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The time-space fractional-order model (TSFOM) is a generation of the classical diffusion model which is an excellent smoothing method. 
In this paper, the fractional-order derivative in the model is found to have good performance for peak-preserving. To check the validity and 
performance of the model, some noisy signals are smoothed by some commonly used smoothing methods and results are compared with 
those of the proposed model. The comparison result shows that the proposed method outperforms the classical nonlinear diffusion model 
and some commonly used smoothing methods. 
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1.  INTRODUCTION 

With the development of fractional calculus, a new set of 
tools was developed by replacing calculus in classic 
procedures and implementations with the fractional order 
calculus [1]-[3]. In this paper, a time-space fractional-order 
model, improved from the classical nonlinear diffusion 
model [4], was suggested as a smoothing tool.  

The application of diffusion equations to signal processing 
can be traced back to the year 1983 [5]. Since then, it has 
been widely concerned to apply diffusion filtering to signal 
signals. However, the homogeneous linear diffusion filtering 
does not take into account the characteristic information of a 
signal, such as a peak while suppressing noise, it also blurs 
features of a signal. Fortunately, the problem has been 
solved by a nonlinear isotropic diffusion filtering suggested 
by Perona and Malik [6]. So, nonlinear diffusion filtering 
has been widely used in image processing [7]-[18]. An 
overview of the diffusion filtering was given by Weickert 
[19]. 

It is a challenge to smooth a noisy signal for preserving 
features such as peak or discontinuity. Therefore, some 
research has been focused on features preservation [4], [8], 
[11], [20], [21]. For instance, nonlinear diffusion filtering 
was designed to smooth spectrum data while preserving 
peaks [4]. In image processing, nonlinear diffusion filtering, 
total variation model, etc. were widely used for features-
preserving filtering [8], [11], [20], [21]. Among these 
methods,  the features of a signal can be preserved having 
the  feedback in  the iterative process.  In recent years,  some 

fractional models were proposed to improve some classical 
models. For example, the spatial-fractional order model was 
used for signal smoothing [22], the time-fractional model 
was suggested to smooth noisy signals [23], [24], the 
generalized fractional time integral was proposed for image 
denoising [3], the fractional-order model was explored to 
denoise image [26], and a fully fractional anisotropic 
diffusion model was introduced to denoise image [27]. 

The space-time fractional diffusion equation has been 
suggested for models of the anomalous diffusion [28], where 
particle sticking and trapping phenomena can be described 
with the time fractional derivative, and long particle jumps 
can be modeled by the fractional space derivative. For more 
background of the time-space fractional diffusion model, 
please refer to [29], [30]. 

There are very few papers about the application of the 
time-space fractional-order model to signal smoothing. 
However, it should be suitable for signal smoothing. The 
reasons are as follows: The classical nonlinear diffusion 
filtering can preserve important features of a signal such as 
peaks [4] and edges [8], [20]. Furthermore, the derivative 
can be used as a tool to enhance some details of a signal [31] 
or an image [32]. The fractional derivative of a signal or an 

image is equivalent to 
( , )u x t

x








  which can be viewed as 

the right side of the time-space fractional order model. 
Besides, the left side of the time-space fractional order 
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model  
( , )ku x t

t








  is a weighted sum of ( , )iu x t  for 

0,1, ,i k  . 

To preserve the peaks of the signal, it is necessary to 
design a suitable diffusion function. A natural idea is that 
the diffusion strength is weakened as the peak height 

increases. So 

2
( , )

( , ) exp
u x t

K u x t


  
          

 is a 

good choice for diffusion functions, where ( , )u x t  is taken 

as an indicator of the peak in a signal, one can find that the 

bigger ( , )u x t  is, the smaller ( , )K u x t    is for a fixed 

 . So, the time-space fractional order model is proposed. 
Some simulated spectra are generated to compare the 

proposed model with the classical nonlinear model and other 
smoothing methods including the Savitzky-Golay smoothing 
method [33], [34], the regularization method is proposed 
based on penalized least squares [35], [36], the 
nonparametric smoothing method [37], and the wavelet 
denoised method [38], [39]. Finally, the time-space 
fractional-order model is applied to the smoothing of an 
NMR spectrum of wood [35]. 
 
