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Abstract: The miniature sensor devices and power-efficient Body Area Networks (BANs) for Human Activity Recognition (HAR) have 

gained increasing interest in different fields, including Daily Life Assistants (DLAs), medical treatment, sports analysis, etc. The HAR 

systems normally collect data with wearable sensors and implement the computational tasks with a host machine, where real-time 

transmission and processing of sensor data raise a challenge for both the network and the host machine. This investigation focuses on the 

hardware/software co-design for optimized sensing and computing of wearable HAR sensor networks. The contributions include (1) design 

of a miniature wearable sensor node integrating a Micro-Electro-Mechanical System Inertial Measurement Unit (MEMS IMU) with a 

Bluetooth Low Energy (BLE) in-built Micro-Control Unit (MCU) for unobtrusive wearable sensing; (2) task-centric optimization of the 

computation by shifting data pre-processing and feature extraction to sensor nodes for in-situ computing, which reduces data transmission 

and relieves the load of the host machine; (3) optimization and evaluation of classification algorithms Particle Swarm Optimization-based 

Support Vector Machine (PSO-SVM) and Cross Validation-based K-Nearest Neighbors (CV-KNN) for HAR with the presented techniques. 

Finally, experimental studies were conducted with two sensor nodes worn on the wrist and elbow to verify the effectiveness of the recognition 

of 10 virtual handwriting activities, where 10 recruited participants each repeated an activity 5 times. The results demonstrate that the 

proposed system can implement HAR tasks effectively with an accuracy of 99.20 %. 

Keywords: Integrated sensing and computing, Human Activity Recognition (HAR), Body Area Networks (BANs), Micro-Electro-

Mechanical System Inertial Measurement Unit (MEMS IMU), Bluetooth Low Energy (BLE). 

 

1. INTRODUCTION 

With the continuous progress of novel sensing and 
computing techniques, Human Activity Recognition (HAR) 
has attracted extensive attention and become a promising 
approach for applications in medical treatment, body 
kinematics, Human-Computer Interaction (HCI), Virtual 
Reality (VR), motion analysis, Daily Living Assistant (DLA) 
and elderly care [1]-[4]. Compared with Computer Vision 
(CV)-based techniques, the wearable sensing device-based 
solution breaks the limits of space by getting rid of the fixed 
and bulky equipment. It is not only free from privacy leaks 
but also convenient to use in people's daily life. It is 
undeniable that a wearable sensing network has become a 
competitive solution for various HAR applications [5].  

In recent years, many novel wearable HAR techniques and 
systems have been reported in the literature [6]. These HAR 
systems mainly improve the performance of the system by 
introducing new sensing techniques and mounting sensors on 
new body part locations [7] or combining with wireless 
communication technologies, such as WIFI, Bluetooth [8], 
Radio Frequency Identification (RFID), and ZigBee [9], [10]. 
Wearable HAR systems can be divided into two categories: 
single-sensor systems and multi-sensor systems. 

There are many single-sensor HAR-related studies for 
different applications [11], [12], such as household appliance 
control [13], exercise data recording [14], and daily activity 
recognition [15], [16]. Irene et al. [17] developed a low-cost 
wearable sensor node with a triaxial accelerometer that could 
transmit data to a PC via ZigBee and recognize simple daily 
life motions based on leg kinematics, including sitting, 
standing, and walking. Yen et al. [18] proposed a waist 
wearable device for daily activity analysis of patients with 
diseases like dialysis patients who have blood vessel 
prostheses on their arms, which make them inconvenient for 
strenuous exercises. However, the data collected by a single 
sensor may contain fewer features, which may be inadequate 
for accurate classification. Therefore, many investigations 
tend to integrate more sensors and deal with the multi-channel 
data sources with data fusion algorithms using more powerful 
computing devices. Santoyo-Ramón et al. [19] designed a 
wearable fall detection system based on Body Area Network 
(BAN) with four sensor nodes to transmit data to a 
smartphone via Bluetooth for data processing. Li et al. [20] 
proposed Wi-Motion, a WIFI signal-based human activity 
recognition system. The Wi-Motion introduced the amplitude 
and phase information extracted from the Channel State 
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Information (CSI) sequence and eventually obtained an 
average accuracy of 96.6% for the recognition of 5 typical 
human activities in a Line-of-Sight (LoS) environment. A 
Multi-sensor system usually improves the recognition 
accuracy at the cost of increasing the computational 
complexity [21]. Reducing the computational complexity has 
been a common challenge for multi-sensor HAR systems. 

