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Abstract: The information fusion problem is studied for multi-sensor systems in the presence of bounded disturbances. In this paper, a 
distributed fusion estimation algorithm is proposed based on the set-membership theory, which obtains the overall estimates based on multi-
ellipsoids intersection. A parameter adaptive adjustment scheme is derived to guarantee the performance of the algorithm. The feedback 
mechanism is also introduced to enhance the estimation procedure. Through theoretical analysis and simulation, the performance of the 
proposed algorithm is analyzed, and some interesting properties of the proposed algorithm are proved. Results show that the proposed 
algorithm improves the point estimation accuracy. Compared with the algorithm without feedback, the one with feedback has better local 
estimation. Meanwhile, the effectiveness of the proposed algorithm in improving state estimation accuracy has been proved by the simulation 
results. 
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1. INTRODUCTION 

In the measurement field, the functional requirements of 
large and complex systems are rapidly increasing in recent 
years. When using a single sensor, obvious defects exist in 
measurement accuracy, stability, and reliability. Thus, multi-
sensor systems and related information fusion technologies 
have attracted more and more attention, which are widely 
used in measurement applications [1]-[4]. The key issue of 
multi-sensor estimation fusion is how to fuse the 
measurement data from multiple sensors to provide more 
useful and accurate state estimation results [5], [6]. 

Most existing information fusion algorithms are based on 
probability and require accurate noise statistics. This 
idealized assumption is difficult to meet in some applications, 
which may lead to a decrease in the performance of state 
estimation. Exactly, it is easier to obtain the bounds of noise 
with unknown statistics. Therefore, set-membership 
algorithms in which the noises are only assumed to be 
bounded provide an interesting alternative and have recently 
attracted more and more attention [7]-[8]. Set-membership 
theory has been widely used, including automatic control [9]-
[10], faulty detection [11], simultaneous localization and 
mapping (SLAM) [12], etc. For multi-sensor fusion with 
bounded disturbances, Becis-Aubry proposed a hierarchical 
set-membership estimation algorithm equipped with a local 
processor [13]. Then it is extended for a nonlinear system 
with potentially failing measurements [14]. In [15], the set-
membership information fusion problem for multisensory 

nonlinear dynamic systems was converted into a semidefinite 
programming problem, which was solved by using 
decoupling technique. It is worth mentioning that a combined 
information filtering in multisensory systems is presented in 
[16] to better utilize the potentials of both stochastic and set-
membership concepts. Now the set-membership fusion 
approaches have been successfully applied in sensor 
networks [17], [18] and positioning [19], [20]. However, 
compared with the probability-based fusion filtering, the set-
membership-based information fusion has not received 
enough attention.  

Information fusion has two typical architectures, 
centralized fusion [21] and distributed fusion [13]. Due to the 
rapid advances in sensor and communication technologies, 
the demand for distributed implementations of estimation 
algorithms is steadily increasing, which is the focus of this 
paper. When the ellipsoids estimated by the local processors 
transmit simultaneously to the fusion center, the first thread 
is to obtain an out bounding ellipsoid enclosing the 
intersection of these ellipsoids. Then a distributed fusion 
algorithm based on multi-ellipsoids intersection is proposed. 
And a novel selection method of the weighting parameters is 
presented. We compare the proposed algorithm in this paper 
and the algorithm proposed by Becis-Aubry [13]. In addition, 
the algorithms with feedback are also studied. 

The paper is organized as follows. Section 2 states the 
problem formulation for the distributed fusion with bounded 
setting. The distributed set-membership fusion algorithm is 
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derived in Section 3, and the parameter adjustment methods 
are given. In Section 4, some properties of the proposed 
algorithm are proved. A numerical example is used to prove 
the effectiveness and properties of the algorithms in 
Section 5. Section 6 summarizes this article. 

2. PROBLEM STATEMENT 

Definition 1.   
A set bounded by an ellipsoid can be described by 

 ( ) 1, { : ( ) ( ) 1}n Ta M x x a M x a−= ∈ − − ≤   (1) 

where na∈  is the center, and n nM ×∈  is a positive-
definite matrix, which specifies the size and orientation of the 
ellipsoid. 

