝛼𝛼𝑙𝑙]𝑇𝑇, Ω = 𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝜑𝜑𝑇𝑇(𝑥𝑥𝑖𝑖)𝜑𝜑�𝑥𝑥𝑖𝑖� =
𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖�, and 𝐾𝐾�𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖� is the SVM Kernel function. 

The LSSVM classifying function can be finally obtained 
as follows: 

 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑛𝑛�∑ 𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏𝑙𝑙
𝑖𝑖=1 �. (12) 

Table 1.  Common Kernel functions. 

Kernels Expressions Equation 
Linear 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 𝑥𝑥𝑇𝑇 ∙ 𝑦𝑦 (13) 
Polynomial 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = (𝑎𝑎𝑥𝑥𝑇𝑇 ∙ 𝑦𝑦 + 𝑏𝑏)𝑐𝑐 (14) 

Gauss RBF 
𝐾𝐾(𝑥𝑥, 𝑦𝑦)

= 𝑒𝑒𝑥𝑥𝑝𝑝 �−
‖𝑥𝑥 − 𝑦𝑦‖2

2𝜎𝜎2
� (15) 

Sigmoid 𝐾𝐾(𝑥𝑥, 𝑦𝑦) = 𝑡𝑡𝑎𝑎𝑛𝑛(𝑎𝑎𝑥𝑥𝑇𝑇 ∙ 𝑦𝑦 + 𝑏𝑏) (16) 

A.2.  PSO algorithm 
PSO is an algorithm for locating the optimum value of 

continuous nonlinear function introduced by Eberhart and 
Kennedy in (1995) [31]. PSO implementation is based on 
position and velocity which are two unique characteristics of 
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each particle. The particle with no volume is distributed in 
search space and seeks for the optimum function location. All 
particles except global best want to accelerate toward the 
global best and their local best. Therefore, a particle’s new 
velocity can be obtained by summing its last velocity and 
local and global best trajectory vectors. The basic PSO 
mathematical expressions are as follows: 

 𝑣𝑣𝑠𝑠𝑑𝑑𝑛𝑛+1 = 𝑤𝑤𝑣𝑣𝑠𝑠𝑑𝑑𝑛𝑛 + 𝑐𝑐1𝑟𝑟1(𝑝𝑝𝑠𝑠𝑑𝑑𝑛𝑛 − 𝑥𝑥𝑠𝑠𝑑𝑑𝑛𝑛 ) + 𝑐𝑐2𝑟𝑟2�𝑝𝑝𝑔𝑔𝑑𝑑𝑛𝑛 − 𝑥𝑥𝑠𝑠𝑑𝑑𝑛𝑛 � ,(17) 

 𝑥𝑥𝑠𝑠𝑑𝑑𝑛𝑛+1 = 𝑥𝑥𝑠𝑠𝑑𝑑𝑛𝑛 + 𝑣𝑣𝑠𝑠𝑑𝑑𝑛𝑛+1, (18) 

where it is supposed that species consisting of 𝑆𝑆 particles are 
marked as 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑆𝑆) and fly at a certain speed 𝑣𝑣𝑠𝑠 =
[𝑣𝑣𝑠𝑠1, 𝑣𝑣𝑠𝑠2, … , 𝑣𝑣𝑠𝑠𝑑𝑑]𝑇𝑇 , 𝑠𝑠 = 1,2, … , 𝑆𝑆 in the solution space. The 
search space dimensions are denoted by 𝑑𝑑, and the speed can 
be adjusted dynamically according to historical behavior. The 
optimal search position is 𝑝𝑝𝑠𝑠 = [𝑝𝑝𝑠𝑠1, 𝑝𝑝𝑠𝑠2, … , 𝑝𝑝𝑠𝑠𝑑𝑑]𝑇𝑇 and 𝑝𝑝𝑠𝑠𝑑𝑑  is 
the optimum solution searched by particle 𝑆𝑆 in 𝑑𝑑-dimensional 
space, 𝑤𝑤 is the dynamic inertia weight value, which is 
introduced to control the local and global optimization 
performance; 𝑛𝑛 is iteration number; random variables of 𝑟𝑟1 
and 𝑟𝑟2 obey uniform distribution of the interval {0,1}; 
𝑐𝑐1 and 𝑐𝑐2 are acceleration constants. 

As mentioned in the upper sub-section, the dependency of 
the mean square error of predicted targets on LSSVM tuning 
parameters is not direct and linear. In addition, in the radial 
basis function (RBF) kernel, it is difficult to find proper 
values for 𝛾𝛾 and 𝜎𝜎 through continuous intervals. Due to these 
constraints, it is necessary to combine PSO with LSSVM to 
produce better results. 