 

Fig.1.  Diagram of algorithmic flow for HAR. 

The optimization of data processing and decision-making 

algorithms has been considered an effective way of 

improving the performance of HAR. As shown in Fig.1., 

HAR functions mainly include four steps: data collection, 

data segmentation, feature extraction, and classification. The 

improvement towards an optimized HAR algorithm mainly 

focuses on the steps of feature extraction and classification.  

Hsu et al. [22] utilized the nonparametric weighted feature 

extraction algorithm and the Principal Component Analysis 

(PCA) to reduce the dimensions of features, which can 

achieve a recognition accuracy of 98.23 % for 10 common 

domestic activities. Tian et al. [23] used a hybrid feature 

selection method based on Game Theory-based Feature 

Selection (GTFS) and Binary Firefly Algorithm (BFA) to 

optimize the feature set and classification parameters and 

used the kernel extreme learning machine as the classifier, 

which resulted in a robust system. Hassan et al. [24] proposed 

a smartphone inertial sensors-based HAR system, which used 

Kernel Principal Component Analysis (KPCA) and Linear 

Discriminant Analysis (LDA) for further processing of the 

features, and used Deep Belief Networks (DBN) to train the 

features for recognition. The performance is better than 

normal Artificial Neural Networks (ANNs). In addition, there 

are many related investigations of algorithm optimization for 

HAR [25]-[29]. Although the algorithm optimization can 

improve the accuracy of HAR, it may increase the 

computational complexity which eventually introduces a 

heavier load for the host machines. 

Wearable HARs have made significant progress in both 

sensing devices and algorithms, but they still face technical 

challenges. Firstly, the sensor nodes are usually bulky for 

wearable applications, which may affect people’s daily 

activities; Secondly, the sensor nodes normally send raw data 

to a host PC for further processing, which requires high 

throughput of wireless communication; Thirdly, the data 

fusion, feature extraction, and classification algorithms may 

introduce computational load to the host PC and jeopardize 

its real-time performance. Therefore, the investigations of 

optimized sensing and computing of wearable systems for 

unobtrusive activity recognition become the trend of HAR. 

Motivated by the above technical challenges, the work of 

this investigation focuses on the following technical issues: 

Firstly, a technical solution for miniaturized wireless sensor 

nodes by integrating MEMS IMU and Bluetooth Low Energy 

(BLE) to constitute a BAN system for unobtrusive HAR; 

Secondly, the optimization of the computational resources by 

allocating in-situ pre-processing and feature extraction to the 

sensor nodes, which relieves the burden of both the data 

transmission of BAN and the computation of host PC; Thirdly, 

the investigation of Particle Swarm Optimization-based 

Support Vector Machine (PSO-SVM) and Cross Validation-

based K-Nearest Neighbors (CV-KNN) for the classification 

of human activities. 

The rest of this article is structured as follows: Section 2 

presents the design of the proposed wearable HAR system 

including the hardware module design and computational 

resource allocation; Section 3 describes the proposed data 

processing algorithm for HAR; Section 4 gives the 

experimental studies to verify the proposed solutions, and the 

conclusion is drawn in Section 5. 

2. SYSTEM DESIGN: SENSOR NODES AND WIRELESS BAN 

The schematic of the wearable BAN for HAR is shown in 

Fig.2. Multiple wearable sensor nodes constitute the BAN for 

data collection via BLE, and the data is transmitted to a host 

PC for further processing and classification. This section 

describes the design of the proposed sensor nodes and the 

corresponding computational resource optimization.  

Serial
BLE

Sensor node ( BLE slave ) BLE host Host PC
 

Fig.2.  Schematic of BLE-based BAN for HAR. 