2.  TIME-SPACE FRACTIONAL-ORDER MODEL 

This model is obtained by extending the classical diffusion 
model, which means that the time derivative term on the left 
side of the equation is substituted by the Caputo fractional 
derivative of order, and the space derivatives term on the 
right side is substituted by the Riesz fractional derivatives of 
order  , respectively. The proposed model is given as 

follows 
 

( , ) ( , )
( , ) , (1,1.3),2 3

u x t u x t
g u x t

t x

 

    
       

…(1) 

 

where 
x








 is the fractional-order Riesz derivative,  

( , )g u x t    is the diffusion function. 

There are some numerical methods for the time-space 
fractional diffusion model; in this subsection, we shall 
consider the finite difference scheme by which finite 
difference is easily handled and digital signals are already 
discrete [40]-[44]. 

 
2.1. Discretization of the proposed model 

The Caputo fractional order derivative is shown as 
 

2

2 10

( , ) 1 ( , ) 1
, 1 2

(2 ) ( )

tu x t u x
d

t t



 

  
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 
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            (2) 

 
which can be approximated by [34] 
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where 

( ) 2 2( 1)j j j      
,                             (4) 

 
and ( ) ( ) ( )

1 21 k
        . 

 
2.2.  Computation of symmetric Riesz derivatives 

The symmetric Riesz derivatives of order   can be 

obtained by equation (5) 
 

 ( ) ( ) ( ) ( )
1 0 1 0=

T T

N N Nf f f R f f f                (5) 

 

where ( )
nf
  , 1,2, , N  represents the   order Riesz 

derivative, 
 

( ) ( ) ( ) ( ) ( )
0 1 2 3
( ) ( ) ( ) ( ) ( )
1 0 1 2 1
( ) ( ) ( ) ( ) ( )

( ) 2 1 0 1 2

( ) ( ) ( ) ( ) ( )
1 2 1 0 1

( ) ( ) ( ) ( ) ( )
1 2 1 0

1

N

N

N
N

N

N N

R
h

    

    

    




    

    

    
    
    

    
    










 
 
 
 

  
 
 
 
  







     





  (6) 

 

( ) ( 1) ( 1)cos( / 2)

( / 2 1) ( / 2 1)

k

m
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,             (7) 

 

where 0,1, ,k N  . 
 
2.3. Iterative scheme 

According to the implicit difference scheme, the iterative 
scheme is as follows 

 
1 1 0=U A U                                   (8) 

 

where ( )(3 ) NA I GR     , I  is an identity  
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3.  SIMULATED DATA AND SMOOTHING PERFORMANCE INDEX 

The Lorentzian-shaped peak is commonly taken as a 
model for the spectral peak. Therefore, the Lorentzian-
shaped peaks here are taken to test the proposed method, it 
is generated by 

 

2
1

( )

1

n
i

i
i

i

A
L x

x 





 

  
 

                       (10) 

 

In ( )L x  , the number of peaks is n , the height, position, 

and width are iA , i , and i , respectively. The noise is 

added by the “awgn” function. 
In general, the filtering performance is measured by the 

signal-to-noise ratio. The higher the signal-to-noise ratio of 
the filtered signal, the better the filtering performance. The 
signal-to-noise ratio formula is as follows. 

 

 
1

2

0
1

2

0

10log
( ) ( )

N

n
N

n

s n
SNR

f n s n














                (11) 

 

where  ( )s n  is a noise-free signal and ( )f n  is a noisy 

signal. Here, it will be taken as a smoothing performance 
index. 

Another measurement is root mean square error (RMSE), 
which is given by 

 

 
1

2

0

1
( ) ( )

N

n

RSME f n s n
N





                 (12) 

 
4.  RESULTS AND DISCUSSION 

In the proposed model, there are four parameters: 
fractional time derivative order  , space fractional 

derivative order  , time-step size  , and the iteration 

number k . The fractional time derivative order   is 
between 1.0 and 1.2, usually   can be set as 1.1. Space 

fractional derivative order   is between 2 and 2.95, 

usually, it can be set as 2.75. If you want to preserve the 
peak shape of a signal, space fractional derivative order 
should be big. The time step size  can be fixed as 1. 
 