A.3.  Optimized LSSVM-PSO classifier model 
The parameter pair (𝛾𝛾,𝜎𝜎) of LSSVM plays a crucial role 

in model construction, it can be obtained using the PSO 
algorithm. This algorithm is used to explore the search space 
of the given LSSVM classification problem to find the 
parameter pair (𝛾𝛾,𝜎𝜎), which is required to maximize the 
particular objective of accuracy. The principled training 
phase of the optimal LSSVM-PSO classifier model includes 
several main steps as follows: 

Step 1: Prepare the training feature set, which is extracted 
by VFE-SAE after pre-processing the original vibration data. 

Step 2: This is an initialization step, in which the initial 𝛾𝛾 
and 𝜎𝜎 parameters are randomly set for LSSVM. Here, the 
maximum iteration number 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is set as well as the iterative 
variable 𝑡𝑡 = 0 to perform the training process for the next 
steps. For this optimization algorithm, the maximum iteration 
is 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 = 20. 

Step 3: Increase iteration variable by 𝑡𝑡 = 𝑡𝑡 + 1. 
Step 4: Deterioration evaluation. The deterioration 

function is employed to evaluate the quality of every element. 
Equation (19) shows the LSSVM classification accuracy. 

 𝐷𝐷𝑒𝑒𝑡𝑡𝑒𝑒𝑟𝑟𝑖𝑖𝐷𝐷𝑟𝑟𝑎𝑎𝑡𝑡𝑖𝑖𝐷𝐷𝑛𝑛(%) =
𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑦𝑦𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐𝑖𝑖𝑐𝑐𝑐𝑐

𝑁𝑁
100%, (19) 

where 𝑦𝑦𝑚𝑚𝑐𝑐𝑎𝑎𝑎𝑎𝑚𝑚𝑙𝑙  is the actual sample, 𝑦𝑦𝑐𝑐𝑙𝑙𝑚𝑚𝑠𝑠𝑠𝑠𝑖𝑖𝑐𝑐𝑖𝑖𝑒𝑒𝑑𝑑  is the classified 
sample, and 𝑁𝑁 is the total number of samples in the testing 
process. For a high classification accuracy, the absolute value 
should be small. 

Step 5: Stop criteria checking. If the deterioration function 
is satisfied by (19) or iteration is maximal, go to Step 7. If not, 
go to Step 6. 

Step 6: Update the new 𝛾𝛾 and 𝜎𝜎 parameters and return to 
Step 3. 

Step 7: End the training procedure, the fitting parameters 
are the optimal output values. 

The efficient search capability of PSO algorithm 
incorporated with the generalization capability of LSSVM 
can bring out the higher classification accuracy. The LSSVM-
PSO architecture is presented in Fig.4. Each reactant 
represents the candidate solution for the model, which 
includes the penalty parameter 𝛾𝛾 and the kernel function 
parameter 𝜎𝜎. 

 

Fig.4.  Constructing the optimal LSSVM-PSO classifier model. 

B. Proposed VFE-SAE - LSSVM-PSO diagnosis technique 
This section presents a complete roller bearing fault 

diagnosis technique, i.e., the proposed VFE-SAE - LSSVM-
PSO. The VFE-SAE feature extraction method effectively 
combines with the optimized LSSVM-PSO classifier model. 
In particular, a deep learning SAE network with a strong 
ability for high-dimensionality data is constructed to extract 
vibration data features, and, based on layer-wise training, 
transfer learning is used to increase efficiency by introducing 
the LSSVM-PSO classifier model. Fig.5. shows the VFE-
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SAE - LSSVM-PSO implementation, which is also explained 
below. 

Step 1: Collect vibration data. 
Step 2: Conduct FFT-based pre-processing. 
Step 3: Conduct VFE-SAE-based feature extraction, the 

process of which is outlined below. 
1. Pre-processed training data is used to train the deep 

learning SAE network, where the features are extracted 
from the hidden layers of deep learning SAE network, 
which is an unsupervised learning method in feature 
representation. 

2. The feature of pre-processed target data is extracted by 
the  transfer  learning  method.  In  doing  so, the weight 

matrices at hidden layer of the SAE network are 
transformed, and, due to the learning, the target features are 
extracted.  
Step 4: Construct an optimal LSSVM-PSO classifier 

model to classify the actual vibration. 
The extracted feature set of the training data is used to train 

the optimal classifier model, i.e., the LSSVM classifier and 
PSO algorithm. In which, the supervised learning algorithm 
is applied to train the model. Accordingly, the target data can 
then be obtained by the trained LSSVM-PSO classifier model 
for identifying the target data. 