A. Hardware design of the sensor nodes 

The proposed sensor nodes consist of a MEMS IMU 

MPU6050, a BLE in-built MCU NRF52832, and a coin 

battery. As shown in Fig.3., the main controller NRF52832 is 

a System-on-Chip (SoC) device with a 64 MHz Cortex-

M4 core and an in-built BLE module sized 6.0×6.0 mm. The 

MPU6050 is a MEMS IMU which outputs triaxial 

acceleration and triaxial angular rate sized 4.0×4.0 mm. The 

MCU implements the data collection and pre-processing, and 

transmits the processed data to the host PC via BLE. The 

components are assembled on an FR4 substrate with a 

thickness of 0.8 mm and a size of 4.3×3.5 cm. 

 

a) Sensor node hardware b) Wearable nodes with BLE 

Fig.3.  Wearable sensor nodes with BLE. 



MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 4, 193-201 

195 

B. Optimization of computational resource 

Since the transmission of raw sensor data to the host PC 

may introduce a load for both the communication network 

and the host PC, it is a promising way to allocate part of the 

computational tasks to the sensor nodes. Normally, the 

computation can be separated into three steps: pre-processing, 

feature extraction and processing, and decision making for 

classification. Since the former two steps both handle the raw 

sensor data, they are usually time-consuming. It also takes 

time to transmit the raw data to a host PC. However, the 

decision-making dealing with the limited number of features 

may be a lightweight computation.  

 

Fig.4.  Optimization of computational resources. 

As shown in Fig.4., this investigation introduces an 

integrated sensing and computing technique, which allocates 

the computation tasks of pre-processing and feature 

extraction to the sensor nodes. Then, the limited data of 

features can be transmitted to the host PC via BLE for 

classification and application-specific tasks. By taking 

advantage of the limited computational resources of MCU, 

the time-consuming data transmission can be eliminated. The 

computation load of the host PC can be alleviated by 

distributing the computational tasks to the sensor nodes. 

3. DATA PROCESSING ALGORITHMS FOR WEARABLE HAR 

The raw data obtained from the MEMS IMU are triaxial 

acceleration and triaxial angular rate. To make use of the data 

streaming for activity recognition, the algorithm flow shown 

in Fig.5. is proposed. 

 

Fig.5.  The data processing flowchart for HAR. 

The sensor data acquisition is executed with a sampling 

rate of 100 Hz, followed by data filtering, data segmentation, 

feature extraction, feature data standardization, and feature 

dimensionality reduction. The final step is a feature-based 

classification for the decision-making of activity recognition.  

A. Data pre-processing 

A.1.  Sensor calibration 

For MEMS IMUs, bias error and random noise are the 

main factors that are harmful to the performance of HAR. 

Therefore, the correction of bias and cancellation of random 

error is conducted in the preprocessing. The models of bias 

and random error for the triaxial acceleration and triaxial 

angular rate can be described as follows[30]: 

 ( ) ( ( ), ) ( )r b aa i f a i g a i n= + +  (1) 

 ( ) ( ) ( )r b wi i i n  = + +  (2) 

where ar(i) and ωr(i) are the accelerometer and gyroscope 

measurements, a(i) and ω(i) are the ideal measurements 

without errors, ab(i) and ωb(i) are the biases, na and nw are the 

random noises. In equation (1), f(a(i),g) denotes the force the 

accelerometer measures, where g is the gravitational 

acceleration. For HAR applications, denoising is not a key 

factor determining the performance. Therefore, lightweight 

denoising algorithms are expected to decrease the 

computational load. In this investigation, a static calibration 

is employed to deal with the bias. The sensor is put in a static 

state to collect 500 samples of triaxial acceleration and 

triaxial angular rate for the calibration of bias. To suppress 

the impact of random error, a moving average filter is 

employed for each data sample. 

A.2.  Moving average filter for noise cancellation 

To reduce the influence of random noise in the sensor data 

acquisition, the moving average filter is employed to improve 

the quality of data. The calculation of the moving average 

filter is: 

 
( ) ( 1) ( 1)

( )
x n x n x n N

X n
N

+ + + + + −
=  (3) 

The selection of N is a critical issue, as a too-large N will 

cause data distortion and jeopardize the features of the data, 

and a too-small N may not be able to effectively remove the 

noise. Through repeated experimental verifications, the 

selected window size N is set to 5. 

