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Abstract: The intelligent training and assessment of gymnastics movements require studying motion trajectory and reconstructing the
character animation. Microsoft Kinect has been widely used due to its advantages of low price and high frame rate. However, its optical
characteristics are inevitably affected by illumination and occlusion. It is necessary to reduce data noise via specific algorithms. Most of the
existing research focuses on local motion but lacks consideration of the whole human skeleton. Based on the analysis of the spatial
characteristics of gymnastics and the movement principle of the human body, this paper proposes a dynamic and static two-dimensional
regression compensation algorithm. Firstly, the constraint characteristics of human skeleton motion were analyzed, and the maximum
constraint table and Mesh Collider were established. Then, the dynamic acceleration of skeleton motion and the spatial characteristics of
static limb motion were calculated based on the data of adjacent effective skeleton frames before and after the collision. Finally, using the
least squares polynomial fitting to compensate and correct the lost skeleton coordinate data, it realizes the smoothness and rationality of
human skeleton animation. The results of two experiments showed that the solution of the skeleton point solved the problem caused by data
loss due to the Kinect optical occlusion. The data compensation time of an effective block skeleton point can reach 180 ms, with an average
error of about 0.1 mm, which shows a better data compensation effect of motion data acquisition and animation reconstruction.

Keywords: Azure Kinect, motion capture, motion tracking, motion compensation.

 
1. INTRODUCTION 

The intelligent training and evaluation system of 
gymnastics movements is conducive to reducing the 
duplication of a coach’s work. Meanwhile, it is also helpful 
in providing guidance and accurate evaluation of athletes' 
learning. The core objective that this system strives to achieve 
is the capture and reconstruction of human movements. 
Human body capture devices emerge one after another from 
mechanical, and wearable to optical ones, but these industrial 
devices are expensive, either restraining actors' performance 
or limiting the space where actors can do gymnastics 
movements.  

Microsoft Kinect (MK), the optical unmarked motion 
capture sensor device was released by Microsoft, combined 
with a proper SDK, provides color image data, depth image 
data, and skeleton data at the same time, which can convert 
the limb information during human movement into data that 
can be recognized by a computer, and then use the skeleton 
data to drive the three-dimensional model [1]. Unlike other 
motion capture devices, it can be applied to a variety of 
complex environments without too many restrictions, 

effectively solving the problems of the long production cycle, 
low efficiency and low reduction in traditional animation 
production technology. It has made great achievements in 
many industries, such as film and television animation [2], 
physical training [2], [3], medical treatment [4]-[8], 
entertainment [9], [10], and education [11], [12] due to its 
advantages of convenient use and low price [13] since the 
release of Microsoft Kinect Xbox (MKv1). 

In the motion reproduction experiment of gymnastic 
characters, it was found that if the captured data is not 
processed, the action will be distorted to some extent. 
However, even with the most popular equipment as unity for 
Kinect [15]-[17] and iPi Motion Capture [18]-[19] SDK that 
provides a depth data compensation algorithm, the human 
motion capture is not as smooth and reasonable as expected 
due to the influence illumination (ambient illumination 
direction, ground reflection degree) and body occlusion, as 
well as the angle and distance between the equipment and the 
captured object. Therefore, in actual application scenarios, 
the problem of data loss and error must be dealt with. Based 
on the above analysis, this paper proposes a dynamic and 
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static two-dimensional regression compensation algorithm 
(DSRA) solution according to the characteristics of 
gymnastics and human skeletons. The core idea includes the 
following three points: 

1. Static frame space angle feature: The spatial position of 
occluded or lost skeleton points is estimated by the distance 
and angle characteristics of adjacent frames before and after 
the lost frame. 

2. Dynamic frame motion characteristics: The spatial 
position of occluded or lost skeleton points is estimated by 
the angular velocity and acceleration of several adjacent 
skeleton points before and after the lost frame. 

3. Least-squares polynomial regression operation: 
Through effectively captured coordinate data and missing 
point coordinate data estimated by spatial angle and motion 
characteristics, polynomial regression operation is carried out 
to obtain motion change curves to estimate skeleton point 
spatial coordinates in real-time. 

2. RELATED WORK 

A. MK development and performance analysis 
Microsoft launched a new generation of Azure Kinect 

(MKv3) in 2019, which is the successor of MKv1 (2010) and 
MKv2 (2014). Various applications and research are 
gradually emerging based on MKv3. It helps us understand 
the dynamic capture sensor by comparing the performance 
parameters and differences among various versions. In 
addition, it is also helpful for researchers who still hold onto 
the previous version to improve the functions and parameters. 
The parameter characteristics are shown in Table 1., which 
are quoted from Microsoft’s official website [19]. 

In addition to the detailed parameters officially released, 
the researchers also compared the performance stability [20] 
and availability [21], [22] of the three versions of MK. 

The experimental results show that MKv2 is more stable 
than MKv1, and the average displacement error is less than 
10 mm [23]. The range of motion (ROM) error is the smallest 
when MK rises 45 degrees in front of and tilts towards the 
player [24], Tölgyessy Dekan et al. proved that the Azure 
MKv3 surpasses its discontinued predecessors [25], [26] via 
well-designed experiments. 

In terms of the practicality of motion capture, MK has an 
excellent performance in hand [27], upper limb exercise [28], 
[29], gait [30], [31], and even jump [6], [20]. Meanwhile, 
Guess confirmed that the MKv2 skeleton tracker could be 
used to calculate the relative skeleton kinematics of hip and 
knee joint angle [32], Bhateja et al. confirmed that the data 
provided by the MKv2 sensor has good stability in the air, 
glass, liquid, and other mediums [13].  