4.1. Effect of the diffusion function on smoothing 

Shortcoming of the Gaussian smoothing is that it removes 
the noise of a signal while distorting the peak. Therefore, 
one natural idea is to control the diffusion process by the 
diffusion function. If some parts of a signal, such as a peak, 
need to be preserved, corresponding values of the diffusion 
function approach zero. Conversely, the values of the 
diffusion function should be big. Here, the diffusion 
function is designed using the signal to be smoothed as a 
reference signal, and the formula is as follows 

 
1

2
( , )

( , ) exp k
k

k

u x t
g u x t

t


  
          

              (13) 

 

One can easily find that the range of ( , )g u x t    is from 

0 to 1, and the bigger ( , )u x t , the smaller ( , )g u x t   , 

for an appropriate  . So, the peak can be preserved well in 

the smoothing process. Usually, parameter   can be 
determined by the expected diffusion strength. For example, 
if one expects the diffusion strength at the peak to be 0.05, 

then  kt  can be obtained by 

 

  1max( ( , ))

ln(0.05)
k

k

u x t
t 


                   (14) 

 
Of course, if you want the diffusion strength at the peak to 

be 0.2,   kt  should be changed as follows, 

 

  1max( ( , ))

ln(0.2)
k

k

u x t
t 


                  (15) 

 

 

Fig.1. A noisy peak and its smoothed result with different  . 

  

 a) Diffusion function for 1   b) Smoothed results with 1  

  

 c) Diffusion function for 2   d) Smoothed results with 2  
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As an example, a noisy Gaussian-shaped peak marked 
with Noisy peak in Fig.1.b) is taken to observe the effect of  

  in the diffusion process. 
Fig.1.a) and Fig.1.c) shows the diffusion functions at 

different iteration numbers 1 and 30, respectively. After 30 
iterations, the smoothed signals are shown in Fig.1.b) and 
Fig.1.d) with the red line. Their diffusion strength at the 
highest peak is 0.1 and 0.5, respectively. 

One easily finds that the larger  , the stronger the 
diffusion, which will also result in the peak height decrease. 

 
4.2.  Comparison and performance evaluation of the 
TSFOM 

Different methods were developed for finding smooth 
signals. Thus, in order to compare the TSFOM with the 

classical diffusion model (CDM) ( 1  , 2   ), 

regularization method (RegM), wavelet method (WM), 
nonparametric smoothing method (Non-P), and the 
Savitzky-Golay method (SGM) were used. Four signals with 
white noise are generated, the SNR is 10 dB, 15 dB, 20 dB, 
and 25 dB, respectively. The smoothed results obtained by 
the TSFOM are shown in Fig.2. where they are marked with 
“Smoothed signal”. 
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Fig.2.  Noisy signals (10dB) and smoothed results of the TSFOM. 

 
One purpose of smoothing is to suppress noise and 

improve the SNR of a signal. Therefore, the SNR of the 
optimal results for each method is presented in Table 1.  

In addition, the root mean square errors of the optimal 
results are also computed and shown in Fig.3. The RMSE of 
the TSFOM is the smallest.  

Fig.3. shows that the results obtained by the proposed 
model are superior to CDM, WM, SGM, Non-P, and RegM. 
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Fig.3. RMSE comparison of different methods. 

 
Table 1.  SNR improvement for different smoothing methods. 

 
Signal SNR (dB) TSFOM CDM WM SGM Non_P RegM 

1 

10 26.47 23.47 22.72 20.19 20.20 19.33 

15 28.80 27.91 26.76 25.32 25.16 25.29 

20 31.14 30.97 30.27 27.30 27.07 27.24 

25 36.16 34.50 33.79 32.27 32.01 32.10 

2 

10 19.33 18.73  18.21 17.67 17.73 17.35 

15 24.08 22.84  21.91 21.85 21.81 21.88 

20 27.79 26.67  26.21 26.09 25.84 26.07 

25 31.91 30.73  31.68 30.60 30.27 30.55 

3 

10 19.47 19.38  18.98 18.51 18.55 18.15 

15 24.71 24.28  23.37 22.81 22.80 22.67 

20 28.69 28.21 27.81 27.29 27.24 27.09 

25 32.89 31.82  31.77 30.78 30.39 30.57 

4 

10 21.88 18.92  18.75 18.16 18.20 17.80 

15 24.78 23.45  23.89 22.98 22.90 22.94 

20 28.94 27.58  27.69 27.12 26.95 27.02 

25 33.67 32.00  33.23 31.92 31.63 31.70 
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4.3.  Preserving peak performance 