A.3.  Data segmentation 

Since the input data for human activity recognition is a 

continuous time-series signal, an appropriate length of the 

sliding window should be selected for further feature 

extraction and classification.  

The selection of the window size is also critical for further 

data processing. When the window size is too small, it can 

hardly incorporate enough information to recognize the 

activities. When the window size is too large, it may cause 

serious delays that are unacceptable for the real-time 

requirements of HAR applications. In this investigation, a 

sliding window with a length of 100 sampling points and 50 % 

overlap is selected to segment the continuous signal. 
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B. Feature extraction and dimensionality reduction 

B.1.  Feature extraction 

The process of feature extraction should be able to retain 

the critical information that is contained in the data for HAR. 

The mainstream feature extraction methods for HAR may 

include time domain, frequency domain, and time-frequency 

domain methods. This investigation mainly uses the methods 

of time-domain feature extraction. For each dimension of data, 

8 selected features including mean, standard deviation, 

maximum, minimum, range, kurtosis, skewness, and quartile 

are extracted for further processing. The dimension of the 

feature matrix is 96, which is the product of data channel 12 

and the quantity of features 8.  

B.2.  Feature data standardization 

For the convenience of the following calculations, the scale 

of each feature in the feature vectors should be regulated 

within the same range. The processing of the feature vector in 

this step is named feature data standardization. Suppose the 

matrix of the feature vector is Sn×m where there are n channels 

and each has m features, the standardization is implemented 

with formula (4) to convert the elements in the range [0,1]. 

 
( )var

ij j

ij

j

s s
s

s


−

=  (4) 

where standardized element sij
* is obtained by the original 

element sij, the average of the jth column, and the Root Mean 

Square (RMS) of jth column. The average and RMS of jth 

column can be obtained with (5) and (6). 

 

1

1 n

j ij

i

s s
n =

= 
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 ( ) ( )
2

1

1
var

1

n

j ij j

i

s s s
n =

= −
−
  (6) 

B.3.  PCA-based feature dimensionality reduction 

The compression of feature dimension is another step 

before classification, which reduces the dimensionality of the 

high-dimension feature matrix and simplifies the calculation. 

In this investigation, the PCA is employed to reduce the 

standardized m-dimensional matrix to the p-dimensional 

using a transformation matrix. The purpose of PCA-based 

feature dimensionality reduction is to obtain the 

independently correlated data features to be used for 

classification.  

Table 1.  Accuracy of KNN with different quantities of principal 

components. 

Algorithm Qty of principal    

components 

Accuracy (%) 

KNN 15 89.77 

KNN 18 92.05 

KNN 20 91.48 

 

For the PCA-based dimensionality reduction in this 

investigation, the cumulative contribution of the principal 

components is shown in Fig.6. When the quantity of principal 

components is 18, the cumulative contribution reaches 

92.03 %, which is acceptable for further classification.  

Table 1. gives the relationship between the number of 

principal components and the accuracy of recognition for the 

KNN algorithm. When the quantity of principal components 

is 18, the accuracy of recognition reaches 92.05 %. In this 

investigation, the feature dimensionality of the feature set is 

reduced from 96 to 18.  

Cumulative contribution 

rate reaches 92.03%

 

Fig.6.  Feature matrix dimensionality reduction. 

C. Classification algorithms 

The classification algorithms play an important role in the 

performance of HAR. The commonly used classification 

methods for HAR include decision tree, KNN, SVM, naive 

Bayes, etc. Among the methods, KNN is considered a simple 

and effective one, and SVM is considered a mature and 

efficient choice. The work of this investigation is based on 

SVM and KNN. 

C.1.  Parameter optimization-based SVM 

As an efficient supervised learning algorithm, SVM is a 

binary classification model which defines a linear classifier 

with the largest interval in space. The basic idea of SVM is to 

classify linearly separable data through the optimal 

hyperplane and to maximize the geometric distance from the 

sample data on both sides of the hyperplane. 

For the optimization of SVM, the kernel function 

parameters ξ and penalty factor C are the key parameters to 

determine its performance. In this investigation, the Cross-

Validation (CV) method and the PSO algorithm are used to 

automatically select the optimal ξ and C to obtain the SVM 

classification model with the best performance. 

