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Abstract: The study focuses on the development of a new probability distribution with applications to extreme values. The distribution is 

proposed by incorporating an additional parameter into the inverse Pareto distribution using the α-Power Transformation. Various properties 

of the new distribution are derived. The paper also explores the estimation of the parameters by the Maximum Likelihood Estimation (MLE) 

technique. Simulations are performed to evaluate the performance of the MLEs. In addition, two real data sets with extreme values are used 

to evaluate the efficacy of the proposed model. It is concluded that the proposed model performs well in the case of extreme values compared 

to the existing distributions.  

Keywords: α-Power transformation, Entropy, Extreme Values, Inverse Pareto distribution, Stochastic Ordering, Stress-Strength Parameter. 

 

1. INTRODUCTION 

The problem of extreme values in statistical theory is very 

common. The behavior of extreme values is studied even if it 

has a low likelihood of occurring but can have a major impact 

on the observed events [1]. Extensive literature is available 

on the applications of extreme values in different fields. For 

example, in meteorological phenomena, extreme values are 

found in temperatures, precipitation, wind speeds, etc. 

Extreme values are essential in predicting flood levels for the 

construction of bridges, dams, and hydroelectric power 

plants. The study of extreme values is also significant in 

droughts to model the problems that arise from river 

pollution. Furthermore, their applications are found in 

mechanical, industrial, ocean, earthquake engineering, etc. 

Since the extreme values can be found either in the upper or 

lower tails, fitting heavy-tailed distributions are necessary for 

the extreme value theory. Some of the heavy-tailed 

distributions that provide a good fit to the data with extreme 

values include the Pareto and inverse Pareto distributions. 

These distributions provide a good fit to the data sets with 

monotone hazard rate functions (hrf), but they may not be 

suitable for data with non-monotone hrf. Although there are 

numerous modifications of existing distributions, these do not 

provide adequate fit to the data sets with extreme values. 

Some special statistical distributions are necessary to describe 

the data sets with extreme values that have monotone and 

non-monotone hrf in order to achieve a good match.  

In the recent development of statistical theory, many new 

probability distributions are proposed to model various data 

sets better than the existing models. For example, [2] 

introduced the idea of skew-symmetric distributions by 

introducing an additional skewness parameter into a normal 

distribution. [3] proposed the Marshal-Olkin family of 

distributions for modifying the existing distributions. 

Following a similar concept [4], [5] and [6] offered the idea 

of beta, Kumaraswamy and Gamma generated distributions, 

respectively. [7] introduced the idea of the T-X family of 

continuous distributions and obtained the gamma-X family, 

Weibull-X family and beta-exponential-X family of 

distributions. The details on different generating techniques 

are provided by [7]. [8] defined a new approach to introduce 

skewness into the existing distribution(s) called Alpha Power 

Transformation (APT). The purpose of such modifications is 

to increase the model’s flexibility and to improve its 

adequacy.  

In this study, the Probability Density Function (PDF) of the 

inverse Pareto distribution is used as a baseline distribution 

in the APT family to derive a new probability distribution. 

The Cumulative Distribution Function (CDF) and the PDF of 

the APT family introduced by [8] are: 
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 𝐹𝐴𝑃𝑇(𝑥) =
𝛼𝐹(𝑥)−1

𝛼−1
,                  𝛼 > 0, 𝛼 ≠ 1   (1) 

 𝑓𝐴𝑃𝑇(𝑥) =
𝑙𝑜𝑔𝛼

𝛼−1
𝛼𝐹(𝑥)𝑓(𝑥) ,     𝛼 > 0, 𝛼 ≠ 1 (2) 

First, the exponential distribution is transformed using the 

APT family of distributions to obtain a two-parameter alpha 

power exponential distribution. The above generator has been 

studied by many researchers to introduce the APT Weibull 

distribution [9], APT Lindley distribution [10], APT inverse 

Lindley distribution [11], APT Pareto distribution [12], APT 

exponentiated inverse Rayleigh distribution [13], APT 

extended generalized exponential distribution [14], etc. 

