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Degradation state identification for hydraulic pumps is crucial to ensure system performance. As an important step, feature extraction has 
always been challenging. The non-stationary and non-Gaussian characteristics of the vibration signal are likely to weaken the performance 
of traditional features. In this paper, an efficient feature extraction algorithm named multi-scale ternary dynamic analysis (MTDA) is 
proposed. MTDA reconstructs the phase space based on the given signal and converts each embedding vector into a ternary pattern 
independently, which enhances its capacity of describing the details of non-stationary signals. State entropy (SE) and state transition entropy 
(STE) are calculated to estimate the dynamical changes and complexity of each signal sample. The excellent performance of SE and STE in 
detecting frequency changes, amplitude changes, and the development process of fault is verified with the use of four simulated signals. The 
proposed multi-scale analysis enables them to provide a more precise estimation of entropy. Furthermore, support vector machine (SVM) 
and nondominated sorting genetic algorithm II (NSGA-II) are introduced to conduct feature selection and state identification. NSGA-II and 
SVM can conduct the joint optimization of these two goals. The details of the method proposed in this paper are tested using simulated 
signals and experimental data, and some studies related to the fault diagnosis of rotating machinery are compared with our method. All the 
results show that our proposed method has better performance, which obtains higher recognition accuracy and lower feature set dimension. 
 
Keywords: Multi-scale ternary dynamic analysis(MTDA), NSGA-II and SVM, Hydraulic pump, Degradation state identification. 
 
 
 
 
1.  INTRODUCTION 

It is well-known that the application of hydraulic systems 
can be found in many fields such as engineering machinery, 
metallurgy, transportation, aeronautics and astronautics [1]. 
As a component for transferring and converting energy, the 
hydraulic pump plays a key role in hydraulic systems. Many 
terrible safety accidents and economic losses are attributed to 
the failure of the hydraulic pump and the resulting paralysis 
of the hydraulic system [2]. Therefore, monitoring the 
degradation state of hydraulic pumps and implementing 
effective measures are conducive to the long-term and 
reliable operation of the system. As an important component 
of Prognostic and Health Management (PHM), degradation 
state identification has received extensive attentions in 
various areas [3]. The performance and reliability of 
hydraulic pumps have an urgent need of high-precision 
degradation state identification [4]. 

Nowadays, increasing attention has been paid to equipment 
condition monitoring and fault prognosis with vibration 
analysis methods. In some cases, the abnormal states of the 
equipment such as cavitation in pumps can be detected by 
analyzing the vibration signals [5]. The vibration signal 
obtained from the acceleration sensor is also widely used in 
condition monitoring for hydraulic pumps due to its fast 

reactivity and bundant state information [6]. In general, the 
use of vibration signals for condition monitoring and fault 
prognosis consists of four steps, data acquisition and analysis, 
feature extraction and screening, model construction, training 
and validation, pattern recognition, and prognosis [7]. As 
crucial steps, feature extraction and selection are directly 
related to the accuracy and timeliness of degradation state 
identification.  

Over the past few years, the traditional features of time-
domain, frequency-domain and time-frequency domain had 
been applied to fault diagnosis of mechanical equipment [8]. 
M. M. Tahir et al. [9] extracted some time-domain statistical 
features in their study: variance, mean values, skewness, crest 
factor, etc. SVM, Decision tree, and Bayesian network (BN) 
were all used to diagnose bearing faults. Ziwei Wang et al. 
[10] proposed a novel approach of a random forest classifier 
for fault diagnosis in rolling bearings. The wavelet packet 
decomposition was applied for fault feature extraction. 
Yonggang Xu et al. [11] proposed empirical scanning 
spectrum kurtosis (ESSK) for fault feature extraction of 
rolling element bearings. Xiaoan Yan et al. [12] used 
variational modal decomposition, fast Fourier transform, and 
statistical analysis to extract the fault features of rolling 
bearings in their study. SVM was used for fault condition 
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identification of rolling bearings, whose parameters were 
optimized by the particle swarm optimization algorithm.  