In the CV method, the parameters ξ and C are combined 

with a fixed step size within a certain value range. The 

training set data under different combinations of ξ and C are 

divided into K groups. Each group of data is used as a test set, 

and the remaining K-1 groups of data are used as training sets. 

The average classification accuracy of the final test set for 

each combination is taken as the accuracy of this group of 

models. Then, compare the accuracy rate of the model under 

different combinations of ξ and C, where the highest accuracy 

rate corresponds to the optimal ξ and C. 
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The principles of PSO-SVM algorithm can be described as 

follows [31]. Suppose there is a swarm, of size n, each particle 

P(i) (i=1, 2, …, n) in the swarm is characterized by three 

parameters: (1) its current position p(i), which refers to a 

candidate solution of the optimization problem at an iteration; 

(2) its velocity v(i) and (3) the best position pb(i) identified 

during its past trajectory. Let pg(i) be the best global position 

identified by overall trajectories travelled by the particles of 

the swarm, the optimal position is obtained by one or more 

fitness functions. The particles moving in the searching 

process can be calculated with the following equations: 

 
1 1

2 2

)( +1) ( )

+ (

( )[ ( ) ( ]

[ ( ) ( )])

b

g

v i P i p i

P i

i wv i c r

c r i p i

+

−

= −
 (7) 

 ( 1) ( ) ( 1)p i p i v i+ = + +  (8) 

where r1(i) and r2(i) are random variables from a uniform 

distribution in the range [0,1], w is the inertia weight, and c1 

and c2 are learning factors. Equation (7) is used to compute 

the velocity of particles in the swarm, and equation (8) is used 

to update the position of particles. Both equations (7) and (8) 

are iterated until the search process reaches a convergence 

criterion. 

To carry out the classification of k human daily activities, 

a one-to-one multi-class strategy based on the combination of 

multiple SVM is selected, where the quantity of classifiers is 

k(k+1)/2. When the sample to be tested is input for 

classification, the outputs of the classifiers are counted and 

the category with the most votes is the activity class of the 

input sample. In this investigation, the outputs of the 

classifiers are the 10 pre-defined activity labels.  

C.2.  CV-KNN 

Compared to SVM, KNN is a lazy learning algorithm that 

does not need a model training process. The samples to be 

tested are processed directly according to the principles of the 

KNN algorithm. 

The construction of the KNN algorithm classification 

model includes three critical elements: distance measurement, 

finding the K value, and decision making. This investigation 

uses the Euclidean distance metric. Suppose there are two n 

dimension vectors x = (x1, x2, x3, … xn) and y = (y1, y2, y3, … 

yn). The Euclidean distance can be calculated as follows: 

 ( )
2

1

( , ) i

n

i
i

D x y x y
=

=  −  (9) 

For finding the K values, this investigation employs the K-

fold cross-validation. For decision making, the class of a 

sample is determined by the class of its K nearest neighbors.  

4. EXPERIMENTAL STUDIES 

To evaluate the proposed methods, the experimental 

studies are conducted with participants wearing the sensor 

nodes to repeat pre-defined activities. The activities chosen 

for the evaluation are the virtual writing of numbers 0-9 with 

the right hand in the air. 

A. Experimental Setup and Data Preparation 

 

Fig.7.  Experimental setup. 

In the experiment, 10 participants are recruited to perform 

the activities to evaluate the proposed system and methods. 

For the 10 participants, there are 5 male and 5 female, whose 

heights are 170.5±8.0 cm, weights are 61.2±12.6 kg, and ages 

are 23-26 years old. 

As shown in Fig.7., the sensor nodes are mounted on the 

wrist and elbow of a participant. Each participant is requested 

to remain still for 2 seconds before starting and after finishing 

an activity. At the beginning of an activity, a participant is 

requested to stand straight with his/her left arm hanging down 

naturally and his/her right arm hanging flat. After standing 

still for about 2 seconds, the participant is requested to start 

to perform a virtual writing activity. After that, the participant 

needs to stand still for 2 seconds before completing the data 

collection. Each participant repeats the handwriting activities 

of numbers 0-9 for 5 times. The quantity of data generated in 

the experiment is 500 samples. 