Consider a N-sensor dynamic linear varying system with 
unknown but bounded noises 

 1 1 1 1 k k k k kx F x G w− − − −= +  (2) 

 , , , ,      1, 2, ,i k i k k i kz H x v i N= + =   (3) 

where n
k x ∈  is the system state at time k, 1kF −  and 1kG −

are the state transition matrix and process noise input matrix, 
respectively. , im

i kz ∈  is the measurement of the i-th 
sensor, and ,i kH  is the corresponding observation matrix. 

1 l
kw − ∈  and ,

im
i k v ∈  are process and observation 

noises assumed to be bounded by the following ellipsoids 

 1
1 1 1 1 1{ : 1}T

k k k k kw Q w−
− − − − −= ≤w  (4) 

 1
, , , , ,{ : 1}i k i k i k i k i kv v R v−= ≤  (5) 

where 1kQ − and ,i kR  are known matrices which are positive 
definite.  

The initial state also lies in an ellipsoid given by 

 ( ) 1
0 0 0 0 0 0 0 0 0 0ˆ ˆ ˆ, { : ( ) ( ) }Tx P x x x P x xσ σ−= − − ≤  (6) 

where 0σ ∈  is a positive scalar variable. 
For the distributed set-membership estimation fusion 

problem, the fusion center receives the local estimated state 
bounding ellipsoid ( ), , , ,ˆ ,i k i k i k i kx Pσ=   at time k, which is 
obtained by local processors accompanying each sensor 
through prediction step and update step. Then the objective 
ellipsoid k  will be calculated by using ,i k  in the fusion 

center and it must satisfy ,
1

N

k i k
i=

⊇


  . 

3. THE PROPOSED ALGORITHM 
In this section, we design typical distributed set-

membership fusion algorithms. The following lemma is the 
estimate for the local measurements with bounded 
disturbances. 

Lemma 1 [13], [14]:  
 If ( )1 , 1 , 1 , 1 , 1ˆ ,k i k i k i k i kx x Pσ− − − − −∈ =   obeying (2) with 

( ),k kw 0 Q∈  and  

 1 , 1, 1ˆ ˆk i ki k kx F x− −− =  (7) 

 , 1, 1 i ki k kσ σ −− =  (8) 

1 T
, 1 , 1 1, 1

T
, 1 1 1 , 1

(1 )

(1 ) /

i k k i k ki k k

i k k k k i k k

P p F P F

p G Q G σ

−
− − −−

− − − −

= +

+ +
 (9) 

then  

, (0, )i kp∀ ∈ +∞ , ( ), 1 , 1 , 1 , 1ˆ ,k i k k i k k i k k i k kx x Pσ− − − −∈ =  . 

If , 1k i k kx −∈ obeying (3) with ( ), ,,i k i kv 0 R∈ , 

{ }1, 2,i N∈    
and 
 1 1 T 1

, , , , ,, 1i k i k i k i k i ki k kP P q H R H− − −
−= +  (10) 

 T 1
, , , , , ,, 1ˆ ˆi k i k i k i k i k i ki k kx x q P H R δ−

−= +  (11) 

( )
( ) ( )

T 1
, , , , ,

T 1
, , ,, 1 , 1 , 1

1

ˆ ˆ ˆ ˆ

i k i k i k i k i k

i k i k i ki k k i k k i k k

q δ R δ

x x P x x

σ

σ

−

−
− − −

= −

+ − − +
 (12) 

where 
 , , , , 1ˆi k i k i k i k kδ z H x −= −  (13) 

then  
, [0, )i kq∀ ∈ +∞ , ( ), , , , , 1ˆ ,k i k i k i k i k i,ki k kx x Pσ −∈ = ⊇     ,  

where i,k  is given by 

 1
, , , , ,{ : ( ) ( ) 1}T

i,k i k i k i k i k i kx z H x R z H x−= − − ≤  (14) 

Remark 1:  The optimal value of ,i kp  is chosen by 

minimizing , 1 , 1tri k k i k kPσ − − [24]. As for the parameter ,i kq , 
its optimal value is chosen based on Lemma 2 in [7]. This 
parameter selection scheme for ,i kp  and ,i kq is also used in 
subsequent algorithms and theorems. 

A. The global estimation at the fusion center 
The fusion algorithm proposed by Becis-Aubry et al. [13], 

[14] is given below. 