However, the faults of hydraulic systems are not as obvious 
and straightforward as common electromechanical structures, 
which makes it challenging to obtain degradation features 
[13]. In the process of hydraulic pump operation, vibration 
signals show prominent nonlinear and non-Gaussian 
characteristics due to the influence of fluid compressibility, 
fluid-structure coupling between pump source and servo 
system, and inherent mechanical vibration, which will lead to 
a remarkable decrease in the sensitivity of many traditional 
time-domain features [14]. Due to the interference of intense 
noise, the capability of traditional frequency domain and 
time-frequency domain features will also be weakened to 
some extent. Hence, a more effective method for feature 
extraction and degradation state identification of hydraulic 
pumps has become an urgent task. 

In recent years, some researchers have shown an increasing 
interest in applying information theory, symbolic dynamic 
theory, variants of the texture analysis technique and deep 
learning to fault diagnosis [15]-[17]. The application of these 
novel methods overcomes the shortcomings of traditional 
methods to a certain extent. Yukui Wang et al. [18] proposed 
spatial information entropy and applied it to the degradation 
state identification of hydraulic pumps. Zhenghong Wu et al. 
[19] proposed an adaptive deep transfer learning for bearing 
fault diagnosis. Yongbo Li et al. [20] proposed a new 
dynamical indicator called modified multi-scale symbolic 
dynamic entropy (MMSDE). It combined the merits of 
symbolic dynamic filtering and information theory. It was 
experimentally demonstrated to have better fault detection 
capacity than modified multi-scale sample entropy (MMSE) 
and modified multi-scale permutation entropy (MMPE). 
Magda Ruiz et al. [21] converted the one-dimensional time 
series obtained from the wind turbine into a two-dimensional 
matrix and transformed the matrix into a grayscale image. 
Finally, texture features were obtained from grayscale 
images. This method inspired us to apply texture analysis 
techniques to degradation feature extraction. Recently, Melih 
Kuncan et al. [22] developed a method called one-
dimensional local ternary pattern (1D-TP) to extract the fault 
features of rolling bearings. Yılmaz Kaya et al. [23] proposed 
a novel feature extraction method based on co-occurrence 
matrices for bearing vibration signals. The aforementioned 
Melih Kuncan, Yılmaz Kaya et al. have been committed to 
applying the modified texture analysis to bearing fault 
diagnosis in recent years, and many enlightening results have 
been proposed [24]-[26]. The texture analysis or its variants 
are simple and effective, which provide stable features for 
fault diagnosis. The Operators such as Local Binary Pattern 
(LBP) [26] and 1D-TP compare the pixel (or amplitude) of 
the center point with those of the surrounding points, thus 
they are local feature descriptors, which are suitable for non-
stationary signals. 

While some of the feature extraction methods applied 
previously have their advantages, their comprehensive 
capacity to reflect the deterioration of equipment 
performance still needs to be improved. First, deep learning 

requires a large number of data samples to obtain good 
recognition results. Second, in the field of fault diagnosis, a 
fault sample is likely to contain a small number of data points, 
which makes a one-dimensional signal into a small-size 
image. Consequently, the performance of texture analysis 
may be limited in this case. For this reason, variants of texture 
analysis such as 1D-TP seem to be more suitable for samples 
with a small number of data points. However, texture analysis 
and its variants produce large-scale feature sets, which will 
bring some troubles when subsequent operations such as 
feature selection and fusion are conducted. Anyway, a small-
size feature set is our goal. Furthermore, the features provided 
by texture analysis and its variants cannot describe the 
dynamic changes of vibration signals. Third, entropy is 
effective in detecting the dynamic characteristics of signals. 
However, as we will prove later in this paper, some entropies 
such as symbolic dynamic entropy (SDE) [20] and 
permutation entropy (PE) [27] need to be improved in 
describing the dynamic details of the signals. In this paper, a 
method named ternary dynamic analysis (TDA) is proposed 
to extract the degradation features effectively. TDA combines 
the ideas of the Shannon entropy [28], local ternary pattern 
(LTP) [29], and optimized local ternary pattern (OLTP) [30]. 
State entropy (SE) and state transition entropy (STE) are 
obtained based on this method. The degradation state of 
hydraulic pumps can be identified accurately with them. The 
excellent effect of TDA is verified using simulated signals. 
The proposed method shows better performance than PE and 
SDE. To extract the degradation features over different 
scales, we develop a novel approach, which contains a 
method derived from an interpolation technique for the image 
scaling and the moving-averaging procedure, and combine it 
with TDA, called multi-scale ternary dynamic analysis 
(MTDA).  