Inverse Pareto (IP) distribution is a heavy-tailed 

distribution with a monotonically increasing hrf. Since 

extreme values are more flexible in nature, having monotone 

and non-monotone hrf, the IP distribution fails to model them 

adequately. Therefore, there is a need to modify IP 

distribution to make it more suitable for modeling extreme 

values with monotone and non-monotone hrf. The cumulative 

distribution and the probability density functions of the 

inverse Pareto distribution are defined as 

 𝐹(𝑥) =
𝑥𝛽

(1+𝑥)𝛽
          𝑥 ≥ 0,   𝛽 > 0 (3) 

 𝑓(𝑥; 𝛽) =
𝛽𝑥𝛽−1

(1+𝑥)𝛽+1
          𝑥 ≥ 0,   𝛽 > 0 (4) 

The contemporary literature on distribution theory contains 

very few modifications of the IP distribution. It includes the 

Marshal-Olkin Extended Inverse Pareto (MOEIP) 

distribution [15] and the Gompertz Inverse Pareto (GoIP) 

distribution [16]. The MOEIP distribution is derived by using 

the IP distribution as the baseline distribution in the Marshal-

Olkin family. The result is the MOEIP distribution with one 

scale and two shape parameters. The GoIP distribution, on the 

other hand, is obtained by using the IP distribution as the 

baseline distribution in the Gompertz family, resulting in a 

distribution with one scale and three shape parameters. 

Despite the fact that both modifications allow more 

adaptability than their baseline counterpart, they increase the 

number of parameters to three and four, respectively. There 

is undoubtedly a gap in the literature on the modification of 

the IP distribution with respect to various generating 

techniques that yield more parsimonious models. 

The main objective of this study is to derive a new 

probability distribution that can adequately model data sets 

with extreme values. Second, to propose a model that 

captures monotone and non-monotone failure rate functions. 

2. SUBJECT & METHODS 

This section contains the derivation of a new probability 

distribution called the 𝜶–Power inverse Pareto distribution by 

substituting the CDF and the PDF of the inverse Pareto 

distribution into the alpha power generator. 

A. 𝜶–Power Inverse Pareto (𝜶PIP) distribution 

A two-parameter αPIP(α,β) distribution can be obtained by 

substituting (3) and (4) into (2). The PDF of the (αPIP) 

distribution is given below: 

 𝑓𝛼𝑃𝐼𝑃(𝑥) =
𝛽𝑙𝑜𝑔𝛼

𝛼−1
𝛼

(
𝑥

1+𝑥
)
𝛽

𝑥𝛽−1

(1+𝑥)𝛽+1 ,   𝛼 ≠ 1, 𝛼 > 0 (5) 

by substituting 𝑧 = (
𝑥

1+𝑥
)

𝛽

 in (5), it can be verified that 

∫ 𝑓𝛼𝑃𝐼𝑃(𝑥) = 1
∞

0
. The corresponding CDF of the 𝛼PIP 

distribution is: 

 𝐹𝛼𝑃𝐼𝑃(𝑥) =
𝛼

(
𝑥

1+𝑥)
𝛽

−1

𝛼−1

  (6) 

 

Fig. 1.  The shape of the PDF of the αPIP distribution. 

 

Fig. 2.  The shape of the failure rate function of the αPIP distribution. 

Hazard (failure) rate and survival (reliability) functions are 

given by: 

 
   ℎ𝛼𝑃𝐼𝑃(𝑥) =

𝛽𝑙𝑜𝑔𝛼

[1−𝛼
(

𝑥
1+𝑥)

𝛽
−1

]

𝑥𝛽−1

(1+𝑥)𝛽+1 𝛼
(

𝑥

1+𝑥
)
𝛽
−1

 (7) 

 𝑆𝛼𝑃𝐼𝑃(𝑥) =   
𝛼

𝛼−1
(1 − 𝛼

(
𝑥

1+𝑥
)
𝛽
−1) (8) 

Fig. 1 and Fig. 2 show various shapes of the PDF and the 

failure rate function of the proposed distribution for different 

combinations of α and β. Noticeably, the PDF of the αPIP 

distribution is uni-modal and positively skewed for α > 1 and 

fixed β, whereas, for α < 1, the shape of the αPIP distribution 

becomes negatively skewed. The shapes of the hazard rate 

function are decreasing (monotonc) and increasing-

decreasing (non-monotone), depending on different values of 

α and β. 
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3. RESULTS 

This section contains statistical properties, estimates, 

simulations and real data applications of the proposed 

distribution. 

A. Quantile function 

The following expression is used to obtain the quantile 

function of the 𝛼PIP distribution: 

𝐹(𝑋) = 𝑈 ⇒ 𝑋 = 𝐹−1(𝑈) 

where U follows a uniform distribution with the range [0,1] 

by solving, the 𝑝𝑡ℎ quantile of the 𝛼𝑃𝐼𝑃 distribution is given 

by: 

 𝑥𝑝= 
[𝑙𝑜𝑔(𝑝(𝛼−1)+1]1/𝛽

(𝑙𝑜𝑔𝛼)1/𝛽−[𝑙𝑜𝑔(𝑝(𝛼−1)+1)]1/𝛽
  (9) 

To obtain the median of the proposed distribution, setting 

𝑝 = 1/2, in (9)  