Algorithm 1.  
If  ( )1 1 1 1 1ˆ ,k k k k kx x Pσ− − − − −∈ =   obeying (2) with 

( ),k kw 0 Q∈ , and given the local estimated ellipsoids 

( ), , , ,ˆ ,i k i k i k i kx Pσ=   and predicted ellipsoids 

( ), 1 , 1 , 1 , 1ˆ ,i k k i k k i k k i k kx Pσ− − − −=  obtained by Lemma 1,  and 

 1 1 1 1
, ,1 , 1

1
( )

N

k i k i kk k i k k
i

P P P Pα− − − −
− −

=

= + −∑  (15)

1 1 1
, , ,1 1 , 1 , 1

1
ˆ ˆ ˆ ˆ( )

N

k k i k i k i kk k k k i k k i k k
i

x P P x P x P xα− − −
− − − −

=

 
= + − 

 
∑  (16)
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( ) ( )
( ) ( )

T 1
1 1 1

T 1
, , , , ,, 1 , 1 , 1

1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

k k k kk k k k k k

N

i k i k i k i k i ki k k i k k i k k
i

x x P x x

x x P x x

σ σ

α σ σ

−
− − −

−
− − −

=

= + − −

 + − − − − 
 

∑
  (17) 

where 1ˆk kx − , 1k kP − and 1k kσ −  are global predicted estimates, 

and , ,
1

[0,1], 1
N

i k i k
i

α α
=

∈ =∑ ,  

then 
 

( ) ( )1 1 1ˆ ˆ, ,k k k k k i,kk k k k k k
i

x x P x Pσ σ− − −
 ∈ = ⊇  
 

    
 

where i,k  is given by (14). 

Remark 2:  It shows that each local processor provides the 
following estimators 

{ }, , , , 1 , 1 , 1ˆ ˆ, ,i k i k i k i k k i k k i k kx P x Pσ σ− − −, , ,  

This means the global estimation requires not only local 
updates but also local predictions. And the central fusion 
processor also needs to perform the prediction process. 

A simple substitution of the above feedback assignments 
in the equations of Algorithm 1 leads to another algorithm, as 
below. 

Algorithm 2.   
Given the local estimated ellipsoids ( ), , , ,ˆ ,i k i k i k i kx Pσ=   

obtained by Lemma 1 with  ,k i kx ∈ , { }1,2,i N∈  ,  

then the global estimate ellipsoid ( )ˆ ,k k k kx Pσ=   with 

 1 1
, ,

1

N

k i k i k
i

P Pα− −

=

= ∑  (18) 

 1
, , ,

1
ˆ ˆ

N

k k i k i k i k
i

x P P xα −

=

= ∑  (19) 

 T 1 T 1
, , , , , ,

1 1
ˆ ˆ ˆ ˆ

N N

k i k i k i k i k i k i k k k k
i i

x P x x P xσ α σ α − −

= =

= − +∑ ∑  (20) 

satisfies ,
1

N

k i k
i=

⊇


  ,  

where , ,
1

[0,1], 1
N

i k i k
i

α α
=

∈ =∑ . 

Proof.   

For Algorithm 1 ， set , 1 1ˆ ˆi k kx x− −← , , 1 1i k kP P− −← , 
, 1 1i k kσ σ− −← ,  

then it is obvious that , 1 1ˆ ˆi k k k kx x− −= , , 1 1i k k k kP P− −= ,  

and , 1 1i k k k kσ σ− −= . Substituting this into (15), (16) and 

(17), the following results can be deduced. 

 1 1 1 1 1
, , , ,1 1

1 1
( )

N N

k i k i k i k i kk k k k
i i

P P P P Pα α− − − − −
− −

= =

= + − =∑ ∑  (21) 

1 1 1
, , ,1 1 1 1

1

1
, , ,

1

ˆ ˆ ˆ ˆ( )

ˆ

N

k k i k i k i kk k k k k k k k
i

N

k i k i k i k
i

x P P x P x P x

P P x

α

α

− − −
− − − −

=

−

=

 
= + − 

 

=

∑

∑
 (22) 

( ) ( )
( ) ( )

( ) ( )

T 1
1 1

T 1
, , , , ,1 1

1

TT 1 1
, , , , , , 1 1

1 1
T 1 T 1

1 1 1

, , ,
1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ2

k k k kk k k k

N

i k i k i k i k i kk k k k
i

N N

i k i k i k i k i k i k k k kk k k k
i i

k k kk k k k k k

N

i k i k i k
i

x x P x x

x x P x x

x P x x x P x x

x P x x P x

σ

α σ

α σ α

α σ α

−
− −

−
− −

=

− −
− −

= =
− −

− − −

=

= − −

 + − − −  

= − + − −

+ −

= −

∑

∑ ∑

∑ T 1 T 1
, , ,

1
ˆ ˆ ˆ ˆ

N

i k i k i k k k k
i

x P x x P x− −

=

+∑
 

  (23) 
The proof is completed. 