 

 

Fig.5.  VFE-SAE - LSSVM-PSO diagnosis technique. 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Data acquisition 
The experimental dataset was collected in the Bearing Data 

Center at Case Western Reserve University (Loparo, 2013) 
with the experimental setup model shown in Fig.6., which 
consists of a 2 HP reliance electric motor, a torque transducer, 
and a dynamometer. A placed DE roller bearing was used as 
the test bearing with a shaft speed of 1797 rpm and a sampling 

frequency of 12 kHz. Four test conditions were examined: 
healthy bearing (HB), inner-race defect (IRD), outer-race 
defect (ORD) and roller element defect (RED), which are 
detailed in twelve classes. The collected time-domain 
vibration data for these bearing conditions is detailed in 
Table 2., and a sample of waveforms is depicted in Fig.7. for 
bearing statuses. As a result, 180 samples in total are acquired 
in the group with each bearing condition of 15 samples in 
length of 1024 sample points. 



MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 4, 177-186 

183 

Table 2.  Collection of vibration signal samples. 

Bearing status 
Number 
of 
samples 

Defect 
size 
(inch) 

ID 
class 

Normal (𝑥𝑥1 − 𝑥𝑥15) 15 - 1 
Inner race fault 1  
(𝑥𝑥16 − 𝑥𝑥30) 

15 0.007 2 

Inner race fault 2  
(𝑥𝑥31 − 𝑥𝑥45) 

15 0.014 3 

Inner race fault 3 
(𝑥𝑥46 − 𝑥𝑥60) 

15 0.021 4 

Inner race fault 4 
(𝑥𝑥61 − 𝑥𝑥75) 

15 0.028 5 

Outer race fault 1 
(𝑥𝑥76 − 𝑥𝑥90) 

15 0.007 6 

Outer race fault 2  
(𝑥𝑥91 − 𝑥𝑥105) 

15 0.014 7 

Outer race fault 3  
(𝑥𝑥106 − 𝑥𝑥120) 

15 0.021 8 

Roller element fault 1 
(𝑥𝑥121 − 𝑥𝑥135) 

15 0.007 9 

Roller element fault 2 
(𝑥𝑥136 − 𝑥𝑥150) 

15 0.014 10 

Roller element fault 3 
(𝑥𝑥151 − 𝑥𝑥165) 

15 0.021 11 

 

Fig.6.  Schematic of the experimental setup. 

 

Fig.7.  A sample of roller bearing vibration data at different statuses 
a) normal bearing, b) inner race fault, c) outer race fault, and d) roller 
element fault. 

B. Result analysis and discussion 
According to the purpose of bearing conditions diagnosis 

with multi-level fault based on target data, this study used 
80 %, 60 %, and 40 % of the above collected vibration data 
to respectively demonstrate three states (I, II, and III) of the 
target datasets in the testing process. 

To extract the vibration data features, three deep learning 
SAE networks were constructed with layer-wise training, 
including one hidden layer (1AE), two hidden layers (2AE), 
and three hidden layers (3AE). The deep learning SAE 
network parameters are detailed in Table 3. The vibration 
data feature sets were used to train and evaluate the proposed 
technique which were extracted by three different SAE 
networks. The final classification results demonstrate the 
capability of feature representation learning for the proposed 
VFE-SAE. Especially, for extensive vibration data, the 
vibration training and target datasets were pre-processed by 
FFT. An illustration for pre-processing vibration data is 
depicted in Fig.8. which presents the important characteristics 
of original vibration data. Additionally, we used transfer 
learning to represent the features of three target dataset states; 
the achieved diagnosis accuracy is high, as shown in Table 5. 
According to the results in Table 4., the time cost only pays 
with low price which is often computationally intensive in 
undertaking transfer learning. The obtained features can be 
then used to evaluate the classifier model. 

 

Fig.8.  A sample of pre-processing data at different statuses 
a) normal bearing, b) inner race fault, c) outer race fault, 
and d) roller element fault. 

Based on VFE-SAE, the extracted feature set of the 
training data can be used to build the LSSVM-PSO, which, in 
turn, can be used to identify the target data with the accurate 
results. Furthermore, to demonstrate capability of the 
proposed technique, which is the feature representation based 
on the VFE-SAE method and the LSSVM-PSO classifier, we 
also built three LSSVM-GA, LSSVM and feed forward 
neural network (FFNN) classifier models for comparing the 
diagnosis results. The target data-based diagnosis results are 
shown in Table 5. - Table 8., respectively. 
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Table 3.  The parameters of deep learning SAE network. 

 Hidden layer 
units λ β 

1AE 20 0.01 6 
2AE 10 0.001 4 
3AE 10 0.001 4 

Table 4.  Target data feature representation time. 