In this study, after obtaining the degradation features using 
MTDA, NSGA-II [31] and SVM [32] (simplified into NSGA-
II-SVM) are introduced to find the most important features 
and recognize the different degradation states of the hydraulic 
pump. Moreover, the comparisons are performed among the 
proposed method, MMSDE-NSGA-II-SVM, and MMPE-
NSGA-II-SVM. The final results show that our proposed 
method can obtain the highest identification accuracy with 
the least features. Some other studies related to the fault 
diagnosis of rotating machinery are also compared with our 
method. All the results show that our proposed method has 
better performance. 

The following contents are also presented in this paper: the 
detailed procedure of the TDA method and the use of 
simulated signals to verify its superiority are presented in 
Section 2; Section 3 gives the detailed steps of MTDA; 
Section 4 introduces the joint optimization of feature 
selection and degradation state identification using NSGA-II-
SVM. The process of identifying the degradation state of 
hydraulic pumps based on MTDA and NSGA-II-SVM 
proposed in this paper is illustrated in Section 5. Section 6 
presents the use of experimental data to verify the 
effectiveness of the proposed method. The last section gives 
several conclusions. 
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2.  TERNARY DYNAMIC ANALYSIS (TDA) 
2.1.  Details of implementing TDA 

TDA is developed from LTP and OLTP, which combines 
the ideas of information theory. LTP and OLTP are frequently 
applied to the processing of grayscale images. TDA is 
different from them, and is used for feature extraction from 
vibration signals in this paper. A time series segment is 
reconstructed into a phase space matrix, and then the center 
value of each embedding vector in the matrix is compared 
with its neighbours. Two sets of different binary codes can be 
obtained based on the comparison results. The decimal form 
corresponding to each set of codes represents a state pattern. 
Then the state probability and state transition probability can 
be calculated. SE and STE can be obtained on this basis. 

There are five steps to perform TDA based on a given signal 
segment  X {x(j), j = 1,2, ..., N}: 

1.  Reconstruct the phase space based on X, and the 
following matrix can be obtained. 

 

Z = 

⎣
⎢
⎢
⎢
⎡
𝑍𝑍(1)
𝑍𝑍(2)
𝑍𝑍(𝑖𝑖). . .
𝑍𝑍(𝐾𝐾)⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
𝑥𝑥(1)
𝑥𝑥(2)
𝑥𝑥(𝑖𝑖)

𝑥𝑥(1 + 𝜆𝜆) . . . 𝑥𝑥(1 + (𝑚𝑚 − 1) ∙ 𝜆𝜆)
𝑥𝑥(2 + 𝜆𝜆) . . . 𝑥𝑥(2 + (𝑚𝑚 − 1) ∙ 𝜆𝜆)
𝑥𝑥(𝑖𝑖 + 𝜆𝜆) . . . 𝑥𝑥(𝑖𝑖 + (𝑚𝑚 − 1) ∙ 𝜆𝜆)

. . .
𝑥𝑥(𝐾𝐾)

. . .         . . .             . ..                
𝑥𝑥(𝐾𝐾 + 𝜆𝜆) . . . 𝑥𝑥(𝐾𝐾 + (𝑚𝑚 − 1) ∙ 𝜆𝜆)⎦

⎥
⎥
⎥
⎤
             (1) 

 
where 𝑖𝑖 = 1,2,…K; K = N – (m-1) ∙ 𝜆𝜆, 𝑚𝑚 and 𝜆𝜆 are used to 
denote the embedding dimension and the time delay, 
respectively. It is essential to point out that 𝑚𝑚  is an odd 
number. 