Remark 3:  In this algorithm, the global estimate is obtained 
based only on the local estimated ellipsoids，which means 
that it requires less bandwidth than Algorithm 1 to transfer 
data between the local processor and the central processor. 
And the central fusion processor does not need to perform the 
prediction process, which means a reduction of 
computational burden.  

In addition, if the local processors operate in an open-loop 
manner, they cannot correct the estimate deviation caused by 
their own output error or estimate error, which ultimately 
leads to the local track deviation and further affects the 
overall estimate. A feedback from central processor to local 
processor can improve that situation. In the algorithm with 
feedback, the fused data at previous time ( 1ˆkx − , 1kP −  and 

1kσ −  ) are returned to the local processors and used instead 
of the local estimates at previous time ( , 1ˆi kx − , , 1i kP −  and 

, 1i kσ − ). 

B. Selection scheme of the parameters 
As the parameter for a family of ellipsoids contains the 

intersection of multiple ellipsoids, ,i kα  is usually chosen by 
minimizing the determinant or trace of the matrix kP  [22]. But 
this solution is not retained in this paper for two reasons. 
Firstly, the solution cannot yield an explicit solution in 
general and thus the convex optimization problem arises. The 
heavy computation burden restricts its application. Secondly, 
this algorithm should reject the outliers of the measurements. 
The outlier may make the local estimated ellipsoid 
inconsistent with the others. ,i kα  should not only guarantee 
the robust feasible set, but also reduce the effect of the outliers 
on the global estimate. Then ,i kα  is computed considering 
the following assumption: 

The q-relaxed intersection of m sets 1 2, , , m    is 

denoted by { }
{ }q

q
i=   , which is the set containing all x

belonging to all 'i s except q at most. And in the distributed 
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fusion problem, we focus on the local estimated sets ,i k . At 

time k, the midpoint of the set { } { }
,

q
q

i kk =    , denoted by 

,ˆk mpx , can be used to calculate the parameter ,i kα . To reduce 
the effect of outliers, ,i kα  is chosen as a decreasing function 
of some norm of the difference between the midpoint ,ˆk mpx  
and the center of the local estimated ellipsoid ,i k , denoted as 

( ) ( )1
,

T 1
, , , , , ,ˆ ˆ ˆ ˆ

i k
i k i k k mp i k i k k mpP

x x x P x x−

−∆ − −  

Then the parameter ,i kα is chosen as  

 
( )
( )

1
,

1
,

,

,

,
1

= i k

i k

i k P
i k N

i k P
j

g x

g x
α

−

−

=

∆

∆∑
 (23) 

where ( ) 1
,

1
,

, , ,
,

ˆ1 ,  

0               ,
i k

i k

i k k mp i kP
i k P

x if x
g x

otherwise

−

−

 − ∆ ∈∆ = 



 

It is difficult to compute an ellipsoid enclosing the q-
relaxed intersection of m ellipsoids. Alternatively, we use the 
minimal box containing the ellipsoid to compute the relaxed 
midpoint ,ˆk rmpx , as a replacement of ,ˆk mpx  in the calculation 
of ,i kα . 

First, the extrema of the local ellipsoid ,i k  are found as 

 ,
, , , ,ˆ ˆj j j j

i k i k i kx x P± = ±  

where the superscript j denotes the j-th state and the subscripts 
+ and - denote the maximum and minimum values, 
respectively. The box or the interval vector ,i kX  is then 
defined as 

 , , , , ,ˆ ˆ[ , ]j j j
i k i k i kX x x− +=  

Now a box enclosing the q-relaxed intersection of m boxes 
is computed by an algorithm that is presented in [23]. 