 𝑥1/2= 
[𝑙𝑜𝑔(1/2(𝛼+1))]1/𝛽

(𝑙𝑜𝑔𝛼)1/𝛽−[𝑙𝑜𝑔(1/2(𝛼+1))]
1/𝛽  (10) 

B. Moments 

The Moment Generating Function (MGF) of the 

𝛼𝑃𝐼𝑃(𝛼, 𝛽) can be obtained as:  

𝑀𝑥(𝑡) = 𝐸[𝑒𝑡𝑥] = ∫ 𝑒𝑡𝑥∞

0

𝛽𝑙𝑜𝑔𝛼

𝛼−1
𝛼

(
𝑥

1+𝑥
)
𝛽

𝑥𝛽−1

(1+𝑥)𝛽+1 𝑑𝑥 (11) 

using 𝑢 = (
𝑥

1+𝑥
)

𝛽

  and the following representation in series 

form 

 𝑒𝑡𝑥 = ∑
𝑡𝑗𝑥𝑗

𝑗!

∞
𝑗=0   

 𝛼𝑢 = ∑
(𝑙𝑜𝑔𝛼)𝑘

𝑘!

∞
𝑘=0 𝑢𝑘 (12) 

MGF can be obtained as 

𝑀𝑥(𝑡) =
𝛽

𝛼−1
∑ ∑ ∑

(𝑙𝑜𝑔𝛼)𝑘+1

𝑘!
(𝑗+𝑛−1

𝑛
)

𝑡𝑗

𝑗!(𝑗+𝒌𝛽+𝛽+𝑛)
∞
𝑗=0

∞
𝑛=0

∞
𝑘=0  

  (13) 

Hence, 

 𝐸(𝑋) =
𝛽

𝛼−1
∑ ∑

(𝑙𝑜𝑔𝛼)𝑘+1

𝑘!(𝒌𝛽+𝛽+𝑛+1)
∞
𝑛=0

∞
𝑘=0   (14) 

similarly, 

 𝐸(𝑋2) =
𝛽

𝛼−1
∑ ∑

(𝑙𝑜𝑔𝛼)𝑘+1(𝑛+1)

𝑘!(𝒌𝛽+𝛽+𝑛+2)
∞
𝑛=0

∞
𝑘=0   (15) 

 𝐸(𝑋3) =
𝛽

𝛼−1
∑ ∑

(𝑙𝑜𝑔𝛼)𝑘+1(𝑛+2)(𝑛+1)

𝑘!(𝒌𝛽+𝛽+𝑛+3)
∞
𝑛=0

∞
𝑘=0   (16) 

 𝐸(𝑋4) =
𝛽

𝛼−1
∑ ∑

(𝑙𝑜𝑔𝛼)𝑘+1(𝑛+3)(𝑛+2)(𝑛+1)

𝑘!(𝒌𝛽+𝛽+𝑛+4)
∞
𝑛=0

∞
𝑘=0   (17) 

C. Skewness and kurtosis 

The coefficients of Skewness and kurtosis based on 

quantiles are given as: 

𝑆𝑘 =
𝑞075−2𝑞0.50+𝑞0.25

𝑞0.75−𝑞0.25
  

𝐾 =
𝑞0.875−𝑞0.625−𝑞0.375+𝑞0.125

𝑞0.75−𝑞0.25
  

where 𝑞(. ) is a quantile function. The results of skewness and 

kurtosis are shown in Fig. 3 and Fig. 4. Since the values of 

skewness are positive, they indicate a right-skewed 

distribution. Also, it can be seen that the skewness decreases 

as 𝛼 increases. Furthermore, from Fig. 4 it is visible that the 

kurtosis decreases as 𝛽 increases. 

 

Fig. 3.  Skewness for fixed 𝛽 and varying 𝛼. 

 

Fig. 4.  Kurtosis for fixed 𝛼 and varying 𝛽. 

Lemma 1: Let 𝑋1~𝛼𝑃𝐼𝑃(𝛼1, 𝛽) and 𝑋2~𝛼𝑃𝐼𝑃(𝛼2, 𝛽)  be 

two independently distributed random variables.  

