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Abstract: This article is devoted to the positioning of glued parts by robots in the process of manufacturing automotive headlights, with the
possibility of generalization to the mutual positioning of any 3D object. The authors focused on the description of the mathematical method
that leads to the optimization of the robot arm setting and ensures the closest contact of the glued parts. The contact surfaces of the two
joined parts are, in the ideal case, identical in shape and their optimal alignment is considered to best align the position of the nominal points
on the base part with the position of the control (measured) points on the part manipulated by the robot.
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1. INTRODUCTION

Modern assembly requires the use of industrial robots,
which increases the efficiency of the production process, but
brings problems that do not appear during conventional man-
ual assembly. In order to meet the production quality require-
ments when assembling parts of automotive headlights on the
assembly line, the glued headlight parts must be positioned
with appropriate precision, among other things. The robot is
currently a highly sophisticated device that can position the
parts with sufficient accuracy, but only if its operation is pro-
grammed satisfactorily to exploit its production potential.

The example presented in this article deals with the posi-
tioning of the front headlight cover lens relative to its housing.
The basic prerequisite for cover lens positioning is knowledge
of the exact position of the contact surface of the headlight
housing at the time of the gluing operation on the assembly
line. The contact surface is located at the bottom of the groove
for gluing on the cover lens. Its position is determined by the
position of the nominal points in the production documenta-
tion. The coordinates of the nominal points are determined in
the Cartesian coordinate system. The contact surface of the
cover lens is brought into its optimum position by the robot
so that the resulting position of the control points of the con-
tact surface of the cover lens are as close as possible to the
position of the nominal points in the groove of the headlight
housing.

The final position of the cover lens in which the coupled
part is stabilized is found by means of the rotation and dis-
placement operations (or vice versa) [1]. The final position
of this part is calculated based on the permissible position er-
ror of the relevant nominal and control points, the value of

these deviations being defined in the drawing documentation.
Mathematically, the final position of these points is specified
by a linear combination of two objective functions denoted by
ỹ1 and ỹ2. The function ỹ1 is defined as the sum of the squared
deviations of the position of the control points from the no-
minal points, and the function ỹ2 is defined as the sum of
the squared deviations from the root mean square deviation.
The resulting position of the glued glass shield is given by
the numerically calculated local minimum [2] of the objective
function of the six variables. It also depends on the weight as-
signed to the partial objective functions. This weight is con-
trolled by the designer’s requirement for the tolerance of the
position deviation between the control and nominal points.

2. SUBJECT AND METHODS

A transformation in 3D space is required to grasp the stud-
ied problem. This transformation is a linear function deter-
mined by a rotation matrix that can be parameterized by three
angles. Euler angles are often used for the transformation
of two three-dimensional coordinate systems [3], [4]. An al-
ternative is the use of three mutually orthogonal angles-yaw,
pitch and roll, which is very common in robotics [5]–[8].
These two variants of rotation differ in the definition of three
mutually orthogonal rotational angles that have different rela-
tionships to the original coordinate axes of the reference co-
ordinate system, which are given by the direction of the x, y,
and z axes. The usual method for determining these angles
is based on quartions [8]. Other algorithms are described in
[3]. A method based on a regression model with constraints
is presented in [5].
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A. Rotation matrix

Euler’s transformation is considered. The rotation ma-
trices Rx, Ry, Rz around the Cartesian axes x, y, z with the
angles α (a), β (b), γ (g) in the left-hand direction can
be expressed with the abbreviation cq = cos(q), sq = sin(q),
q = a, b, g as

Rx =

1 0 0
0 ca sa
0 −sa ca

 , Ry =

cb 0 −sb
0 1 0
sb 0 cb

 ,

Rz =

 cg sg 0
−sg cg 0

0 0 1

 . (1)

For the right-handed rotation it is necessary to replace
sq → −sq in (1), since sin is an odd function. The combined
left-handed rotation matrix in the order x, y, z of the axes is
then

R1 = RzRyRx

=

 cbcg casg + sasbcg sasg − casbcg
−cbsg cacg − sasbsg sacg + casbsg

sb −sacb cacb

 . (2)

while for the z, y, x order of axes it is

R2 = RxRyRz

=

 cbcg cbsg −sb
sasbcg − casg cacg + sasbsg sacb
sasg + casbcg casbsg − sacg cacb

 . (3)