B. Data compensation correction algorithm 
Although each version of MK is optimized with respect to 

the previous version, it still cannot solve the problem of 
skeleton data capture loss caused by occlusion in the actual 
human motion capture process. Based on MKv2, researchers 
try to deal with the lost data through various algorithms to 
realize the smoothing of animation, which is the key to this 
research problem. At present, there are three main methods 
for data compensation and correction. 

The first kind of data correction method is the Kalman 
filter or its extension method, which is used to extract the 
lower extremity joint angles [33] and get more accurate 
human skeleton data combined with the classical Set-
Membership filter method [30]. Palmieri [34] also adopts a 
Kalman filter to make the velocity values of human arms 
more accurate. Similar to previous research, the Kalman filter 
is used to obtain the errors of the position and attitude outputs 
[35]. Some scholars [36] combine it with the multi-frame 
average method to solve the problem of image edge accuracy. 
Abbasi [37] also selects gradient descent and unscented 
Kalman filter methods to improve the cumulative error and 
occlusion problem successfully. 

The second type of data correction method is a 
mathematical function. Filtering smoothing, for example, is 
adopted to capture the human joint position data [22], [46]. 
Ryselis, Petkus et al. [38] propose a data fusion algorithm 
using algebraic operations in vector space to analyze the 
dynamic characteristics of human motion during physical 
exercise. Lyu et al. [39] adopt the combination of a weight-
based joint bilateral filter (WJBF) and depth compensation 
filter (DCF) for depth image restoration. Shotton et al. [42] 
present an error compensation method based on mathematical 
statistics, which matches the depth reference value with the 
depth measurement value to fit the quadratic curve. 

The third method is to compensate for the data by 
combining the motion characteristics and the fitting curve. 
Humphrey et al. [22] propose a correction technique based on 
a two-point linear equation, which will analyze the captured 
data by regression to compensate for the inaccuracy in data 
collection. Polynomial curve fitting [40] is used to correct the 
angle error. When the corrected distance is within 8.5 m, the 
error is less than 20-50 mm. Li et al. [41] use curve fitting 
technology to compensate for the error. The experiment 
results show that the algorithm can quickly and effectively 
reduce the depth error of the Time-of-Flight (TOF) camera 
and that it is suitable for a real-time and high-precision large 
field of view 3D reconstruction. 

Table 1.  Comparison of MK function parameters of three versions. 

 MK v1 MK v2  MK v3  
Color map (Resolution/fps) 640*480/30 fps 1920*1080/30 fps 3840*2140/30 fps 
Depth map (Resolution/fps) 320* 240/30 fps 512*424/30 fps 640 * 576/30 fps 
Players tracked 6  6 6 
Captured joints/players 20 25  32 
Range of Detection 0.8~4.0 m 0.5~4.5 m 0.5~3.86 m 
Horizontal Angle 57o  70 o 75 o 

Vertical Angle 43o 60 o 65o 

https://www.researchgate.net/profile/Pierpaolo-Palmieri
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Through the above analysis, it is not difficult to find that 
the achievement of accurate data capture still requires 
building a new algorithm based on the physical motion 
characteristics of the captured object and mathematical 
model. These studies provide an important idea for this paper. 
The difference is that this paper will start from the two 
dimensions of static characteristics and dynamic attributes to 
regress and analyze the data. 

3. METHOD 

A. Research problem focus 
From depth images to skeletal images, MK has to 

distinguish the human body from the background 
environment firstly and scan these regions’ depth images 
pixel by pixel to determine to which parts of the human body 
they belong [42], it marks the 32 parts of the human body and 
obtains their spatial coordinates by utilizing deep learning. 
Then a skeleton topology is formed to drive the 3D model. 
The specific process is shown in Fig.1. 

 

Fig.1.  Schematic diagram of MK data-driven 3D model. 

    
 a) b) c) d) 

Fig.2.  3D model motion distortion caused by missing skeleton point 
data capture. a) Motion distortion, b) skeleton interpenetration,  
c) skeleton jitter, d) skeleton point loss. 

In practice, if only the skeleton positioning provided by 
MK's SDK is used without additional adjustment and 
constraint, the skeleton movement will be misplaced due to 
ambient light and skeleton occlusion. In addition, when 
turning around or being blocked, it is difficult to avoid the 
loss of captured data. The 3D model will inevitably be 

distorted. If the captured data is not processed, as shown in 
Fig.2., it will have a great negative impact on the actual 
engineering application effect of MK. Therefore, we propose 
a motion capture data compensation solution for skeleton 
occlusion. 

B. Characteristic analysis of human skeleton nodes 
Exploring the characteristics of skeleton data is very 

important for human motion imitation. However, how to 
extract discriminant features effectively is still challenging 
work. The movement of the human body is not caused by the 
change of the skeletons themselves but by the change of the 
position and direction of the bones attached to the joints. The 
length and shape of the bones remain unchanged during the 
movement, and they are connected by the joints. The 
topology of the human joint frame structure is shown in Fig.3. 

Among the joint properties, the most important ones are the 
degrees of freedom and the range of possible motion of the 
lattice on the connected joints. The relationship between the 
length of two adjacent human joint points, the radius of 
gyration, and the centroid position are shown in Table 2., 
which gives the parameters of 6 joint points of the human 
body (height is expressed in H (m)). 

 

 

Fig.3.  Topology of human joint frame structure. 

Table 2.  Centroid of the radius of gyration of limb joints and their relationship. 