If 𝛼1 < 𝛼2 then   𝑋1 ≤𝑙𝑟 𝑋2             ∀ 𝑋  

Proof: The likelihood ratio is given by: 

𝑓𝑋1
(𝑥)

𝑓𝑋2
(𝑥)

= (
𝑙𝑜𝑔𝛼1

𝑙𝑜𝑔𝛼2
) (

𝛼2 − 1

𝛼1 − 1
)(

𝛼1

𝛼2
)
(

𝑥
1+𝑥

)
𝛽

 

𝑑

𝑑𝑥
(𝑙𝑜𝑔

𝑓𝑋1
(𝑥)

𝑓𝑋2
(𝑥)

) = 𝛽 (
𝑥

1 + 𝑥
)

𝛽−1 1

(1 + 𝑥)2
𝑙𝑜𝑔 (

𝛼1

𝛼2

) < 0     

𝑖𝑓  𝛼1 < 𝛼2, ∀ 𝑥 > 0 

Hence, 

for 𝛼1 < 𝛼2, 𝑋1 ≤𝑙𝑟 𝑋2         ∀ 𝑥  

similarly:  

𝑋1 ≤ℎ𝑟 𝑋2 ⇒ 𝑋1 ≤𝑠𝑡 𝑋2  
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Hence, it is verified that distribution with a likelihood ratio 

(lr) ordering has the same ordering in the hazard rate (hr) and 

distribution (st). This suggests the existence of a Uniformly 

Most Powerful Test UMPT [17]. 

D. Stress-strength parameter  

Assuming 𝑋1~𝛼𝑃𝐼𝑃(𝛼1, 𝛽)  and 𝑋2~𝛼𝑃𝐼𝑃(𝛼2, 𝛽)  are two 

independently distributed random variables, then the stress 

strength parameter, say R, is given by:  

𝑅 = ∫ 𝑓1
∞

−∞
(𝑥)𝐹2(𝑥)𝑑𝑥  

using (5) and (6), stress strength parameter R can be obtained 

as: 

 𝑅 =
𝛽𝑙𝑜𝑔𝛼1

𝛼1−1
∫

𝛼1

(
𝑥

1+𝑥)
𝛽

𝑥(𝑥−1)

∞

0
(

𝑥

1+𝑥
)

𝛽

[
𝛼2

(
𝑥

1+𝑥)
𝛽

−1

𝛼2−1
] 𝑑𝑥  (18) 

 𝑅 =
lo𝑔𝛼1

(𝛼1−1)(𝛼2−1)
[

𝛼1𝛼2−1

log (𝛼1𝛼2)
−

𝛼1−1

log (𝛼1)
]  (19) 

E. Mean residual life function 

The Mean Residual Life (MRL) function is defined as the 

expected remaining lifetime of a certain object after a fixed 

time point. The MRL function, say 𝜇(𝑡), is given by: 

𝜇(𝑡) =
1

𝑃(𝑋 > 𝑡)
∫ 𝑃(𝑋 > 𝑥)𝑑𝑥 ,         𝑡 ≥ 0

∞

𝑡

 

 𝜇(𝑡) =
1

𝑆(𝑡)
(𝐸(𝑡) − ∫ 𝑥𝑓(𝑥)𝑑𝑥

𝑡

0
) − 𝑡 ,     𝑡 ≥ 0 (20) 

where,  

∫ 𝑥𝑓(𝑥)𝑑𝑥
𝑡

0
=

𝛽

𝛼−1
∑ ∑

(𝑙𝑜𝑔𝛼)𝑘+1

𝑘!(𝑘𝛽+𝛽+𝑛+1)
(

𝑡

1+𝑡
)

𝑘𝛽+𝛽+𝑛+1
∞
𝑛=0

∞
𝑘=0

  (21) 

substituting (8), (14) and (21) into (20), 𝜇(𝑡) can be written 

as: 

𝜇(𝑡) =
𝛽

𝛼(1−𝛼
(

𝑡
1+𝑡

)
𝛽

−1
)

[∑ ∑
(𝑙𝑜𝑔𝛼)𝑘+1

𝑘!(𝒌𝛽+𝛽+𝑛+1)
(1 − (

𝑡

1+𝑡
)

𝑘𝛽+𝛽+𝑛+1

)∞
𝑛=0

∞
𝑘=0 ] − 𝑡

  (22) 

F. Order statistic 

The PDF of the 𝑟𝑡ℎ  order statistic, 𝑌𝑟:𝑛 can be obtained as: 

 𝑓𝑟:𝑛(y)  =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
𝑓𝑥(𝑦) [𝐹𝑥(𝑦)]𝑟−1 [1 − 𝐹𝑥(𝑦)]𝑛−𝑟

  (23) 

putting (5) and (6) into (23), the PDF of the 𝑟𝑡ℎorder statistic 

is obtained as: 

 

𝑓𝑟:𝑛(𝑦) =
𝑛! 𝛽𝑙𝑜𝑔𝛼

(𝑟−1)!(𝑛−𝑟)!(𝛼−1)𝑛
𝛼

(
𝑦

1+𝑦
)
𝛽

 𝑦𝛽−1

(1+𝑦)𝛽+1 (𝛼
(

𝑦

1+𝑦
)
𝛽

− 1)