2.  Convert the embedding vectors 𝑍𝑍(𝑖𝑖)  into ternary 
patterns. In this step, P represents the number of neighbors of 
the center point in each row vector, and its value equals m-1. 
In this way, there are P/2 neighbors before and after the center 
point, respectively. As seen in Fig.1., an example is shown 
there. In this case, eight neighbors are set for the center point 
(Pc), including four from the left (P0, P1, P2, and P3) and 
four from the right (P4, P5, P6, and P7). The parameters P 
and σ are assigned by the user. In this example, P = 8 and σ = 
0.8. In other words, m = 9 and 𝛽𝛽 = 0.687. According to the 
following equation, the neighbor values are replaced with 
new values (0,1 or -1) (Fig.1.a)).  

 

New values=�
−1
0
1

 if 𝑝𝑝𝑖𝑖 < (1 − 𝜎𝜎)𝑝𝑝𝑐𝑐
 if (1 − 𝜎𝜎)𝑝𝑝𝑐𝑐 ≤ 𝑝𝑝𝑖𝑖 ≤ (1 + 𝜎𝜎)𝑝𝑝𝑐𝑐

 if 𝑝𝑝𝑖𝑖 > (1 + 𝜎𝜎)𝑝𝑝𝑐𝑐
   (2)                   

 
where 𝜎𝜎 =  𝛽𝛽 ∙  𝑆𝑆𝑆𝑆𝑆𝑆 and 𝑖𝑖 = 0, 1, … m-2. 

Std denotes the standard deviation of {P0, P1, P2…Pm-2}. 
 
3.  Transform the ternary patterns into two sets of binary 

codes, up pattern and low pattern, and compute their decimal 
representations, respectively. After “-1” is replaced by “0” 
and other values remain unchanged, the up pattern is 

obtained. After “-1” is replaced by “1” and other values are 
all replaced by “0”, the low pattern is obtained (Fig.1.b)). 
Subsequently, the decimal value corresponding to the binary 
code is calculated according to the following equation 
(Fig.1.c)). 

 
Decimal = ∑ 2𝑛𝑛 ∙ 𝐵𝐵𝑖𝑖𝑃𝑃−1

𝑛𝑛=0      (3) 
 

where 𝐵𝐵𝑖𝑖  is the value of each bit in the binary code set and 
equals 1 or 0. After performing the above steps, two different 
decimal values corresponding to each row vector of matrix Z 
are obtained (Fig.1.d)). For a vector with P=8, there may be 
256 (28) decimal values. After applying these operations for 
each row of the matrix Z, two sets of data sequences, 
𝑆𝑆1{𝑠𝑠1(𝑖𝑖), 𝑖𝑖 = 1,2, . . . ,𝐾𝐾}  and 𝑆𝑆2{𝑠𝑠2(𝑖𝑖), 𝑖𝑖 = 1,2, . . . ,𝐾𝐾}  are 
obtained, where 𝑠𝑠1(𝑖𝑖)  denotes the decimal value 
corresponding to 𝑍𝑍(𝑖𝑖) ’s up pattern and 𝑠𝑠2(𝑖𝑖)  denotes the 
decimal value corresponding to 𝑍𝑍(𝑖𝑖)’s low pattern. The value 
of each element in the 𝑆𝑆1 and 𝑆𝑆2 represents a state pattern. 
 

 
 
Fig.1.  Steps (2) and (3) of TDA: a) the value of a row in the matrix 
Z, b) comparisons of the 𝑃𝑃𝑐𝑐 with the 𝑃𝑃𝑖𝑖, c) separation of up pattern 
and low pattern, d) Transform the binary values into decimal form. 
 