Algorithm 1 is actually a set-membership distributed 
fusion (SMDF) method proposed by Becis-Aubry. For 
convenience, it is abbreviated as BA-SMDF in this paper. In 
Algorithm 2, the q-relaxed intersection of ellipsoids is used 
in the choice of the weighting parameters. Thus, Algorithm 2 
is abbreviated as QSMDF. The two algorithms with feedback 
are abbreviated as FBA-SMDF and FQSMDF, respectively. 

4. EQUIVALENCE ANALYSIS 
In this section, the equivalence of the above algorithms is 

analyzed, and following conclusions are derived. 

Theorem  1.  Considering a N-sensor system given by (2) 
and (3), FBA-SMDF algorithm and FQSMDF algorithm are 
functionally equivalent in terms of both global and local 
estimation accuracy if the parameters of the two algorithms 
are chosen to be identical. 

Proof.   
Obviously, for these two algorithms, it is reasonable for the 

global and local trackers to have the same initial value. 
Assume these two algorithms have the same estimate at time 
k-1. Then Theorem 1 is obvious according to the proof 
process of Algorithm 2.  

Theorem 2.  Considering a N-sensor system given by (2) and 
(3), FBA-SMDF algorithm and BA-SMDF algorithm are 
functionally equivalent in terms of global estimation accuracy 
if the parameters of the two algorithms are chosen to be 
identical.  

Proof.   

In order to distinguish the case without feedback,  

, 1
ˆ̂
i k kx − , 1

ˆ̂
k kx − ， ,

ˆ̂
i kx ， ˆ̂

kx ， , 1î k kP − ， 1k̂ kP − ， ,î kP ， k̂P

， , 1ˆi k kσ − ， 1ˆk kσ − ， ,ˆi kσ  and ˆkσ   is used to describe the 
results of FBA-SMDF algorithm. 

Obviously, with or without feedback, it is reasonable for 
the global and local trackers to have the same initial value, 
i.e. 

0 0 ,0 ,0
ˆ ˆˆ ˆ ˆ ˆi ix x x x= = = ， 0 0 ,0 ,0

ˆ
î iP P P P= = = ， 

0 0 ,0 ,0ˆ ˆi iσ σ σ σ= = =  

Assume 1 1
ˆ̂ ˆk kx x− −= , 1 1k̂ kP P− −= ， 1 1ˆk kσ σ− −= ,  

and it is apparent that  

1 1
ˆ̂ ˆk k k kx x− −= ， 1 1k̂ k k kP P− −= ， 1 1ˆk k k kσ σ− −= . 

Let , 1 1
ˆ ˆˆ ˆi k kx x− −← ， , 1 1

ˆ ˆ
i k kP P− −← ， , 1 1ˆ ˆi k kσ σ− −← ,  

then we have 

 , 1 1
ˆ̂ ˆi k k k kx x− −=

， , 1 1î k k k kP P− −=
， , 1 1ˆi k k k kσ σ− −=

  

and 

( )1 1 1 T 1
, , , , , , ,, 1

1 1

1 1 1 1
, ,1 , 1

1

ˆ ˆ ˆ

( )

N N

k i k i k i k i k i k i k i ki k k
i i

N

i k i k kk k i k k
i

P P P q H R H

P P P P

α α

α

− − − −
−

= =

− − − −
− −

=

= = +

= + − =

∑ ∑

∑
 (24) 

( )

( )

1 1
, , ,

1

1 1 T 1
, , , , ,, 1 , 1

1

1 1 1 1
, , ,1 1 , 1 , 1

1

ˆ ˆˆ ˆˆ ˆ

ˆˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

N

k k i k i k i k
i

N

k i k i k i k i k i ki k k i k k
i

N

k i k i k i kk k k k i k k i k k
i

k

x P P x

P P x q H R z

P P x P x P x

x

α

α

α

− −

=

− − −
− −

=

− − − −
− − − −

=

 
=  

 
 

= + 
 
 

= + − 
 

=

∑

∑

∑

(25)
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( ) ( )
( ) ( )

( ) ( )
( )( )

( ) ( )

T 1
1 1

T 1
, , , , ,1 1

1
T 1

1 1

T 1
, , , , , 1

1
T 1

1 1 1

,

ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ1

ˆ ˆ ˆ ˆ

k k k kk k k k

N

i k i k i k i k i kk k k k
i

k k kk k k k

N

i k k i k i k i k i k k
i

k k kk k k k k k

i k

x x P x x

x x P x x

x x P x x

q δ R δ

x x P x x

σ

α σ

α σ

σ

α

−
− −

−
− −

=

−
− −

−
−

=

−
− − −

= − −

 + − − − 
 

= − −

+ − +

= + − −

+

∑

∑

( )T 1
, , , ,

1
1

N

i k i k i k i k k
i

q δ R δ σ−

=

− =∑
 (26) 

The proof is completed. 