𝑟−1

(𝛼 − 𝛼
(

𝑦

1+𝑦
)
𝛽

)

𝑛−𝑟

  (24) 

by setting 𝑟 = 1, the distribution of 𝑦1  is found as: 

 𝑓(𝑦1) =
𝑛𝛽𝑙𝑜𝑔𝛼

(𝛼−1)𝑛
𝛼

(
𝑦

1+𝑦
)
𝛽

𝑦𝛽−1

(1+𝑦)𝛽+1 (𝛼 − 𝛼
(

𝑦

1+𝑦
)
𝛽

)

𝑛−1

     (25) 

by setting 𝑟 = 𝑛, the distribution of 𝑦n is found as: 

 𝑓(𝑦n) =
𝑛𝛽𝑙𝑜𝑔𝛼

(𝛼−1)𝑛
𝛼

(
𝑦

1+𝑦
)
𝛽

𝑦𝛽−1

(1+𝑦)𝛽+1 (𝛼
(

𝑦

1+𝑦
)
𝛽

− 1)

𝑛−1

     (26) 

G. Shannon and Renyi entropies 

The Shannon and Renyi entropies are defined by: 

𝐸[−𝑙𝑜𝑔(𝑓(𝑥)] = 𝐸 [−𝑙𝑜𝑔 (
𝛽𝑙𝑜𝑔𝛼

𝛼 − 1
𝛼

(
𝑥

1+𝑥
)
𝛽 𝑥𝛽−1

(1 + 𝑥)𝛽+1
)] 

1

1 − 𝜌
log∫ 𝑓(𝑥)𝜌 𝑑𝑥

∞

−∞

=
1

1 − 𝜌
∫ (

𝛽𝑙𝑜𝑔𝛼

𝛼 − 1
𝛼

(
𝑥

1+𝑥
)
𝛽 𝑥𝛽−1

(1 + 𝑥)𝛽+1
)

𝜌

𝑑𝑥
∞

0

 

using (6), the Shannon and Renyi entropies for the 𝛼𝑃𝐼𝑃 distribution are derived as follows: 

𝑆𝐸𝑥 = 𝑙𝑜𝑔
𝛼−1

𝛽 𝑙𝑜𝑔𝛼
+ ∑

(−𝑙𝑜𝑔𝛼)𝑘+1

𝑘!

∞
𝑘=0 [

𝑙𝑜𝑔𝛼

𝑘+2
+ 𝛽(𝛽 − 1) [∑

1

𝑛(𝛽𝑘+𝛽+𝑛)
−

1

(𝑘𝛽+𝛽)2
∞
𝑛=0 ] − 𝛽(𝛽 + 1)∑

1

𝑛(𝛽𝑘+𝛽+𝑛)
∞
𝑛=0 ] (27) 

𝑅𝐸𝑥 =
𝜌

 1−𝜌
𝑙𝑜𝑔 [

𝛽𝑙𝑜𝑔𝛼

𝛼−1
] +

1

1−𝜌
𝑙𝑜𝑔 ∑

(𝑙𝑜𝑔𝛼)𝑘 𝜌𝑘𝐵(𝑘𝛽+𝜌𝛽−𝛽−𝜌+2,   2𝜌−1)

𝛽𝑘!

∞
𝑘=0     (28) 
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H. Maximum likelihood estimation 

The estimates of parameters 𝛼 and 𝛽 are obtained through the Maximum Likelihood Estimation (MLE) method. The ML 

technique is used because it provides consistent, efficient and asymptotically unbiased estimates of unknown parameters. The 

Likelihood function of the 𝛼PIP distribution is given as follows: 

𝑙(𝛼, 𝛽) = 𝛽𝑛(
𝑙𝑜𝑔𝛼

𝛼−1
) 𝑛𝛼

∑(
𝑥𝑖

1+𝑥𝑖
)
𝛽

∏
𝑥𝑖

𝛽−1

(1+𝑥𝑖)
𝛽+1

n
i=1

     (29) 

by taking the logarithm, (29) becomes: 

𝑙𝑜𝑔𝑙(𝛼, 𝛽) = 𝑛𝑙𝑜𝑔𝛽 + 𝑛𝑙𝑜𝑔(𝑙𝑜𝑔𝛼) − 𝑛𝑙𝑜𝑔(𝛼 − 1) + ∑(
𝑥𝑖

1+𝑥𝑖
)
𝛽

𝑙𝑜𝑔𝛼 + (𝛽 − 1)∑ 𝑙𝑜𝑔𝑥𝑖 − (𝛽 + 1)∑ 𝑙𝑜𝑔(1 + 𝑥𝑖)  (30)