4.  Inspired by the Shannon entropy [28], we compute the 
potential state patterns probability and SE based on 𝑆𝑆1  and  
𝑆𝑆2 , respectively. For example, for a given 𝑆𝑆1 , SE can be 
obtained by the following equation:  
 

SE = −∑ 𝑝𝑝𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖𝐴𝐴
𝑖𝑖=1                          (4) 

where 𝑃𝑃𝑖𝑖 = 𝑛𝑛𝑖𝑖
𝑁𝑁

 
 

where A is the number of states. 𝑙𝑙𝑖𝑖 is the total count of events 
that the i-th state occurs, N is the total count of events that all 
states occur. From equation (4), it can be concluded that the 
maximum value of SE is 𝑙𝑙𝑙𝑙(2𝑚𝑚−1) when the probability of 
all possible states is 1/2𝑚𝑚−1 . Then, the normalized SE by 
𝑙𝑙𝑙𝑙(2𝑚𝑚−1) can be expressed as follows: 
 

SE = SE/ 𝑙𝑙𝑙𝑙(2𝑚𝑚−1)                          (5) 
 

Similarly, this step should be also applied to 𝑆𝑆2.  
5.  Compute the probability of state transitions and STE. 

Inspired by the definition of quasi-stationary state transition 
probability in symbol dynamic filtering [33], we define STE 
as follows:  
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STE = -∑ ∑ 𝑃𝑃𝑖𝑖 ∙ 𝑃𝑃(𝑘𝑘|𝑖𝑖) ∙ 𝑙𝑙𝑙𝑙[𝑃𝑃𝑖𝑖 ∙ 𝑃𝑃(𝑘𝑘|𝑖𝑖)𝐴𝐴
𝑘𝑘=1

𝐴𝐴
𝑖𝑖=1 ]      (6) 

 
where 𝑃𝑃(𝑘𝑘|𝑖𝑖)  =  𝑁𝑁(𝑖𝑖,𝑘𝑘)

∑ 𝑁𝑁(𝑖𝑖,𝑚𝑚)𝐴𝐴
𝑚𝑚=1

 

 
where A is the number of states. 𝑃𝑃𝑖𝑖∙is the probability of the i-
th state pattern. 𝑃𝑃(𝑘𝑘|𝑖𝑖) is the conditional probability of the k-
th state, and satisfies ∑ 𝑃𝑃(𝑘𝑘|𝑖𝑖)𝐴𝐴

𝑘𝑘=1 = 1. 𝑁𝑁(𝑖𝑖, 𝑘𝑘)  is the total 
count of events when k-th state occurs adjacent to i-th state in 
the direction of motion.  

The following conclusion can be drawn from equation (6): 
STE equals its maximum value 2 ∙ 𝑙𝑙𝑙𝑙(2𝑚𝑚−1) when all state 
pattern probabilities and state transition probabilities are 
1/2𝑚𝑚−1. Then, the normalized STE by  2 ∙ 𝑙𝑙𝑙𝑙(2𝑚𝑚−1) can be 
expressed as follows: 

 
STE = STE/ [2∙ 𝑙𝑙𝑙𝑙(2𝑚𝑚−1)]                 (7) 

 
This step should be applied to 𝑆𝑆1 and 𝑆𝑆2.  
After performing steps (1) to (5), four features, SE and STE 

of up pattern and low pattern, can be obtained based on X 
{x(j), j = 1,2, ..., N}. 

To get a clearer and more intuitive impression, the detailed 
procedures of SE and STE are illustrated with the following 
example. For a time series X = {0.68, 0.93, 0.03, 0.88, 0.44, 
0.04,1.23, 0.05, 0.98, 0.37,-1.22, -0.29, -1.81, 0.35, 1.38, -
0.35, 1.79, -1.42, 0.01, -0.76}, set the parameters of the 
algorithm as m=9, 𝛽𝛽=0.687. After performing the steps (1) to 
(3) on X, two sets of data sequences are obtained: 𝑆𝑆1 = {213, 
187, 0, 220, 0, 80, 251, 230, 223, 10, 0, 58}, 𝑆𝑆2 = {42, 0, 187, 
3, 95, 174, 4, 25, 32, 117, 251, 197}. Take 𝑆𝑆1 for example, 
the probability of 0 is 1/4 and marked as: 𝑃𝑃0= 1/4. Thus the 
state pattern probabilities can be calculated as:  