The normalized rotation axis uuu of the rotation matrix R is
determined by the condition Ruuu = uuu, which means that uuu is
a normalized eigenvector of R with unit eigenvalue. If R has
the elements Ri, j, i, j = 1, 2, 3 (or x, y, z), the rotation axis uuu
can be obtained from the following relations

uuu0 =

R3,2 −R2,3
R1,3 −R3,1
R2,1 −R1,2

 , uuu =
uuu0

∥uuu0∥
, (4)

where ∥uuu0∥ is a norm of the vector uuu0 .
The rotation angle ϕ around the axis uuu can be calculated,

for example, from the condition 2sinϕ = ∥uuu0∥ or from the
rotation of the arbitrary non-zero vector. The rotation matrix,
expressed by the rotation axis and the right-handed rotation,
is as follows (cϕ = cosϕ , sϕ = sinϕ , c = 1− cosϕ)

R =

 cϕ +u2
xc uxuyc−uzsϕ uxuzc+uysϕ

uyuxc+uzsϕ cϕ +u2
yc uyuzc−uxsϕ

uzuxc−uysϕ uzuyc+uxsϕ cϕ +u2
z c

 . (5)

Let the set of nominal points (vectors) of the investigated
object be described by RRR0, j and the corresponding measured
points by RRRm, j, for both j = 1, . . . N. Let the angles of the
left-hand rotation around the axes (in the order x, y, z) be α ,
β , γ . The corresponding rotation matrix R is either R1 (for
the rotation in the axes order x, y, z) or R2 (for the rotation in
the axes order z, y, x).

B. Translation succeeded by rotation

Let us assume that the measured points can be translated
by the vector PPP0 and then rotated with the matrix R so that
the positions of the measured points are as close as possible
to the corresponding nominal points. The deviations of the
translated and rotated measured points from the nominal ones
are as follows

∆RRR j = R(RRRm, j +PPP0)−RRR0, j. (6)

The objective function of an optimization problem can be
defined as the sum of the squared deviation norms

y1 =
1
N

N

∑
j=1

ν j∥∆RRR j∥2, (7)

where ν j is the weight defined for the j-th point. These are
non-negative numbers that allow us to emphasize or suppress
the importance of the selected points. The aim of the task is to
find six unknown quantities – three coordinates of the transla-
tion vector and three angles of the rotation matrix around the
coordinate axes (or two coordinates of the normalized vector
of the rotation axis and one rotation angle) – by minimizing
the objective function.

Since the numerical gradient optimization method con-
verges poorly in the default coordinate system, especially
with respect to the translation vector, it is advantageous to
reformulate the problem in a coordinate system where the ori-
gin is shifted to the center of gravity and to scale the problem
using factor M. Finally, we seek the minimum of an objective
function of six variables of the form

ỹ1 =
1
N

N

∑
j=1

ν j∥∆R̃RR j∥2, ∆R̃RR j = R̃(R̃RRm, j + P̃PP0)− R̃RR0, j (8)

where

TTT =
1
N

N

∑
j=1

RRR0, j, P̃PP0 = M(PPP0 −TTT ),

R̃RR0, j = M(RRR0, j −TTT ), R̃RRm, j = M(RRRm, j −TTT ). (9)

TTT is the center of gravity of the nominal points in the de-
fault coordinate system. The scaling factor M is usually cho-
sen as a small multiple (from 1 to 10) of the reciprocal of the
maximum distance of the nominal points from the center of
gravity.

However, the definition of the objective function can be
extended by combining the requirement for the minimum
sum of squared position deviations with the requirement for
the minimum sum of squared deviations from the root mean
square deviation in more detail

ỹ2 =
1
N

N

∑
j=1

ν j(∥∆R̃RR j∥ −∆R̃aver)
2 (10)
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where

∆R̃aver =
1
N

(
N

∑
j=1

∥∆R̃ j∥2

) 1
2

. (11)

The resulting objective function of the problem is then gen-
erally a linear combination of these two partial objective func-
tions

ỹ = ν0,1ỹ1 +ν0,2ỹ2 (12)

where the numerical weights ν0,1 and ν0,2 are non-negative
numbers (e.g., between 0 and 1, where their sum equals one)
that determine the type of the prevailing objective function.
By finding the local (ideally global) minimum of the objective
function, we can assume that the problem is solved.