Joint Length H(m) Gyratory radius Centroid position 
Upper arm Ltorso = 0.545H 0.830 Ltorso 0.6600 Ltorso 
Crus Lcrus = 0.237H 0.528 Lcrus 0.4049 Lcrus 
Thigh Lthigh = 0.211H 0.540 Lthigh 0.4550 Lthigh 
Palm LPalm = 0.108H 0.578 LPalm 0.6306 LPalm 
Forearm Lforearm = 0.151H 0.526 Lforearm 0.4306 Lforearm 
Upper arm LUpper arm = 0.202H 0.542 LUpper arm 0.5506 LUpper arm 
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According to statistics [43], [44], human skeleton nodes 
have a certain quantitative relationship. As expressed in 
formula (1), it can be used as the judgment basis for ratio 
constraints between different skeletons and effective skeleton 
data.  

 �
Ltorso = 𝐿𝐿2+𝐿𝐿3+𝐿𝐿4 ≈ 4𝐿𝐿1
𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑎𝑎𝑈𝑈𝑎𝑎 ≈ 2.2𝐿𝐿1               
𝐿𝐿𝑓𝑓𝑓𝑓𝑈𝑈𝑈𝑈𝑎𝑎𝑈𝑈𝑎𝑎 ≈ 1.9𝐿𝐿1                   

    (1) 

 𝐿𝐿Torso , 𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑎𝑎𝑈𝑈𝑎𝑎, 𝐿𝐿𝑓𝑓𝑓𝑓𝑈𝑈𝑈𝑈𝑎𝑎𝑈𝑈𝑎𝑎  represent the length of the 
spine, upper arm and forearm, respectively. 𝐿𝐿1 represents the 
sum of the distance between the center of the head and the 
neck, the same as formula (2). Before forming the human 
action description feature vector, it is necessary to determine 
whether the data is invalid. The basis of judgment is shown 
in formula (2). 

 

⎩
⎪
⎨

⎪
⎧

𝐿𝐿1+𝐿𝐿3
𝐿𝐿1 ∈�4(1 − 𝑎𝑎), 4(1 + 𝑎𝑎)�

𝐿𝐿10
𝐿𝐿1 ∈�2.2(1 − 𝑎𝑎), 2.2(1 + 𝑎𝑎)�
𝐿𝐿11
𝐿𝐿1 ∈�1.9(1 − 𝑎𝑎), 1.9(1 + 𝑎𝑎)�

 (2) 

where a is the allowable error range, and its value will change 
according to the body shape difference of athletes; through 
calculation, the estimated value in the experiment is 0.1. The 
last two equations are the ratio of the left and right two upper 
arm lengths and the left and right two forearm lengths to the 
head length, respectively. When the conditions are satisfied, 
the data are valid, and the human action description feature 
vector is finally constructed. 

C. Dynamic and static two-dimensional compensation 
algorithm 

Before the formal human motion capture, a skeleton 
rotation angle constraint and a collision box are added to the 
whole-body skeleton. The skeleton point data will be 
automatically adjusted and repaired when the captured 
skeleton orientation exceeds the constraint limit, or a collision 
occurs. The core idea is to use the skeleton point data before 
and after the collision and make corrections by combining the 
movement characteristics. The basic process is shown in 
Fig.4. 

 

Fig.4.  Flow chart of DSRA.  

Step 1. According to the routine, t-pose is used to enter the 
data acquisition state, and Euclidean distance is used to 
calculate the distance between two skeleton points. The 
quantitative relationship between skeletons is shown in Fig.5. 

Euclidean distance to express the distance between them 

directly: for any two points, 𝑃𝑃𝑖𝑖(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖)  and  𝑃𝑃𝑗𝑗(𝑥𝑥𝑗𝑗 ,𝑦𝑦𝑗𝑗 , 𝑧𝑧𝑗𝑗) ,  
the distance can be calculated using formula (3). 

 𝑑𝑑𝑥𝑥,𝑦𝑦,𝑧𝑧 = �(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)2 + (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗)2 + (𝑧𝑧𝑖𝑖 − 𝑧𝑧𝑗𝑗)2 (3) 

T-POSE
Spacing length for bone points(L)

Collision detection Calculation of bone space angle θ

Static frame: estimating coordinate 
position using included angle（Mean 
processing）
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coordinate positionMean filter

End

Start
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Fig.5.  Schematic diagram of mathematical relationship of human 
skeleton nodes. 

Step 2. The Mesh Collider model can be established 
according to the maximum constraints of human joint 
movements-the maximum angle between the fore and rear 
arm of the left hand is 120 degrees-and the critical movement 
characteristics of occlusion generated by MKv3. When the 
body movement is close to the model, as shown in Fig.6., the 
data compensation algorithm will be activated.  

 
 a) b) c) 

Fig.6.  The Mesh Collider model a) maximum angle of 120° between 
the fore and rear arm of the left hand in gymnastic movements;  
b) the critical movement generated by the right arm; c) Mesh 
Collider of the human body. 

There are some limitations when using the Mesh Collider. 
When Mesh is marked as Convex, it can collide with other 
Mesh Colliders. In unity 3D, the specific parameters are set 
to Kinematic Rigidbody Collider and Kinematic Rigidbody 
Trigger Collider. 

Step 3. According to the coordinates of skeletal points in N 
frames before the collision, the spatial angle is calculated by 
the cosine theorem, and the last effective angle before and 
after the collision is read, as in formulas (4) and (5). 

 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑑𝑑𝑖𝑖𝑖𝑖

2+𝑑𝑑𝑖𝑖𝑖𝑖
2−𝑑𝑑𝑖𝑖𝑖𝑖

2

2𝑑𝑑𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖
 (4) 

 𝜃𝜃 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖𝑖𝑖

 (5) 

Step 4. Static frame spatial coordinate estimation. The 
static method is used when the lost node has neighboring 
nodes to capture, by being able to capture the last frame 
before and after the collision, the angle of the proximity node 
pinch, the capture lost skeleton node coordinate position is 

calculated, and the two angle values before and after are 
obtained, and the average of the spatial position coordinates 
is achieved via formula (6). 

 cos θ＝a ∗ b/(|a| ∗ |b|) (6) 

If a skeleton node is turned around, a capture loss situation 
occurs when the parent node is successfully captured, but the 
child node loses the capture. In this case, the static child node 
frame can be calculated directly based on the capture data of 
the parent node. 