 
[𝑃𝑃0,𝑃𝑃10,𝑃𝑃58,𝑃𝑃80,𝑃𝑃187,𝑃𝑃213,𝑃𝑃220,𝑃𝑃223,𝑃𝑃230,𝑃𝑃251] = 

�1
4

, 1
12

, 1
12

, 1
12

, 1
12

, 1
12

, 1
12

, 1
12

, 1
12

, 1
12
�                          (8) 

 
The state transition probabilities can be calculated 

according to equation (6) as : 
 

[𝑃𝑃(220|0),𝑃𝑃(80|0), 𝑃𝑃(58|0),𝑃𝑃(0|10),𝑃𝑃(251|80),𝑃𝑃(0|187),
𝑃𝑃(0|220),𝑃𝑃(10|223),𝑃𝑃(223|230),𝑃𝑃(230|251),𝑃𝑃(187|213)] = 
�1
3

, 1
3

, 1
3

, 1,1,1,1,1,1,1,1�                           (9) 
 
Last, calculate the SE and STE and normalize them as 

follows:  
 

SE = −∑ 𝑝𝑝𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑝𝑝𝑖𝑖𝐴𝐴
𝑖𝑖=1  = 2.2103                   (10) 

 
SE = SE/ 𝑙𝑙𝑙𝑙(2𝑚𝑚−1) = 0.3986                     (11) 

 
STE = -∑ ∑ 𝑃𝑃𝑖𝑖 ∙ 𝑃𝑃(𝑘𝑘|𝑖𝑖) ∙ 𝑙𝑙𝑙𝑙[𝑃𝑃𝑖𝑖 ∙ 𝑃𝑃(𝑘𝑘|𝑖𝑖)𝐴𝐴

𝑘𝑘=1
𝐴𝐴
𝑖𝑖=1 ] = 2.2778  (12) 

 
STE = STE/ [2∙ 𝑙𝑙𝑙𝑙(2𝑚𝑚−1)] = 0.2054     (13) 

2.2.  Comparisons among TDA, SDE, and PE 
Four simulated signals are used to compare the performance 

of TDA, SDE and PE in measuring the complexity of the time 
series. In the TDA method, we only use the SE and STE of 
the up pattern as examples. The first three simulated signals 
all last for 128 seconds at a sampling frequency of 256 Hz. A 
sliding window with a width of 2048 sampling points and a 
step length of 512 sampling points is used to split the data 
[20]. The fourth simulated signal is 20 s with a sampling 
frequency of 1024 Hz. It is equally divided into ten sections, 
which means each section is 2 s [18]. 

The parameters (m, 𝜆𝜆) of these three methods are set to the 
same values (5, 1) to obtain fair comparison results in this 
study. Meanwhile, we use the parameter 𝛽𝛽 = 1.2 in the TDA 
method and the number of symbol ε = 10 in SDE. 

The following frequency modulated (FM) signal is set to 
test the performance of the three methods in detecting the 
frequency changes of signals: 

 
𝑓𝑓1(𝑆𝑆)  =  𝑒𝑒𝑗𝑗𝑗𝑗𝑘𝑘𝑡𝑡2                     (14) 

 
where the parameter k is the rate of frequency change and we 
set k = (5-0.1)/128 = 0.0383 here. The test results and the 
time-domain waveform of the FM signal are shown in 
Fig.2.a). We observe that the values of PE, SE, and STE 
generally show linear increasing trends in other periods 
except for short periods at the beginning. This indicates that 
they can describe the frequency change with higher accuracy. 
Compared with them, the increasing trend of SDE values is 
relatively insignificant and accompanied by large 
fluctuations.  