Remark 4:  It is revealed in Theorem 2 that the feedback is 
not needed to improve the global estimation accuracy of BA-
SMDF. It only impacts the local estimates and since the best 
estimation possible of the state vector is reasonably produced 
by the global process, this feedback can be considered 
superfluous. 

5. SIMULATIONS 
Some simulations are performed to assess the algorithm 

performance and verify the corresponding conclusions. 
Consider the target tracking system formulated in (2) and 

(3) with 3 sensors, and the required matrices are given as 

2
0 0

0

1 0.5
= 0 1

0 0 1
k

T T
F T

 
 
 
 
 

,
1 0 0

= 0 1 0
0 0 1

kG
 
 
 
  

, 

1,
1 0 1

=
0 1 0kH  
 
 

, 2,
0 1 0

=
1 0 0kH  
 
 

, [ ]3, = 0 0 1kH , 

where 0 0.1T =  is the sampling period, and the state is 

expressed as
T

1, 2, 3,k k k k x x x x =   . The matrices in (4) 

and (5) are given as ( )=diag 10,10,10kQ ,  

( )1, =diag 0.2,0.2kR , ( )2, =diag 0.8,0.6kR , 3, =0.7kR . 
Besides, the parameters of the initial state are given as 

0 3=100P Ι , [ ]T0ˆ 0 0 0x = , 0 1σ = .  
In the simulation, the process noises and observation 

noises are uniformly distributed inside the ellipsoids, as 
illustrated in Fig.1. and Fig.2. Additionally, the observation 
noises of sensor 3 are uniformly distributed in the interval  

0.7, 0.7 −  , which can be seen as an ellipsoid with one 

dimension. 
Two cases are considered for simulation: 

Case 1:  In the first scenario, to verify the correctness of the 
conclusions in Section 5, all algorithms are performed with 

,
1
3i kα = .  

Case 2:  In the second scenario, for QSMDF and FQSMDF, 
the parameters are calculated according to (24). For FBA-
SMDF and BA-SMDF, the parameters are calculated 
according to [13]-[14]. 

 

Fig.1.  The distribution of process noise. 

 
a) 

 
b) 

Fig.2.  The distribution of observation noise: a) sensor 1; b) sensor 2. 

The simulations are run 100 times under Matlab R2019a 
on Intel Core i5 PC (3.2 GHz, 4G RAM) and each simulation 
contains 1000 samples. The average mean square error 
(MSE) in each state variable of the global state estimates, the 
average volume of the estimated ellipsoid over 100 
simulations are used as the evaluation indices, which are 
illustrated in Table 1. and Table 2. It should be noted that the 
MSE and volume are averaged from step 100 to step 1000 to 
rule out the influence of the initial phase and the center of the 
ellipsoid is considered to be the point estimate in the 
simulation. Furthermore, the MSE and the volume overtime 
in one simulation (Case 1) are shown in Fig.3. and Fig.4. to 
display the results more visually.  
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a) 

 
b) 

 
c) 

Fig.3.  MSE of states for overall estimates. a) MSE for states 1i = ; 
b) MSE for states 2i = .; c) MSE for states 3i = . 

The results in Table 1. show that the MSE and the volume 
of the FQSMDF, FBA-SMDF and BA-SMDF are equivalent 
in Case 1. This verifies the correctness of the theorems in 
Section 4. The same conclusion can also be obtained from the 
figures. 

From Table 2., it can be found that after optimizing the 
parameters, the estimation accuracy (in terms of MSE) of 
each algorithm is improved. Especially, the FQSMDF 
algorithm proposed in this paper has the highest accuracy 
among the above algorithms. It should be noted that the 
volume of the ellipsoid does not decrease significantly 
because the parameter is not chosen by minimizing the 
volume. 

Table 1.  The average MSE and volume of bounding ellipsoids for 
overall estimates (Case 1). 