Step 5. Dynamic frame space motion characteristics 
parameter estimation. Through the collision data before the 
proximity of the effective capture of several frames, skeletal 
motion inertia characteristics parameters are calculated, and 
the speed of motion and angular acceleration is estimated by 
displacement. Formulas (7) and (8) are as follows. 

 𝜔𝜔 = lim
∆𝑡𝑡→0

∆𝜃𝜃
∆𝑡𝑡

= 𝑑𝑑𝜃𝜃
𝑑𝑑𝑡𝑡

 (7) 

 𝑎𝑎 = lim
∆𝑡𝑡→0

Δ𝜔𝜔
Δ𝑡𝑡

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

 (8) 

Step 6. Dynamic frame space motion coordinate 
estimation. If the angular velocity and acceleration are 
obtained, the inverse of the Euclidean distance formula (9) 
can be performed. 

 𝑆𝑆𝑡𝑡+∆𝑡𝑡 = 𝑆𝑆𝑡𝑡+
1
2
𝑎𝑎∆𝑡𝑡2 (9) 

t represents a certain time and ∆𝑡𝑡 represents a time interval. 
Step 7. Least-squares fitting operation: according to the 

spatial location coordinates of the skeletal points estimated in 
Step 4 and Step 6, the least squares method polynomial fitting 
budget is carried out, and the calculation formulas (10), (11), 
(12) are listed as follows. 

 𝑓𝑓(𝑥𝑥) = 𝑎𝑎0 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2+. . . +𝑎𝑎𝑘𝑘𝑥𝑥𝑘𝑘 (10) 

 Loss =∑ �𝑦𝑦𝑖𝑖 − �𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 + 𝑎𝑎2𝑥𝑥𝑖𝑖2+. . . +𝑎𝑎𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘��𝑛𝑛
𝑖𝑖=1

2 (11) 

 𝜕𝜕𝐿𝐿𝑓𝑓𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎𝑖𝑖

= −2∑ �𝑦𝑦𝑖𝑖 − �𝑎𝑎0 + 𝑎𝑎1𝑥𝑥𝑖𝑖 + 𝑎𝑎2𝑥𝑥𝑖𝑖2+. . . +𝑎𝑎𝑘𝑘𝑥𝑥𝑖𝑖𝑘𝑘��𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖𝑘𝑘 =

0  (12) 

The polynomial parameters are calculated by deriving the 
parameters to obtain the complete fitting curve formula, 
which can be used to estimate skeletal coordinates during 
other motions, and a combination of dynamic methods (pre-
and post-collision detection motion acceleration) and static 
methods (pre-and post-collision spatial pinch angles) is 
achieved in the fitting process. 

The unmasked spatial coordinate positions can be obtained 
directly, and a simple mean smoothing process can be done 
to make the overall action smoother. Formula (13) is listed as 
follows. 

 �̅�𝑥 = 1
𝑎𝑎
∑
𝑎𝑎

𝑖𝑖=1
𝑥𝑥𝑖𝑖 (13) 
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4. EXPERIMENT & DISCUSSION 
We present a critical analysis, interpretation, and 

evaluation of the obtained results. Two groups of experiments 
of dimension reduction data compensation test and 
gymnastics movement capture, and correction experiment 
were carried out to verify the feasibility of the method in the 
MKv3 environment. 

A. Experimental equipment 
1. Hardware device: The experiment was conducted on a 

mobile computer. The operating system is Ubuntu 18.04 with 
NVIDIA Quadro p 4000. The memory card is configured as 
DDR3-1600MHZ-32GB.  

Azure Kinect DK: including a 1-megapixel TOF depth 
camera and 12-megapixels RGB HD camera. 
2. Software: Unity 3D 5.5, Azure Kinect examples for 

unity package, data analysis software MATLAB 2016a. 

B. Experiment 1: Dimensionality reduction data 
compensation test 

A 10-year-old elementary school student participated in 
the experiment to perform an arm swing test by intercepting 
the spatial position data of the skeletal action points every 30 
ms，including the arm unfold-occlusion-unfold process, as 
shown in Fig.7. 

 

Fig.7.  Skeleton point occlusion test of arm swing (unfold-occlusion-unfold). 

The skeletal data rotation vector is a three-dimensional 
vector, which is downscaled to one-dimensional values for 
the sake of illustration, and the data are mainly the spatial 
position data of the Hand Tip nodes in the Y-axis plane of the 
world coordinate axis, with a total of 24 data points and a time 
of 25 seconds. 

The captured data is compensated and corrected according 
to the dynamic and static two-dimensional regression 
algorithm to obtain a set of visual diagrams of data analysis, 
as shown in Fig.8. The data processing is explained below. 

In Fig.8.a), at seconds 8-16, the hand skeletons are 
obscured, and a disconnect occurs, and the goal of data 
processing is to connect the missing data smoothly. 

Fig.8.b) directly ignores those missing data due to 
occlusion and performs a polynomial fitting operation using 
the least-squares method. Since the predicted output is 
estimated based on the limited valid data before and after, the 
predicted data may not always be accurate and can be 
detached from the human motion characteristics in terms of 
motion trends, leading to large errors.  