The following amplitude modulated (AM) signal is set to 
investigate the performance of the three methods in detecting 
the amplitude changes of signals: 

 
𝑓𝑓2(𝑆𝑆) = 𝑒𝑒(−0.01𝑡𝑡)𝑠𝑠𝑖𝑖𝑙𝑙(100𝜋𝜋𝑆𝑆)   (15) 

 
The investigation results and the time-domain waveform of 

the AM signal are presented in Fig.2.b). Both SE and STE 
values change significantly with the amplitude changes, and 
the SE values are more obvious, while PE values hardly 
change. SDE performs better than PE. The curve of SDE 
fluctuates to a certain extent with amplitude changes, but it is 
not obvious. 

The following amplitude and frequency modulated (AM-
FM) signal is used to study the performance of the three 
methods in detecting simultaneous changes in the frequency 
and amplitude of signals. 

 
𝑓𝑓3(𝑆𝑆) = 2𝑓𝑓1(𝑆𝑆)sin(0.2 𝜋𝜋𝑆𝑆)  (16) 

 
As shown in Fig.2.c), the results show the excellent 

performance of SE and STE. Their values not only increase 
with the increase of frequency, but also show noticeable 
fluctuations with the changes of amplitude. However, PE 
values only increase monotonically and cannot detect the 
amplitude changes well. The curve of SDE shows slight 
fluctuations, and its increasing trend is not linear. This 
indicates that SDE is relatively insensitive to amplitude 
changes and cannot reflect linear changes of frequency.  
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The fourth signal shown below is used to study the 
performance of the three methods in describing the 
development process of fault for hydraulic pumps. 

 
𝑓𝑓4 (𝑆𝑆) = 𝑥𝑥𝑖𝑖𝑖𝑖(𝑆𝑆) + 0.06𝑆𝑆2𝑥𝑥𝑓𝑓𝑖𝑖(𝑆𝑆) + 𝑙𝑙(𝑆𝑆)   (17) 

where 𝑥𝑥𝑖𝑖𝑖𝑖(𝑆𝑆) = 𝑒𝑒−60𝑡𝑡1 𝑠𝑠𝑖𝑖𝑙𝑙( 540𝜋𝜋𝑆𝑆) 
𝑥𝑥𝑓𝑓𝑖𝑖(𝑆𝑆) = 𝑒𝑒−30𝑡𝑡2 𝑠𝑠𝑖𝑖𝑙𝑙( 540𝜋𝜋𝑆𝑆) 

𝑆𝑆1 = 𝑚𝑚𝑚𝑚𝑆𝑆(𝑆𝑆, 1/30)，𝑆𝑆2 = 𝑚𝑚𝑚𝑚𝑆𝑆(𝑆𝑆, 1/6) 
 

𝑥𝑥𝑖𝑖𝑖𝑖(𝑆𝑆)  simulates the inherent impact component in the 
vibration signal of a hydraulic pump. 𝑥𝑥𝑓𝑓𝑖𝑖(𝑆𝑆)  simulates the 
impact component caused by the fault of the hydraulic pump. 
0.06𝑆𝑆2𝑥𝑥𝑓𝑓𝑖𝑖(𝑆𝑆)  simulates the development process of fault. 
𝑙𝑙(𝑆𝑆)  is white noise and its intensity is -1dB here. The 
changing trends of the four features and the time-domain 
waveform of the simulated signal are shown in Fig.2.d). We 
can easily find that SE values and STE values show 
decreasing trends with the development of the fault, which 
are more obvious than other trends. This indicates that the 
TDA method can describe the degradation process of 
hydraulic pumps more accurately.  

 

 
 

Fig.2.  The simulated signals and the comparisons of TDA, PE, and 
SDE: a) FM signal; b) AM signal; c) AM-FM signal; d) simulated 
signal of the hydraulic pump degradation process. 