Finally, we obtain a solution for the original task in which
the rotation matrix does not change (R = R̃ ) and the transla-
tion vector is

PPP0 =
1
M

P̃PP0 −TTT +R−1TTT . (13)

The corrected positions of the measured points are

RRRcor, j = R(RRRm, j +PPP0) (14)

for j = 1, . . . N.

C. Rotation succeeded by translation

The Method for solving this problem is similar to the pre-
vious case. Again, we assume that the measured points can
be rotated using the rotation matrix R and subsequently trans-
lated by the vector PPP0 so that the positions of the measured
points are as close as possible to the nominal points. The
objective function of the problem is therefore defined analo-
gously to the original coordinate system

y1 =
1
N

N

∑
j=1

ν j∥∆RRR j∥2, ∆RRR j = RRRRm, j +PPP0 −RRR0, j. (15)

In the coordinate system of the center of gravity and using
the scaling factor M, it is necessary to find a minimum of
the function of six variables according to (8), but using ∆RRR j,
which is defined in (15). The following computations rely
again on the relations (8)–(12).

Finally, the problem has a solution in the default coordinate
system if the rotation matrix does not change (R= R̃) and the
translation vector is

PPP0 =
1
M

P̃PP0 −RTTT +TTT (16)

and the corrected parameters can be calculated according to
the following relation

RRRcor, j = RRRRm, j +PPP0 (17)

for j = 1 . . . , N.

3. CASE STUDY: NUMERICAL APPLICATION

To verify the proposed method, we construct 50 artificial
nominal points lying on an elliptical curve in 3D with semi-
axes of 1500 mm and 300 mm length. The “measured” points

are simulated by rotating the nominal points by an angle of
(8, 5, 15) degrees to the left (around the axes x, y, z in this or-
der) and then translating them by a vector of (10, 15, 20) mm.
When looking for the reconstruction, we must take into ac-
count the fact that the inverse solution consists of a transla-
tion followed by a rotation, but the rotation must be applied
in the reverse axis order z, y, x. The result of the numeri-
cal method yields values of (−7.999,−5,−15) degrees for
the rotation angles α, β γ and (−10,−15,−20) mm for the
translation vector, numbers that are almost as expected. The
average quadratic deviation of the corrected points from the
nominal ones is close to zero (0.40576 µm).
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Fig. 1. (a) Positions of the points. Black circles represent nomi-
nal points, red circles are measured points and (smaller) blue circles
inside the black circles are corrected points after translation and ro-
tation (in this order). (b) Deviations of the corrected points from the
nominal points: solid line for x axis, dashed line for y axis, dash-
and-dot line for z axis.

Fig. 1(a) shows a 3D representation of the nominal, mea-
sured, and corrected points in the simulated case. Fig. 1(b)
shows very small deviations of the corrected points from
the nominal points for each Cartesian coordinate and sum-
marizes the result of the numerical computation for the
rotated and subsequently translated ellipse with simulated
Gaussian-distributed measurement error, translation vector
(x, y, z) = (−9.976,−15.018,−20.139) mm, rotation an-
gles (α, β , γ) = (−7.97,−5.006,−14.976) deg, target func-
tion = 0.00011898 mm2, and root mean square deviation
= 0.24686 mm.
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Fig. 2(a) shows the 3D representation of the nominal,
measured and corrected points in the case with simulated
Gaussian-distributed error and a standard deviation of 1 mm.
Fig. 2(b) shows the deviations of the corrected points from the
nominal points for each Cartesian coordinate and for a simu-
lated measurement error with a Gaussian distribution with a
standard deviation of 1 mm.
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Fig. 2. (a) Positions of the points. Black circles represent nominal
points, red circles are measured points, and (smaller) blue circles
inside the black circles are corrected points after translation and ro-
tation (in that order). (b) Deviations of the corrected points from
the nominal points and for the simulated measurement error with a
Gaussian distribution with a standard deviation of 1 mm: blue cir-
cles for the x axis, red circles for the y axis, green circles for the z
axis.