 

Fig.8.  Visual diagram of curve comparison between skeleton point estimation data and fitting data. 
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Therefore, when estimating the lost skeletal data, we 
cannot disregard movement characteristics, or regard the 
estimation of the lost skeletal data as pure mathematical 
calculations. Especially when the motion suddenly starts or 
stops, pure mathematical predictions may result in a further 
spread or even amplification of the noise already in the data 
into future data, which may increase the noisiness of the data. 

Fig.8.c) and Fig.8.d) show the static skeletal frame 
estimation and static skeletal frame regression estimation, 
respectively. Due to the increase in the amount of data, the 
trend of the fitted curve has been fundamentally transformed, 
and the data curve and the fitted curve behave more 
consistently. 

Fig.8.e) and Fig.8.f) introduce motion acceleration, which 
is estimated by using the motion characteristics of dynamic 
skeletal frames, and then weighted superposition is 
performed based on static frames, and the estimated value and 
the fitted curve are the same after the regression 
superposition. 

Fig.8.f) shows that the actual data and the fitted data 
perform better, and the curve is relatively smooth, which 
meets the data estimation requirements. 

C. Experiment 2: Gymnastics movement capture and 
correction experiment 

According to the characteristics of gymnastic movements, 
the effect simulation test was arranged for gymnastic 
movements with occlusion movements. The experimenter 
completed the turning movement and side movement, 
including hand masking and leg masking, and completed the 
data redirection experiment in a unity 3D environment 
according to the test data, in which smoothing processing and 
dynamic and static 2D regression processing for the original 
data mean were done, respectively. The effect of data-driven 
animation is shown in Fig.9. 

In the effect pictures of animation redirection of the above 
three groups of real gymnastics movements, it can be seen 
that there are skeleton positions that do not conform to the 
characteristics of human movement. The overall effect is 
improved after correction, and the optimization comparison 
of action details is shown in Fig.10. 

The comparative results showed that the motion 
reconstruction is approaching close to the real state after data 
supplement and calculation. 

 

Fig.9.  Comparison of skeleton data-driven animation effects (including real action (1st group of pictures), animation processed by unity for 
Kinect SDK (2nd group of pictures), and animation processed by DSRA (3rd group of pictures). 

 
 a) b) c) d) 

Fig.10.  Details comparison of skeleton data redirection: a) skeleton interpenetration, b) side body skeleton loss, c) skeleton interpenetration 
from the front and from behind, d) side body skeleton loss. 
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Table 3.  Comparison table of SDRA performance test. 

 Solution Device Max 
interval 

Average 
error 

Root mean 
square error 

Average 
gradient 

Humphrey J et al. [23] MF MKv2 ___ < 10 mm ___ ___ 
Li Liangfu L et al.  [36] KF MKv2 ___ ___ 38.1025 0.4713 
Abbasi J et al. [37] GD&UKF MKv2 ___ 0.03 mm ___ ___ 
Xiuqi x et al.  [40] PCF MKv3 ___ 0.20-0.5 mm ___ ___ 
Zhanli L et al . [41] CF MKv2 90 ms 0.63 mm ___ 0.7004 
Ours DSRA MKv3 180 ms 0.45 mm 37.0200 ___ 

 
It was found in the experiment that there is a lot of noise in 

the coordinate data of the joints obtained by Kinect, and the 
causes underlying these noisy data may be related to the 
position of the sensor array, the noise reduction mode, and the 
accuracy of data rounding that has been introduced in this 
study. Researchers analyze and optimize specific practical 
problems from different perspectives. For example, some 
researchers emphasize the compensation time while others 
focus more on data errors. This paper compares the 
compensation time and average error (the average value of 
the difference between the estimation points and the fitting 
curve), as shown in Table 3. 

It is found that the dynamic and static two-dimensional 
regression data algorithm is better than other algorithms in 
many indicators. This method not only simply modifies and 
compensates the data but also makes full use of the data that 
can be accurately measured for iteration and estimation. 

5. CONCLUSION 
The paper proposes a DSRA method that uses MKv3 to 

extract human skeletal information (3D coordinates of each 
joint point), then connects two joint points to define skeletal 
vectors and skeletal point angles according to the principle of 
human structure. In the static aspect, the adjacent frames 
before and after the end of the collision are used for 
estimation and regression operation using vector relations; in 
the dynamic aspect, the angular velocity and angular 
acceleration are estimated by the adjacent frames before and 
after the collision, and the coordinates of the skeletal points 
are estimated by time, which are found by least-squares 
polynomial fitting. The method makes up for the problem of 
single processing of raw data in previous studies, and the 
experiment proves that the method effectively solves the 
problem of data loss during turning, provides a good method 
for motion capture, completes the data correction of motion 
capture, and is quite helpful in the field of practical use. It is 
worth mentioning that the algorithm proposed in the article 
may not necessarily be adapted to other specific 
environments as well, taking into account the characteristics 
of human motion, which also provides a wide space for our 
future research. 

ACKNOWLEDGMENT 
This study was funded by the Research on Automatic 

Segmentation and Recognition of Teaching Scene with the 
Characteristics of Teaching Behavior of National Natural 
Science Foundation of China (Grant number-61977034), as 
well as supported by open fund of Key Laboratory of 

Intelligent Education Technology and Application of 
Zhejiang Province (Grant number-jykf20057). Zhejiang 
Education Science Planning Project (Grant number-
2021SCG309 ). Special Program for Guiding Local Science 
and Technology Development by the Central Government, 
China. (Grant number-2019ZYYD012). 