 Samples of 
target data 

VFE-SAE 
(s) 

Transfer 
learning 
(s) 

State I 144 8.424 0.171 
State II 108 7.410 0.140 
State III 72 6.536 0.156 

 
In these tables, the results show that pre-processing data is 

superior. The obtained classification results based on the 
original vibration data are lower than the pre-processed data, 
which is compared at the columns on the left side with the 
right side, respectively. This means that the original vibration 
data is inefficient for feature representation learning and 
classification. In contrast, the pre-processed data revealed 
clear local structures in the original data and the purity, which 
generated significant classification results. Furthermore, the 
implementation of transfer learning plays an important role in 
extracting significant features, which are then used to obtain 

highly accurate diagnosis results, higher than 97 % accuracy 
for 80 % target data of Stage I. Thus, in comparison with 
other techniques, the proposed VFE-SAE - LSSVM-PSO 
diagnosis technique obtained more accurate classification 
results, as shown in Table 5. 

From Table 5., it is evident that the combination of VFE-
SAE (high-level extracted features) and LSSVM-PSO 
(optimization) generates the superior classification results at 
all three stages of target data. At Stage III, the maximum 
efficiency for VFE-SAE–LSSVM-PSO is 97.94 % for 2AE 
architecture, for 1AE and 3AE architecture, it is 97.09 % and 
96.20 %, respectively. In light of this information, it is 
evident that the deep learning SAE network with two layers 
of wise training is constructed for extracting the high-level 
features of bearing vibration data and classification accuracy 
of optimal model. There is a noticeable problem for the 3AE 
architecture-based VFE: The obtained classification accuracy 
results are lower than other 1AE and 2AE architectures for all 
three stages of target data. This is probably due to the fact that 
the features were generated in a large number of hidden layers 
and were generally invariant to local changes in the data. 
Each extracted feature contains more abstract of the original 
vibration signal. More information can be found in [17]. 
Finally, the proposed VFE-SAE - LSSVM-PSO technique is 
very efficient in terms of VFE-SAE feature representation 
and LSSVM-PSO classification model, which is illustrated in 
Fig.9. 

 

Table 5.  Classification accuracy results of LSSVM-PSO (%). 

 Using original vibration data Using pre-processed data 
1AE 2AE 3AE 1AE 2AE 3AE 

Stage I 85.57 85.26 85.55 97.10 97.76 96.46 
Stage II 86.41 87.09 87.24 95.08 95.74 94.03 
Stage III 85.64 84.32 86.72 97.09 97.94 96.20 

 

Table 6.  Classification accuracy results of LSSVM-GA (%). 

 Using original vibration data Using pre-processed data 
1AE 2AE 3AE 1AE 2AE 3AE 

Stage I 85.02 85.24 84.79 96.58 96.24 96.04 
Stage II 86.17 85.13 86.13 94.48 95.07 94.48 
Stage III 86.34 86.06 88.24 96.58 96.22 96.58 

 

Table 7.  Classification accuracy results of LSSVM (%). 

 Using original vibration data Using pre-processed data 
1AE 2AE 3AE 1AE 2AE 3AE 

Stage I 17.93 18.98 17.36 86.81 87.96 84.72 
Stage II 25.31 23.46 19.14 89.50 91.66 89.50 
Stage III 28.70 25.46 15.74 86.57 85.18 85.65 

 

Table 8.  Classification accuracy results of FFNN (%). 

 Using original vibration data Using pre-processed data 
1AE 2AE 3AE 1AE 2AE 3AE 

Stage I 12.97 11.57 13.20 75.47 75.03 59.73 
Stage II 9.90 11.10 12.03 63.90 60.17 52.80 
Stage III 10.63 7.43 9.23 78.23 74.10 56.03 
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Fig.9.  Comparisons of classification accuracy results. 

6. CONCLUSIONS 
In this paper, the high-level features were extracted from 

vibration data by deep learning SAE network constructed 
with two layers of wise training. The optimized SAE 
architecture with an activation function was used to exploit 
the vibration features, which improved the separation 
capability in classifying the vibration data. Transfer learning 
was applied to the feature extraction of vibration target data. 
Additionally, the optimal LSSVM-PSO classifier model was 
then constructed to fine-tune the extracted training feature set 
and classify the vibration target data. Experiments were 
conducted to obtain roller bearing vibration data with multi-
level faults under four conditions. The proposed VFE-SAE - 
LSSVM-PSO diagnosis technique outperformed the other 
classifier models. In particular, the extracted features based 
on VFE-SAE were highly accurate of classification. The 
result was compared to other feature extraction methods. The 
discriminative ability of extracted features also demonstrated 
the effective performance of LSSVM-PSO. In future work, 
we would like to improve the feature representation learning 
(based on deep learning networks) to identify the random 
target fault status of roller bearings without training data or 
under different conditions. 
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