Usually, the peak height of the smoothed signal decreases 
and the peak width of the smoothed signal become wider. 
Therefore, peak-preserving smoothing is a challenging task. 
The Savitzky-Golay method, wavelet method, 
nonparametric smoothing method, regularization method, 
and the classical nonlinear diffusion method are some 
smoothing methods that can preserve peaks of the raw 
signal. So, these methods are used for comparing the 
TSFOM. For this purpose, around each peak, nine points are 
selected to fit the peak shape and the peak shape parameters 
are obtained, they are the peak position, the peak height, and 
the peak width. Thus, their errors for each peak can be easily 
obtained. Their average error for each signal is presented in 
Fig.4., which shows that the TSFOM and CDM are effective 
at preserving peak shape. 
 

 
 

 
 

 
 

Fig.4.  Relative errors of peak shape parameters. 

4.4.  The best iteration number 

The “two-fold” cross-validation is used for a purposive 
choice of iteration number. Firstly, the proposed model was 
used to obtain the smoothed signal of the odd-indexed 
down-samples. Then the smoothed signal was interpolated 
to get the full signal. The relationship between the standard 
deviation (SD) and the iteration number is shown in Fig.5. 
The best iteration number can be determined by the minimal 
value of the standard deviation (SD) of the even-indexed 
down-samples. 

 

 
  a）Signal 1 

 
  b）Signal 2 

 
  c）Signal 3 

 
  d）Signal 4 
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Fig.5.  The variation of standard deviation with the number of 
iterations, the lower the SNR is, the more iterations are required to 
achieve the best smoothing performance. 
5.  APPLICATION OF THE PROPOSED MODEL 

5.1. Application of the proposed model in the NMR spectrum 

The TSFOM is applied to smooth the NMR spectrum and 
compares with the regularization method [35], [36] and the 
wavelet denoised method [39]. The smoothed results 
obtained by the TSFOM are shown in Fig.6. The signal is 
from [35], in which it was filtered by the regularization 
method. For the regularization method, the optimal result is 
directly obtained with the codes in [35].  

For the wavelet denoised method, the smoothing result is 
obtained by the function “wden” in the Wavelet toolbox 
whit Donoho and Johnstone's universal threshold at level 6 
by the sym8 wavelet. For the TSFOM, the time step size is 
set to 1, the time fractional-order derivative is 1.05 and the 
space fractional-order derivative is 2.95. The result for 40 
iterations is shown in Fig.6.d). The highest peak of the raw 
NMR spectrum and smoothed result obtained by different 
methods are given in Table 2. 

Fig.6. and Table 2. show the regularization method is more 
effective at preserving peaks but less effective at reducing 
noise. The wavelet denoised method has a better effect on 
noise reduction, but the peaks are obviously weakened. 
However, the TSFOM is not only effective at denoising 
noise, but also effective at preserving peaks of the NMR 
spectrum. 

 
Table 2.  The highest peak of the raw spectrum and the smoothed 

signal. 
 

 Raw spectrum TSFOM WM RegM 

Height 58.02 57.30 48.74 52.67 

 

 
a)Raw NMR spectrum 

 

 
b) The smoothed result obtained by RegM 

 
c) The smoothed result obtained by WM 

 
d) The smoothed result obtained by TSFOM 

 
Fig.6.  The TSFOM is used to smooth the NMR spectrum. 

 
5.2.  Smoothing of the mass spectra 

One of the challenges for the mass spectra smoothing is 
peak preserving. The mssgolay is suggested to smooth the 
raw mass spectra in the Bioinformatics Toolbox™. The 
comparison results are shown in Fig.7. One can find that the 
proposed model has better peak-preserving capability at a 
fairly smooth level of the polynomial filter. 

 

 

a) The smoothing result for mspec01 
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b) The smoothing result for mspec03 

 
Fig.7.  Smoothing of the mass spectra with the TSFOM. 

6.  CONCLUSION 

A time-space fractional diffusion model is obtained by 
extending the classical nonlinear diffusion model. The 
corresponding numerical algorithm and parameter setting 
method were given. The proposed method was verified by 
some simulated signals and real signals. The TSFOM is not 
only effective at suppressing noise, but also effective at 
preserving peak. The principle of peak-preserving 
smoothing of time-space fractional order model is still an 
open problem. 
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