REFERENCES  
[1] Hu, X., Yang, Z.W., Liu, X.P. (2016). A real-time 

algorithm of virtual animation character driving based 
on Kinect. Journal of Hefei University of Technology, 
39 (6), 756-760. (in Chinese) 
http://dx.chinadoi.cn/10.3969/j.issn.1003-
5060.2016.06.008  

[2] Han, L., Zhang, M.C. (2017). Research on the teaching 
design and experiment of sports micro course based on 
the fusion of motion capture technology. Journal of 
Liaoning Normal University (Natural Science Edition), 
40 (2), 199-206. (in Chinese) 
https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode
=CJFD&filename=LNSZ201702010&dbname=CJFD
LAST2017  

[3] Eltoukhy, M., Kuenze, C., Oh, J., Wooten, S., Signorile, 
J. (2017). Kinect-based assessment of lower limb 
kinematics and dynamic postural control during the star 
excursion balance test. Gait & Posture, 58, 421-427. 
https://doi.org/10.1016/j.gaitpost.2017.09.010   

[4] Yang, W.L., Li, X.R., Xia, B. (2018). System of swing-
arm therapy auxiliary training based on unity 3D and 
Kinect. Modern Computer, (20), 79-84.（in Chinese） 
http://www.cnki.com.cn/Article/CJFDTotal-
XDJS201820018.htm 

[5] Xing, M.M., Wei, G.H., Liu, J., Zhang, J.Z., Yang, F., 
Hui, C. (2020). A review on multi-modal human motion 
representation recognition and its application in 
orthopedic rehabilitation training. Journal of 
Biomedical Engineering, 37 (1), 174-178, 184. (in 
Chinese) 
http://dx.doi.org/10.7507/1001-5515.201906053  

[6] Gray, A.D., Willis, B.W., Skubic, M. (2017). 
Development and validation of a portable and 
inexpensive tool to measure the drop vertical Jump 
using the Microsoft Kinect V2. Sports Health: A 
Multidisciplinary Approach, 9 (6), 537-544.  
https://doi.org/10.1177%2F1941738117726323   

[7] Gambi, E., Agostinelli, A., Belli, A., Burattini, L., 
Cippitelli, E., Fioretti, S., Pierleoni, P., Ricciuti, M., 
Sbrollini, A., Spinsante, S. (2017). Heart rate detection 

http://dx.chinadoi.cn/10.3969/j.issn.1003-5060.2016.06.008
http://dx.chinadoi.cn/10.3969/j.issn.1003-5060.2016.06.008
https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=LNSZ201702010&dbname=CJFDLAST2017
https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=LNSZ201702010&dbname=CJFDLAST2017
https://oversea.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&filename=LNSZ201702010&dbname=CJFDLAST2017
https://doi.org/10.1016/j.gaitpost.2017.09.010
http://www.cnki.com.cn/Article/CJFDTotal-XDJS201820018.htm
http://www.cnki.com.cn/Article/CJFDTotal-XDJS201820018.htm
http://dx.doi.org/10.7507/1001-5515.201906053
https://doi.org/10.1177%2F1941738117726323


MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 6, 283-292 

291 

using Microsoft Kinect: Validation and comparison to 
wearable devices. Sensors, 17 (8), 1776.  
https://doi.org/10.3390/s17081776  

[8] Eltoukhy, M., Oh, J., Kuenze, C., Signorile, J. (2017). 
Improved Kinect-based spatiotemporal and kinematic 
treadmill gait assessment. Gait & Posture, 51, 77-83. 
https://doi.org/10.1016/j.gaitpost.2016.10.001  

[9] Chang, X.J., Ma, Z.G., Li, M., Hauptmann, A.G. (2017). 
Feature interaction augmented sparse learning for fast 
Kinect motion detection. IEEE Transactions on Image 
Processing, 26 (8), 3911-3920.  
https://doi.org/10.1109/TIP.2017.2708506  

[10] Yang, Y.H., Xu, W., Zhang, H., Zhang, J.P., Xu, M.L. 
(2014). The application of KINECT motion sensing 
technology in game-oriented study. International 
Journal of Emerging Technologies in Learning, 9 (2). 
https://doi.org/10.3991/ijet.v9i2.3282 

[11] Wu, X., Zhang, Y., Shen, Y., Yan, X. (2013). National 
dance 3D digitizing protection method based on motion 
capture technology. Computer and Modernization, (1), 
112-114, 118. (in Chinese) 
http://dx.chinadoi.cn/10.3969/j.issn.1006-
2475.2013.01.032  

[12] Kataoka, H., Satoh, Y., Aoki, Y., Oikawa, S., Matsui, 
Y. (2018). Temporal and fine-grained pedestrian action 
recognition on driving recorder database. Sensors, 18 
(2), 627.  
https://doi.org/10.3390/s18020627  

[13] Bhateja, A., Shrivastav, A., Chaudhary, H., Lall, B., 
Kalra, P.K. (2021). Depth analysis of Kinect v2 sensor 
in different mediums. Multimedia Tools and 
Applications, 1-26. https://doi.org/10.1007/s11042-
021-11392-z  

[14] Antico, M., Balletti, N., Laudato, G., Lazich, A., 
Notarantonio, M., Oliveto, R., Ricciardi, S., Scalabrino, 
S., Simeone, J. (2021). Postural control assessment via 
Microsoft Azure Kinect DK: An evaluation 
study. Computer Methods and Programs in 
Biomedicine, 209, 106324.  
https://doi.org/10.1016/j.cmpb.2021.106324  

[15] Kean, S., Hall, J.C., Perry, P. (2011). Microsoft's Kinect 
SDK. In Meet the Kinect. Berkeley, CA: Apress, 151-
173. https://doi.org/10.1007/978-1-4302-3889-8_8  

[16] Rahman, M. (2017). Beginning Microsoft Kinect for 
Windows SDK 2.0: Motion and Depth Sensing for 
Natural User Interfaces. Berkeley, CA: Apress.  
https://doi.org/10.1007/978-1-4842-2316-1  

[17] Gabbasov, B., Danilov, I., Afanasyev, I., Magid, E. 
(2015). Toward a human-like biped robot gait: 
Biomechanical analysis of human locomotion recorded 
by Kinect-based Motion Capture system. In 2015 10th 
International Symposium on Mechatronics and its 
Applications (ISMA). IEEE.  
https://doi.org/10.1109/ISMA.2015.7373477  

[18] iPi Soft LLC. (2012). iPi Motion Capture™ Version 
2.0.  