In the experiment, the sampling rate is 100 Hz and each 

sample contains data on the triaxial acceleration and triaxial 

angular rate. The pre-processing, feature extraction and 

standardization are completed with the MCU of the sensor 

nodes. The host PC then receives the feature data for 

classification via the BLE network. The host PC for the tests 

is Lenovo 80S1 with a quad-core CPU at 2.5GHz, 8GB RAM, 

and the software platform is MATLAB2020b in Windows 10 

environment. 

B. Data preparation 

The multiple sensor nodes in a BAN work in an 

asynchronous way. They have their timing for data 

acquisition, preprocessing, feature extraction, and data 

transmission. The data from different nodes are integrated 

with the host PC. Since the preprocessing and feature 

extraction can be done in the sensor nodes, both the rate and 

the amount of data to transmit are largely decreased. 

Therefore, the delay in the sensor node can be neglected and 

the data from the multiple nodes can be combined into 

channel arrays with the host clock. The integrated data can be 

used for decision-making.  
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The data sets that consist of the sensor data and their 

corresponding activity category tags are divided into two 

categories: the training set and the test set, which occupy 60 % 

and 40 %, respectively. There are differences in the different 

activities and the same activity for different people. To reduce 

this influence and obtain a more practical and effective model, 

the proportion of the training data for each activity in the data 

set is the same. Considering the differences in activities 

between participants, the percentage of samples for a certain 

participant in the training set and test set are identical. With 

the preprocessing, data segmentation, and feature extraction 

in Section 3, parameter-optimized SVM and KNN algorithms 

are expected for the classification of different activities. The 

kernel function parameters ξ and penalty factor C are the key 

parameters to determine. Once the key parameters are 

determined, the test set is then input to the classifiers and the 

prediction results of the activity classification are obtained.  

C. Performance evaluation 

The purpose of the evaluation is to assess the performance 

of CV-KNN, CV-SVM, and PSO-SVM for HAR. The key 

indicators to evaluate the classifiers are accuracy (Acc), 

precision (P), and recall (R), which are calculated as follows: 

 
TP TN

Acc
TP TN FP FN

+
=

+ + +
 (10) 

 
TP

P
TP FP

=
+

 (11) 

 
TP

R
TP FN

=
+

 (12) 

where TP, TN, FP, and FN represent true positive, true 

negative, false positive, and false negative, respectively. 

C.1.  Evaluation of the classifiers 

The confusion matrix and parameters of accuracy, 

precision, and recall are provided to evaluate the classifiers. 

The Acc, P, and R of the CV-KNN are given in Table 2., and 

that of CV-SVM and POS-SVM are given in Table 3.  

Table 2.  Evaluation of CV-KNN classifiers. 

Methods Acc (%) P (%) R (%) 

3-fold KNN 92.05 92.26 95.13 

5-fold KNN 89.77 90.38 93.05 

10-fold KNN 94.89 95.20 95.81 

Table 3.  Evaluation of CV-SVM and PSO-SVM classifiers. 

Methods Acc (%) P (%) R (%) 

3-fold SVM 98.86 98.79 98.70 

5-fold SVM 98.86 98.79 98.70 

10-fold SVM 98.86 98.79 98.70 

PSO-SVM 99.20 99.41 99.47 

 

Table 2. gives the accuracy, precision, and recall of the 

3-fold, 5-fold, and 10-fold CV-KNN classifiers. It is clear that 

the 10-fold CV-KNN outperforms its peers in all the 

parameters. Table 3. gives the parameters of the 3-fold SVM, 

5-fold SVM, 10-fold SVM, and PSO-SVM. The accuracy, 

precision, and recall of the PSO-SVM are 99.20 %, 99.41 %, 

and 99.47 %, which outperforms the other three SVM and the 

CV-KNN classifiers. Among all the classifiers for the 

evaluation, PSO-SVM has been the most competitive choice.  