Algorithms MSE Volume 
2

1e
1 2

2e  2
3e  

QSMDF 0.1167 0.0472 0.1468 2.5612e+03 
FQSMDF 0.1084 0.0437 0.1180 85.8558 
BA-SMDF 0.1084 0.0437 0.1180 85.8558 
FBA-SMDF 0.1084 0.0437 0.1180 85.8558 

1 2
ie refers to the average MSE, for states 𝑖𝑖 = 1,2,3. 

Table 2.  The average MSE and volume of bounding ellipsoids for 
overall estimates (Case 2). 

Algorithms MSE Volume 
2

1e  2
2e  2

3e  
QSMDF 0.1076 0.0412 0.1286 2.352e+03 
FQSMDF 0.0652 0.0286 0.0776 84.3244 
BA-SMDF 0.0724 0.0303 0.0847 84.4354 
FBA-SMDF 0.0724 0.0303 0.0847 84.4354 

 

 

Fig.4.  The volume of overall estimates of estimated bounding 
ellipsoids. 

In addition, average MSE and volume of bounding 
ellipsoids for local estimates are also calculated, as shown in 
Table 3.（Case 1）. Especially, Fig.5. and Fig.6. show the 
MSE and the volume of the estimated ellipsoids for sensor 3 
over time in one simulation. It can be concluded from 
Table 3. that for the set-membership distributed fusion 
algorithms in this paper, feedback can significantly improve 
the local estimation accuracy of each sensor. Moreover, the 
estimation using the algorithms with feedback has better 
convergence than those without feedback, as illustrated in 
Fig.5 and Fig.6. And it can be seen from Table 3. and Fig.5. 
And Fig.6. that the local estimates of the FQSMDF are equal 
to those of FBA-SMDF and the local estimates of the 
QSMDF are equal to those of BA-SMDF. Combined with the 
conclusions from Table 1., Theorem 1 is validated. Then 
contrast of Table 3. and Table 1. shows that the global 
estimation has higher precision than the local estimation for 
each variable, which fully illustrates the effectiveness of the 
fusion. 

In terms of computational time, there is no obvious 
difference between the above algorithms. The average 
computational time at each recursive step is about 0.15 ms, 
which meets the needs of real-time application. 
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Table 3.  The average MSE and volume of bounding ellipsoids for local estimates. 

Sensor Algorithms MSE Volume 
2

1e  2
2e  2

3e   

1 QSMDF  
BA-SMDF 

41.3166 0.0495 41.3150 1.2423e+04 

FQSMDF  
FBA-SMDF 

1.1173 0.0488 1.1160 95.9862 

2 QSMDF  
BA-SMDF 

0.1583 0.1936 43.2704 2.1940e+05 

FQSMDF  
FBA-SMDF 

0.1402 0.1845 2.1295 1.7566e+03 

3 QSMDF  
BA-SMDF 

1.6792e+06 1.0328e+03 0.3009 Inf 

 FQSMDF 
FBA-SMDF 

2.1211 2.0428 0.2121 2.1766e+04 

 

 
a) 

 
b) 

 
c) 

Fig.5.  The average MSE for local estimates of Sensor 3. a) MSE for 
states 1i = ; b) MSE for states 2i = ; c) MSE for states 3i = . 

 

Fig.6.  The volume of bounding ellipsoids for local estimates of 
Sensor 3. 

6. CONCLUSIONS 
Based on the set-membership theory, an outer-bounding 

state fusion estimation algorithm with distributed structure 
has been proposed. Theoretical and simulation results on the 
comparison of the proposed algorithm (QSMDF) and BA-
SMDF algorithm are also presented, including the algorithms 
with feedback and without feedback. Conclusions are 
summarized as below:  

1. The proposed algorithm with feedback has higher 
accuracy than BA-SMDF, largely due to its selection 
scheme of the parameters. 

2. The proposed algorithm requires less bandwidth than 
BA-SMDF to transfer data between the local processor 
and the central processor. 

3. The two algorithms with feedback are functionally 
equivalent in terms of both global and local estimation 
accuracy if the parameters of the two algorithms are 
chosen to be identical. 

4. For QSMDF algorithm, feedback can improve both 
global and local estimation accuracy. 

5. For BA-SMDF algorithm, feedback can improve the 
local estimation accuracy, but cannot improve the global 
estimation accuracy further. 

In addition, the effectiveness of the proposed algorithm in 
improving state estimation accuracy is also proved by the 
simulation results. 
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