[19] Microsoft. (2022). Azure Kinect DK.  
https://azure.microsoft.com/en-us/services/kinect-dk/  

[20] Dehbandi, B., Barachant, A., Smeragliuolo, A.H., 
Long, J.D., Bumanlag, S.J., He, V., Lampe, A., Putrino, 
D. (2017). Using data from the Microsoft Kinect 2 to 

determine postural stability in healthy subjects: A 
feasibility trial. PloS One, 12 (2), 0170890. 
https://doi.org/10.1371/journal.pone.0170890  

[21] Zulkarnain, R.F., Kim, G.Y., Adikrishna, A., Hong, 
H.P., Kim, Y.J., Jeon, I.H. (2017). Digital data 
acquisition of shoulder range of motion and arm motion 
smoothness using Kinect v2. Journal of Shoulder and 
Elbow Surgery, 26 (5), 895-901. 
https://doi.org/10.1016/j.jse.2016.10.026  

[22] Amini, A., Banitsas, K. (2019). An improved technique 
for increasing the accuracy of joint-to-ground distance 
tracking in Kinect V2 for foot-off and foot contact 
detection. Journal of Medical Engineering & 
Technology, 43 (1), 8-18.  
https://doi.org/10.1080/03091902.2019.1595762  

[23] Mortazavi, F., Nadian-Ghomsheh, A. (2018). Stability 
of Kinect for range of motion analysis in static 
stretching exercises. PloS One, 13 (7), 0200992.  
https://doi.org/10.1371/journal.pone.0200992  

[24] Seo, N.J., Fathi, M.F., Hur, P., Crocher, V. (2016). 
Modifying Kinect placement to improve upper limb 
joint angle measurement accuracy. Journal of Hand 
Therapy, 29 (4), 465-473.  
https://doi.org/10.1016/j.jht.2016.06.010  

[25] Tölgyessy, M., Dekan, M., Chovanec, Ľ., Hubinský, P. 
(2021). Evaluation of the Azure Kinect and its 
comparison to Kinect V1 and Kinect V2. Sensors, 21 
(2), 413. https://doi.org/10.3390/s21020413  

[26] Tölgyessy, M., Dekan, M., Chovanec, Ľ. (2021). 
Skeleton tracking accuracy and precision evaluation of 
Kinect V1, Kinect V2, and the Azure Kinect. Applied 
Sciences, 11 (12), 5756.  
https://doi.org/10.3390/app11125756  

[27] Sharma, P., Anand, R.S. (2020). Depth data and fusion 
of feature descriptors for static gesture recognition. IET 
Image Processing, 14 (5), 909-920.  
https://doi.org/10.1049/iet-ipr.2019.0230  

[28] Simonsen, D., Popovic, M.B., Spaich, E.G., Andersen, 
O.K. (2017). Design and test of a Microsoft Kinect-
based system for delivering adaptive visual feedback to 
stroke patients during training of upper limb movement. 
Medical & Biological Engineering & Computing, 55 
(11), 1927-1935.  
https://doi.org/10.1007/s11517-017-1640-z  

[29] Hsu, S.C., Huang, J.Y., Kao, W.C., Huang, C.L. (2015). 
Human body motion parameters capturing using 
Kinect. Machine Vision and Applications, 26 (7), 919-
932. https://doi.org/10.1007/s00138-015-0710-1  

[30] Hazra, S., Pratap, A.A., Tripathy, D., Nandy, A. (2021). 
Novel data fusion strategy for human gait analysis using 
multiple Kinect sensors. Biomedical Signal Processing 
and Control, 67, 102512.  
https://doi.org/10.1016/j.bspc.2021.102512  

[31] Shani, G., Shapiro, A., Oded, G., Dima, K., Melzer, I. 
(2017). Validity of the Microsoft Kinect system in 
assessment of compensatory stepping behavior during 
standing and treadmill walking. European Review of 
Aging and Physical Activity, 14, 4.  
https://doi.org/10.1186/s11556-017-0172-8  

[32] Guess, T.M., Razu, S., Jahandar, A., Skubic, M., Huo, 
Z.Y. (2017). Comparison of 3D joint angles measured 
with the Kinect 2.0 skeletal tracker versus a marker-

https://doi.org/10.3390/s17081776
https://doi.org/10.1016/j.gaitpost.2016.10.001
https://doi.org/10.1109/TIP.2017.2708506
https://doi.org/10.3991/ijet.v9i2.3282
http://dx.chinadoi.cn/10.3969/j.issn.1006-2475.2013.01.032
http://dx.chinadoi.cn/10.3969/j.issn.1006-2475.2013.01.032
https://doi.org/10.3390/s18020627
https://doi.org/10.1007/s11042-021-11392-z
https://doi.org/10.1007/s11042-021-11392-z
https://doi.org/10.1016/j.cmpb.2021.106324
https://doi.org/10.1007/978-1-4302-3889-8_8
https://doi.org/10.1007/978-1-4842-2316-1
https://doi.org/10.1109/ISMA.2015.7373477
https://azure.microsoft.com/zh-cn/services/kinect-dk/
https://doi.org/10.1371/journal.pone.0170890
https://doi.org/10.1016/j.jse.2016.10.026
https://doi.org/10.1080/03091902.2019.1595762
https://doi.org/10.1371/journal.pone.0200992
https://doi.org/10.1016/j.jht.2016.06.010
https://doi.org/10.3390/s21020413
https://doi.org/10.3390/app11125756
https://doi.org/10.1049/iet-ipr.2019.0230
https://doi.org/10.1007/s11517-017-1640-z
https://doi.org/10.1007/s00138-015-0710-1
https://doi.org/10.1016/j.bspc.2021.102512
https://doi.org/10.1186/s11556-017-0172-8