The partial derivatives of (30) with respect to 𝛼, 𝛽 and then equating to zero, give the following results 

𝜕𝑙𝑜𝑔𝑙(𝛼,𝛽)

𝜕𝛼
=

𝑛

𝑙𝑜𝑔𝛼
−

𝑛𝛼

(𝛼−1)
+ ∑(

𝑥𝑖

1+𝑥𝑖
)

𝛽

= 0    (31) 

𝜕𝑙𝑜𝑔𝑙(𝛼,𝛽)

𝜕𝛽
=

𝑛

𝛽
+ ∑(

𝑥𝑖

1+𝑥𝑖
)

𝛽

𝑙𝑜𝑔 (
𝑥𝑖

1+𝑥𝑖
) 𝑙𝑜𝑔𝛼 + ∑ 𝑙𝑜𝑔𝑥𝑖 − ∑ 𝑙𝑜𝑔(1 + 𝑥𝑖) = 0   (32) 

by solving the system of nonlinear equations in (31) and (32) 

simultaneously, the MLE of 𝛼 and 𝛽 can be achieved. The 

solution of these equations is not possible analytically, 

therefore, Conjugate Gradient (CG) or the Newton Raphson 

(N) routine can be used to obtain the solution. It is known that 

as 𝑛 → ∞, the distribution of MLEs approximates a bivariate 

normal distribution with mean zero and variance-covariance 

matrix 𝛴 that can be derived by inverting the expected Fisher 

information matrix I as follows: 

𝐼 =

[
 
 
 
 
𝜕2𝑙𝑜𝑔𝑙

𝜕𝛼2

𝜕2𝑙𝑜𝑔𝑙

𝜕𝛼𝜕𝛽

𝜕2𝑙𝑜𝑔𝑙

𝜕𝛼𝜕𝛽

𝜕2𝑙𝑜𝑔𝑙

𝜕𝛽2 ]
 
 
 
 

 

The second time derivative of (31) and (32) with respect to 

𝛼 and 𝛽 is 

 
𝜕2𝑙𝑜𝑔𝑙

𝜕𝛼2 = −
𝑛

𝛼(𝑙𝑜𝑔𝛼)2
+

𝑛𝛼

(𝛼−1)2
  (33) 

 
𝜕2𝑙𝑜𝑔𝑙

𝜕𝛼𝜕𝛽
=

1

𝛼
∑(

𝑥𝑖

1+𝑥𝑖
)

𝛽

𝑙𝑜𝑔 (
𝑥𝑖

1+𝑥𝑖
)  (34) 

 
𝜕2𝑙𝑜𝑔𝑙

𝜕𝛽2 = −
𝑛

𝛽2 + 𝑙𝑜𝑔𝛼 ∑(
𝑥𝑖

1+𝑥𝑖
)

𝛽

(𝑙𝑜𝑔 (
𝑥𝑖

1+𝑥𝑖
))

2

  (35) 

A (1 − 𝜏)100%  asymptotic confidence interval for 

parameter 𝛼 and 𝛽 is:  

𝛼̂ ± 𝑍𝜏/2√Σ11 

𝛽̂ ± 𝑍𝜏/2√Σ22 

I. Simulation study 

Simulations are performed in R software to evaluate the 
average behavior of the MLEs with respect to different 
sample sizes. Using (9), one thousand random numbers of 
sample sizes n = 30, 50, 80, 100, and 120 are generated from 
the 𝛼PIP distribution and the average values of the MLEs, 

Mean Square Error (MSE), and bias are obtained. The bias 
and MSE are calculated using the following mathematical 
forms  

𝐵𝑖𝑎𝑠 =
1

𝑤
∑(𝑏𝑖̂ − 𝑏)

𝑤

1=1

 

𝑀𝑆𝐸 =
1

𝑤
∑(𝑏𝑖̂ − 𝑏)2

𝑤

𝑤

  

where 𝑏 = (𝛼, 𝛽). Table 1 shows the average values of MLE, 
MSE, and Bias. From the results, it is evident that as the 
sample size increases, the MLEs reach their true values. 
Moreover, MSE and bias decrease as the sample size n 
increases. Hence, MLE produces consistent estimators of the 
parameters of the proposed distribution. 

J. Applications 

This section contains the application of the 𝛼PIP 
distribution to two real data sets with extreme values. The 
first data set consists of fourteen observations representing 
the failure time of an air conditioning system of a Boeing 720 
airplane. The data set is taken from [18]. This data set is also 
used by [19] for the application of inverse Pareto distribution. 