In the third example, actual data from a practical mea-
surement of the cover lens alignment for 22 points are pro-
cessed. Due to the very small differences between the nomi-
nal and measured points, the figures of the type analogously
to Fig. 1(a), and Fig. 2(a) are not illustrative. However, we
can distinguish two possible solutions to the glass alignment
problem. For the first one we have the result where we use
a translation vector of (0.039,−1.022,−1.145) mm and a
subsequent rotation around the x, y, z axes with angles of
(0.016, 0.018,−0.014) degrees (or equivalently around the
rotation axis of (−0.578,−0.635, 0.512) mm with a rotation
angle of 0.0283 degrees). We conclude that the root mean
square deviation of 0.12237 mm for the corrected points is
smaller than the value of 0.16319 mm that applies to the mea-
sured points.

In Fig. 3 we see the norms ∆RRR of the deviation vectors (cal-
culated from their x, y, z components) for 22 measured points,

which are mostly closer to zero.

n
0 5 10 15 20 25

Δ
R

[m
m
]

0

0.1

0.2

0.3

0.4

Fig. 3. Normalized values of the deviations of the measured points
from the nominal points (solid line) and for the corrected points
(dashed line) for the practical example and for the translation fol-
lowed by the rotation.

The second case (which can also be obtained from the first
case by applying the direct transformation described in sec-
tion 3) consists of applying a rotation followed by a transla-
tion. The parameters of this procedure are the rotation angle
of (0.016, 0.018,−0.014) deg and the translation vector of
(0.04,−1.022,−1.145) mm, which are almost the same val-
ues as in the previous case due to the very small values of the
rotation angles and the components of the translation vector.
The average corrected deviations are also the same, which is
why we do not repeat the corresponding table and figure.

4. DISCUSSION

1) For both cases mentioned above, the mean values of the
deviations and root mean square deviations for measured and
corrected quantities can be determined using the formulae

∆R0 =
1
N

N

∑
j=1

∥RRRm, j −RRR0, j∥,

∆R0,2 =
1
N

N

∑
j=1

∥RRRm, j −RRR0, j∥2,

∆Rcor =
1
N

N

∑
j=1

∥RRRcor, j −RRR0, j∥,

∆Rcor,2 =
1
N

N

∑
j=1

∥RRRcor, j −RRR0, j∥2. (18)

This result in the variances of the deviations

σ0 =
√

∆R0,2 − (∆R0)2, σcor =
√

∆Rcor,2 − (∆Rcor)2 (19)

which serve as qualitative criteria for the optimization pro-
cess.

2) In particular, the translations along the grooves are not
important for the alignment of the cover lens, which is the
reason for improving the objective functions and calculating
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only the projections of these vector deviations onto a plane
perpendicular to the tangent of the groove line, rather than the
deviations of the corrected positions from the nominal posi-
tions. For this purpose, we can, for example, introduce the
unit vectors defining the tangent directions of the groove for
the j-th nominal point as ddd j. Then, we can construct again
the objective function ỹ = ν0,1ỹ1+ν0,2ỹ2 in the translated and
scaled coordinate system using the objective functions, but
with a substitution

ỹ1 =
1
N

N

∑
j=1

ν j
(
∆R̃RR j

)2
,

ỹ2 =
1
N

N

∑
j=1

ν j
(
|∆R̃RR j ·ddd j|−∆R̃aver

)2 (20)

where only the projections of the deviation vectors are ap-
plied.

5. CASE STUDY – PRACTICAL APPLICATION

Fig. 4. Starting position, the robot is holding a part in a predefined
position, which is scanned and the trajectory is calculated.