MEASUREMENT SCIENCE REVIEW, 22, (2022), No. 6, 283-292 

292 

based motion capture system. Journal of Applied 
Biomechanics, 33 (2), 176-181.  
https://doi.org/10.1123/jab.2016-0107  

[33] Chakraborty, S., Nandy, A., Yamaguchi, T., Bonnet, V., 
Venture, G. (2020). Accuracy of image data stream of a 
markerless motion capture system in determining the 
local dynamic stability and joint kinematics of human 
gait. Journal of Biomechanics, 104, 109718. 
https://doi.org/10.1016/j.jbiomech.2020.109718  

[34] Palmieri, P., Melchiorre, M., Scimmi, L.S., Pastorelli, 
S., Mauro, S. (2020). Human arm motion tracking by 
Kinect sensor using Kalman filter for collaborative 
robotics. In Advances in Italian Mechanism Science: 
Proceedings of the 3rd International Conference of 
IFToMM ITALY. Springer, 326-334. 
https://doi.org/10.1007/978-3-030-55807-9_37  

[35] Li, H., Wen, X., Guo, H., Yu, M. (2018). Research into 
Kinect/inertial measurement units based on indoor 
robots. Sensors, 18 (3), 839.  
https://doi.org/10.3390/s18030839  

[36] Li, L.F., Zou, B., Zhou, G.L., Wang, C., He, J.F. (2018). 
Repair and error compensation method for depth image 
based on optimization estimation. Journal of Applied 
Optics, 39 (1), 45-50. (in Chinese) 
http://www.yygx.net/en/article/doi/10.5768/JAO20183
9.0101008 

[37] Abbasi, J., Salarieh, H., Alasty, A. (2021). A motion 
capture algorithm based on inertia-Kinect sensors for 
lower body elements and step length 
estimation. Biomedical Signal Processing and 
Control, 64, 102290.  
https://doi.org/10.1016/j.bspc.2020.102290  

[38] Ryselis, K., Petkus, T., Blažauskas, T., Maskeliunas, R., 
Damaševičius, R. (2020). Multiple Kinect based system 
to monitor and analyze key performance indicators of 
physical training. Human-centric Computing and 
Information Sciences, 10, 51.  
https://doi.org/10.1186/s13673-020-00256-4  

[39] Lyu, C., Shen, Y., Li, J. (2016). Depth map inpainting 
method based on Kinect sensor. Journal of Jilin 
University (Engineering and Technology Edition), 46 
(5), 1697-1703. 
https://doi.org/10.13229/j.cnki.jdxbgxb201605046  

[40] Xie, X.Q., He, Y.Q., Feng, Y.W. (2020). Research on 
the Azure Kinect DK deep sensor error analysis and 
correction method. China Plant Engineering, (16), 24-
25. (in Chinese) 
https://doc.taixueshu.com/journal/20201735zgsbgc.ht
ml 

[41] Li, Z.L., Zhou, K., Mu, Q., Li, H.A. (2019). TOF 
camera real-time high precision depth error 
compensation method. Infrared and Laser Engineering, 
48 (12), 263-272. (in Chinese) 
https://doc.taixueshu.com/journal/20201735zgsbgc.ht
ml 

[42] Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., 
Finocchio, M., Moore, R., Kipman, A., Blake, A. 
(2011). Real-time human pose recognition in parts from 
single depth images. In CVPR 2011. IEEE, 1297-1304. 
https://doi.org/10.1109/CVPR.2011.5995316  

[43] Li, J.F., Xu, Y.H., Chen, Y. (2006). A real-time 3D 
human body tracking and modeling system. In 2006 
International Conference on Image Processing. IEEE, 
2809-2812. https://doi.org/10.1109/ICIP.2006.312992  

[44] Gu, J.H., Li, S., Liu, H.P. (2018). Human action 
recognition algorithm based on angle of skeletal vector. 
Transducer and Microsystem Technologies, 37 (2), 
120-123. (in Chinese) 
https://doi.org/10.13873/J.1000-9787(2018)02-0120-
04 

Received December 12, 2021 
Accepted May 30, 2022

 

https://doi.org/10.1123/jab.2016-0107
https://doi.org/10.1016/j.jbiomech.2020.109718
https://doi.org/10.1007/978-3-030-55807-9_37
https://doi.org/10.3390/s18030839
http://www.yygx.net/en/article/doi/10.5768/JAO201839.0101008
http://www.yygx.net/en/article/doi/10.5768/JAO201839.0101008
https://doi.org/10.1016/j.bspc.2020.102290
https://doi.org/10.1186/s13673-020-00256-4
https://doi.org/10.13229/j.cnki.jdxbgxb201605046
https://doc.taixueshu.com/journal/20201735zgsbgc.html
https://doc.taixueshu.com/journal/20201735zgsbgc.html
https://doc.taixueshu.com/journal/20201735zgsbgc.html
https://doc.taixueshu.com/journal/20201735zgsbgc.html
https://doi.org/10.1109/CVPR.2011.5995316
https://doi.org/10.1109/ICIP.2006.312992
https://doi.org/10.13873/J.1000-9787(2018)02-0120-04
https://doi.org/10.13873/J.1000-9787(2018)02-0120-04