Dataset 1:  

12 21 26 27 29 48 57 59 70 74 153 326 386 502 

The second data set is taken from [20], contains seventy-

two observations for the years 1958-1984, showing 

exceedances of flood peaks of the Wheaton River, Canada. 

[20] applied Kumaraswamy-Pareto distribution to fit this data 

set. 

Dataset 2: 
1.70 2.20 14.4 1.10 0.40 20.6 5.30 0.70 1.90 

13.0 12.0 9.30 1.40 18.7 8.50 25.5 11.6 14.1 

22.1 1.10 2.50 14.4 1.70 37.6 0.60 2.20 39.0 

0.30 15.0 11.0 7.30 22.9 1.70 0.10 1.10 0.60 

9.00 1.70 7.00 20.1 0.40 2.80 14.1 9.90 10.4 

10.7 30.0 3.60 5.60 30.8 13.3 4.20 25.5 3.40 

11.9 21.5 27.6 36.4 2.70 64.0 1.50 2.50 27.4 

1.00 27.1 16.8 5.30 9.70 27.5 2.50 27.0  



MEASUREMENT SCIENCE REVIEW, 23, (2023), No. 2, 55-63 

60 

Table 1.  The Average values of MLEs, MSE, and Bias. 

 
To compare the goodness of fit of the αPIP distribution 

with other distributions, the Pareto, the basic Pareto, the 
Rayleigh, the Kumaraswamy Pareto and the inverse Pareto 
distributions with the following densities are considered: 

• Pareto Distribution (PD) 

𝑓(𝑥) =
𝜎𝛽𝜎

(𝑥+𝛽)𝜎+1          𝜎, 𝛽 > 0, 𝑋 ≥ 0 

• Basic Pareto Distribution (BP)  

𝑓(𝑥) =
𝛽

𝑥𝛽+1
                𝛽 > 0, 𝑥 ≥ 1 

• Rayleigh Distribution (RD) 

𝑓(𝑥) =
𝑥

𝜎2 𝑒
−

𝑥2

2𝜎2          𝑥 > 0, 𝜎 > 0 

• Kumaraswamy Pareto Distribution (KPD) 

𝑓(𝑥) =
𝑎𝑏𝑘𝛽𝑘

𝑥𝑘+1
[1 − (

𝛽

𝑥
)

𝑘

]

𝑎−1

[1 − {1 − (
𝛽

𝑥
)

𝑘

}

𝑎

]

𝑏−1

 

𝑥 ≥ 𝛽, 𝑎, 𝑏, 𝑘 > 0. 

• Inverse Pareto Distribution (IPD) 

𝑓(𝑥) =
𝛽𝑥𝛽−1

(1+𝑥)𝛽+1
            𝑥 > 0, 𝛽 > 0 

• Two Parameter Inverse Pareto Distribution (TIPD) 

𝑓(𝑥) =
𝛼𝛽𝑥𝛼−1

(𝛽+𝑥)𝛼+1            𝑥 > 0, 𝛼, 𝛽 > 0 

The model adequacy is assessed through Akaike’s 

Information Criteria (AIC), -ln(𝜃̂), the Kolmogorov-Smirnov 
test (KS) and p-value. Table 2 and Table 3 illustrate the 

numerical values of the criteria MLE, AIC, -ln(𝜃̂), KS and p-
value. Generally, the model is a good fit if the p-value is 

greater, and the values of AIC and -ln(𝜃̂) are smaller than 
others. To classify the shape of the hazard rate function, a 
scaled Total Time on Test (TTT) plot introduced by [21] is 
applied. The shape of the TTT plot is concave for increasing 
hrf, convex for decreasing hrf, and shifting curvature of non-
monotone hrf.   

Table 2 shows an efficient performance of the 𝛼PIP 

distribution in comparison with other fitted distributions 

because the value of AIC and -ln(𝜃̂) of the 𝛼PIP is lower and 

the p-value is higher among all other distributions. Although 

the IP distribution fits the first data set well, its AIC and -

ln(𝜃̂) values are comparatively higher than the 𝛼PIP. 

Similarly, for the second data set, Table 3 shows the 

improved performance of the proposed distribution in terms 

of AIC, -ln(𝜃̂) and p-value. For this data set the IP 

distribution does not provide a good fit. Despite the fact that 

the TIP and the 𝛼PIP distributions provide close fits for both 

data sets, the suggested model outperforms in terms of 

performance measures. Hence, the proposed model is a good 

choice among other probability models in the presence of 

extreme values. 

Table 2.  The goodness of fit measures for data set 1. 