C.2.  Confusion matrix of different classifiers 

The confusion matrixes of the CV-KNN and CV-SVM 

classifiers are shown in Fig.8. The parameter optimization-

based SVM algorithms give fewer prediction errors than the 

CV-KNN algorithms. Among them, the PSO-SVM shows the 

best performance in the confusion matrix. 
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Fig.8.  Confusion matrix of KNN and SVM 

D. Results and evaluation 

D.1.  Classification performance for HAR 

The accuracy and algorithm operation time are obtained to 

evaluate the performance of classifiers for HAR, which are 

given in Table 4. 
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From the results, the activity recognition accuracy of PSO-

SVM is 99.20 %, which is better than CV-SVM at 98.86 % 

and CV-KNN at 94.89 %. The operation time of PSO-SVM 

for decision-making is 9.23 ms, which also outperforms the 

other two counterparts. 

Table 4.  Comparison of different classification algorithms in 

accuracy and operation time 

Algorithms Accuracy (%) Operation Time 

(ms) 

CV-KNN 94.89±0.00 14.93±2.44 

CV-SVM 98.86±0.00 11.85±1.31 

PSO-SVM 99.20±0.55 9.23±0.74 

D.2.  Evaluation of single- and dual-sensor nodes network 

To evaluate the contribution of the triaxial accelerometer 

and triaxial gyroscope and demonstrate the superiority of the 

multiple nodes system. The performance of the HAR system 

with accelerometer, gyroscope, and both accelerometer and 

gyroscope are given in Table 5. 

Table 5.  Accuracy and operation time of HAR systems with 

different sensor signals. 

Sensors Accuracy (%) Operation 

Time (ms) 

Accelerometer 85.00±1.08 9.02±0.64 

Gyroscope 93.31±0.56 9.06±0.84 

Acc & Gyro 99.20±0.55 9.23±0.74 

 

From Table 5., the system with both accelerometer and 

gyroscope can provide more features of the activities, and 

therefore provide higher accuracy of recognition. From Table 

6, it is evident that the system with a dual-sensor node's 

network can provide higher accuracy than a single node. 

There is no big difference in operation time since the time-

consuming computations are distributed to the sensor nodes.  

Table. 6.  Accuracy and operation time of single-sensor node and 

dual-sensor nodes network. 

Sensor nodes Accuracy 

(%) 

Operation Time 

(ms) 

Single-node on wrist 98.18±0.59 9.54±1.35 

Single-node on elbow 97.61±0.96 9.21±0.77 

Dual-node on wrist 

and elbow 

99.20±0.55 9.23±0.74 

 

There are related studies of IMU-based HAR reported in 

the literature, such as CNN based method for daily activities 

including walking, upstairs, downstairs, sitting, standing, and 

lying with an accuracy of 93.77 % [12], least-square SVM for 

10 daily activities and 11 sports activities with accuracies of 

98.23 % and 99.55 % respectively [22], kernel extreme 

learning machine for 5 dynamic daily activities and 1 static 

activity with an accuracy of 98.69 % [23], and CNN for 18 

kinds of sports activities with an accuracy of 96.2 % [12]. 

Although the results are obtained with different sensors 

devices, activities, and experimental settings, the accuracy of 

the methods presented in this investigation is competitive. 

5. CONCLUSION 

A miniaturized wearable HAR sensor node architecture 

integrating MEMS-IMU, MCU, and BLE for an unobtrusive 

wearable body area sensing network is proposed. To reduce 

the transmission time of raw sensor data and relieve the 

computational burden of the host machine, the computational 

tasks of pre-processing and feature extraction are distributed 

in the sensor nodes and the classification and application-

specific tasks are allocated to the host machine. The CV-KNN 

and PSO-SVM classification algorithms are employed for 

decision-making. By mounting two sensor nodes on the wrist 

and elbow, the motions of virtual writing of numbers 0-9 with 

a hand in the air are chosen as the activity for experimental 

studies. The proposed hardware and algorithm system is 

tested in the experimental studies with 10 participants each 

repeating the 10 virtual writings 5 times. The results 

demonstrate that the proposed hardware/software co-design 

for integrated sensing and computing can successfully 

achieve the wearable HAR functions, and the PSO-SVM 

outperforms the peer algorithms in accuracy and operation 

time. The low-power wearable sensor network-based HAR 

system presented in this paper can find potential application 

in a smart home for intelligent home appliance control, in 

rehabilitation for patient health recovery evaluation, and in 

sports assistance for kinematic analysis of human body parts 

in sports. 
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