Precise positioning is an essential aspect of assembly pro-
cesses that require accurate alignment of parts and compo-
nents. The ability to position parts with high accuracy is
crucial in industries such as electronics, aerospace and auto-
motive manufacturing, where even minor misalignments can
cause significant problems. Precise positioning is achieved
through the use of advanced technologies such as robotics,
computer vision and precision sensors. Regardless of which
method is used, there are always other that affect the final
alignment, such as the mechanical behavior of robots. In vi-
sual positioning, cameras and computer vision algorithms are
used to detect and analyze the position and orientation of the
parts. Force control uses sensors and feedback mechanisms
to control the forces applied during the assembly process, and
ensure that the parts are aligned and attached with the correct
force. Feedback control uses sensors to monitor the position
and movement of parts during assembly and provide feedback
to the positioning system to adjust and correct any misalign-
ment.

Robotic systems play a significant role in precise position-
ing in assembly processes. Robotic arms can be programmed

to perform precise movements, enabling accurate positioning
of parts. In addition, robots can be equipped with sensors
and computer vision systems that allow them to detect and
analyze the position and orientation of parts during assembly.
Nevertheless, precise positioning is a critical aspect of assem-
bly processes that require achieving a precise position within
a certain cycle time. By using the above technique, manufac-
turers can ensure that their products are assembled with high
accuracy, reducing the risk of defects and improving product
quality. A practical application of the above-designed algo-
rithm was carried out on an original component taken from a
random position. The goal of the practical case study was to
implement the methodology in a real environment, where we
also took into account the random positioning errors caused
by the robot itself. The case study followed the standard as-
sembly steps (see the results in Table 1, Table 2, Table 3 and
Fig. 4, Fig. 5)

• the object is removed from the box,
• measuring of the starting position,
• setting the final position,
• measuring of the final position,
• correction until the final position with predefined toler-

ances is reached.

Table 1. Measured coordinates X, Y, Z of 12 points on a surface,
position 1.

Points X[mm] Y[mm] Z[mm]
A1 591.525 6.835 172.543
A2 561.655 9.466 173.451
A3 589.818 −13.040 173.977
A4 559.948 −10.410 174.885
B1 591.533 19.333 136.573
B2 561.662 21.964 137.481
B3 592.260 20.709 156.513
B4 562.389 23.340 157.421
C1 597.894 −21.639 134.154
C2 600.454 8.174 132.003
C3 598.985 −19.574 164.063
C4 601.545 10.239 161.912

Table 2. Measured coordinates X, Y, Z of 12 points in the interme-
diate step, position 2.

Points X[mm] Y[mm] Z[mm]
A1 590.530 8.726 174.296
A2 560.549 9.773 174.531
A3 589.836 −11.255 174.826
A4 559.855 −10.208 175.060
B1 590.744 22.796 138.913
B2 560.764 23.842 139.147
B3 590.919 23.319 158.905
B4 560.938 24.366 159.139
C1 599.308 −17.646 134.895
C2 600.348 12.325 134.101
C3 599.569 −16.861 164.884
C4 600.609 13.111 164.090
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Table 3. Final coordinates X, Y, Z of 12 points corresponding to the
target position (position 3).

Points X[mm] Y[mm] Z[mm]
A1 590 10 175
A2 560 10 175
A3 590 −10 175
A4 560 −10 175
B1 590 25 140
B2 560 25 140
B3 590 25 160
B4 560 25 160
C1 600 −15 135
C2 600 15 135
C3 600 −15 165
C4 600 15 165

Fig. 5. Intermediate iteration of a positioning. The targeted position
was not reached for various reasons (robot misalignment, position-
ing error, gripper, etc.).

6. CONCLUSION

In this paper, we have advocated the use of mathematical
modeling for problems in the automotive industry. Our ap-
proach represents our pilot contribution to intractable prob-
lems in the automation of headlight manufacturing process.
Our future objective is to design a multipurpose tool to com-
pare objects, search for objects and test hypotheses about
their geometric shape. The main idea to identify the head-
light is based on the determination of the Euler transforma-
tion matrix. The most important features are the robustness of
the methodology and the knowledge of the metrological un-
certainties of the estimates. The performed numerical study
proved that the accuracy of the estimate is sufficient to use
our model in practice. Finally, the proposed methodology
was tested on a real application for the precise manipulation
and positioning of original equipment positioned by the robot.
The practical example proved the reliability of the method.
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