Dist 1 MLE AIC -ln(𝜃̂) KS p-Value 

RD 184.5 132.91 65.45 0.59 0.1014 

BP 0.539 106.15 52.07 0.26 0.2266 

PD 18.51 

2.420 

107.56 51.78 0.17 0.7426 

KPD 15.78 

1.910 

0.120 

0.980 

106.56 49.80 0.13 0.9608 

IPD 39.38 131.83 79.91 0.68 0.0918 

TIP 0.250 

16.22 

103.76 49.76 0.15 0.8385 

𝛼PIP 7.296 

0.079 

103.52 49.76 0.15 0.8713 

Parameter N Mean(𝛼̂) Mean(𝛽̂) MSE(𝛼̂) MSE(𝛽̂) Bias(𝛼̂) Bias(𝛽̂) 

 

𝛼 = 1.5 

 

𝛽 = 2.5 

30 1.400115 2.631222 0.567685 0.404840 0.099884 0.124203 

50 1.445268 2.624203 0.514986 0.265051 0.054731 0.131222 

80 1.452058 2.605978 0.438589 0.206711 0.047941 0.105978 

100 1.467999 2.596364 0.398013 0.179021 0.032005 0.096363 

120 1.509865 2.570933 0.365937 0.131222 0.009864 0.070933 

 

𝛼 = 2 

 

𝛽 = 2 

 

30 1.871960 2.323901 1.574074 0.530220 0.128031 0.323902 

50 1.971150 2.211210 1.331714 0.365116 0.028844 0.211209 

80 2.070460 2.164870 1.092099 0.255814 0.070469 0.164879 

100 2.034600 2.103851 0.126548 0.103856 0.034604 0.103856 

120 2.010460 2.093921 0.085362 0.093920 0.010469 0.093920 

 

𝛼 = 2 

 

𝛽 = 4 

 

30 1.712811 3.884625 0.763510 1.323776 0.287188 0.115375 

50 1.813151 3.937342 0.673690 1.028092 0.186848 0.102658 

80 1.856336 3.912156 0.607480 0.853057 0.143663 0.097844 

100 1.874032 3.925662 0.514501 0.791503 0.125967 0.074338 

120 1.903017 3.947414 0.509920 0.731333 0.096983 0.052585 



MEASUREMENT SCIENCE REVIEW, 23, (2023), No. 2, 55-63 

61 

Table 3.  The goodness of fit measures for data set 2. 

Dist 2 MLE AIC -ln(𝜃̂) KS p-Value 

RD 0.512 605.97 575.04 0.59 0.0014 

BP 0.556 589.51 263.71 0.61 0.0000 

PD 21.05 

2.420 

532.47 264.24 0.11 0.1694 

KPD 2.850 

85.80 

0.050 

0.100 

548.40 262.40 0.17 0.1734 

IPD 3.370 531.51 264.75 0.22 0.0011 

TIP 1.853 

12.21 

524.12 260.06 0.13 0.1322 

𝛼PIP 4.784 

1.254 

522.58 259.29 0.12 0.2401 

 

Fig. 5.  Comparison between fitted distributions for data set 1. 

 

Fig. 6.  Comparison between fitted CDF for data set 1. 

 

Fig. 7.  Comparison between fitted distributions for data set 2. 

 

Fig.8.  Comparison between fitted distributions for data set 2. 

Fig. 5 - Fig. 8 display the empirical densities of the 𝛼PIP 

and other fitted distributions. From these figures, the efficient 

performance of the 𝛼PIP distribution is confirmed. Fig. 9 and 

Fig. 10 portray the scaled TTT plot of the first data set and 

the second data set, respectively. The first data set has 

monotone (decreasing) hrf and the second one has non-

monotone hrf. 

 

Fig. 9  Scaled TTT plot for data set 1.  

 

Fig. 10.  Scaled TTT plot for data set 2. 

CONCLUSION 

The study focuses on the development of a new probability 

model with applications to extreme values. The proposed 

distribution αPIP is obtained by substituting the cumulative 

distribution and probability density function of the inverse 

Pareto distribution into the α-power transformed family of 

distributions. Various statistical properties of the proposed 

distribution have been obtained including: quantile function, 

median, order statistics, moment generating function, mean 

residual life function, stress strength parameter, and 

expressions for the Shannon and Renyi entropies. The 

parameters are estimated through the MLE approach. Two 

real data sets with extreme values are studied to delineate the 

significance of the proposed model. It is concluded that the 
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αPIP distribution leads to better results in the presence of 

extreme values rather than other probability models. Using 

the proposed model, one can estimate the expected number of 

failures in the air conditioning system of an airplane. Future 

research may be conducted to modify the proposed 

distribution by using the transmutation technique, defining 

the shape parameter to the power of CDF, or adding a scale 

parameter. A conclusion section is required. It presents a 

critical analysis, interpretation and evaluation of the obtained 

results. 
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