 
The following conclusions can be drawn based on the above 

studies: (1) TDA method can accurately detect changes in 
signal amplitude and frequency; (2) TDA can perform well in 
the degradation state identification for hydraulic pumps. The 
reasons for the results based on the simulated signals are 
analyzed as: First, SDE was proposed based on PE. Naturally, 
the former has better performance than the latter. Second, for 

a given signal sample X {x(j), j = 1,2, ..., N}, SDE converts 
it into a symbol series at one time, while TDA converts each 
embedding vector 𝑍𝑍(𝑖𝑖) into ternary pattern, respectively. It 
can be seen that TDA inherits the advantages of 1D-TP as a 
local feature descriptor, and describes non-stationary signals 
more finely. 

 
3.  MULTI-SCALE TERNARY DYNAMIC ANALYSIS 
3.1.  Multi-scale analysis method and the process of MTDA 

In this paper, a novel multi-scale analysis method is 
proposed, which compresses and expands the time series to 
extract information at different scales fully. It consists of two 
steps, one of which is the moving-averaging procedure [34], 
and the other is derived from an interpolation technique for 
image scaling [35]. The details of the calculation process are 
given below: 

1.  When the scale factor τ is set to different values, several 
new time series {𝑦𝑦𝑗𝑗𝜏𝜏} can be obtained based on a time series 
X {x(k), k = 1,2, ..., N} using the following equation. 

 
𝑦𝑦𝑗𝑗𝜏𝜏  =  1

𝜏𝜏
∑ 𝑥𝑥𝑖𝑖  
𝑗𝑗+𝜏𝜏−1
𝑖𝑖=𝑗𝑗          1 ≤ 𝑗𝑗 ≤ 𝑁𝑁 − 𝜏𝜏 + 1         (18) 

 
2.  When the scale factor 𝜏𝜏′ is set to different values, several 

new time series {𝑦𝑦′𝑗𝑗
𝜏𝜏′} can be obtained using the following 

equation.  
 
𝑦𝑦′𝑗𝑗

𝜏𝜏′ =  {𝜏𝜏′ ∙  [𝑖𝑖𝑙𝑙𝑆𝑆(𝑗𝑗−1
𝜏𝜏′

) + 1] − 𝑗𝑗 + 1} ∙ 𝑥𝑥[𝑖𝑖𝑙𝑙𝑆𝑆(𝑗𝑗−1
𝜏𝜏′

)] + {𝑗𝑗 −

𝜏𝜏′ ∙  [𝑖𝑖𝑙𝑙𝑆𝑆(𝑗𝑗−1
𝜏𝜏′

) + 1]} ∙ 𝑥𝑥[𝑖𝑖𝑙𝑙𝑆𝑆( 𝑗𝑗
𝜏𝜏′

)]      (19) 
1 ≤ 𝑗𝑗 ≤ 𝑁𝑁′    
𝜏𝜏′ ≥ 1     

 
where 𝑁𝑁′  represents the number of data points in the new 
time series, int( ∙ ) represents an integer operation, 𝑥𝑥 [ ∙ ] 
represents the value of a specified index position in the 
original time series. An example is used to illustrate the 
calculation of 𝑦𝑦′𝑗𝑗

𝜏𝜏′  as Fig.3. In this example, the length of the 
original time series and that of the new time series is 4 and 6, 
respectively, so the scale factor 𝜏𝜏′  is 1.5. Fig.3.b) overlap 
values of Fig.3.a) and the new time series is computed as the 
percentage of overlap of the old one. It is possible to calculate 
the value of the new time series by weighting each value from 
the original time series using its overlap percentage. Thus the 
following equation is easy to be obtained. 
 
�𝑦𝑦′1

1.5,𝑦𝑦′2
1.5,𝑦𝑦′3

1.5,𝑦𝑦′4
1.5,𝑦𝑦′5

1.5 ,𝑦𝑦′6
1.5� = {𝑥𝑥1, 0.5 ∙ 𝑥𝑥1 + 0.5 ∙

𝑥𝑥2, 𝑥𝑥2, 𝑥𝑥3,   0.5 ∙ 𝑥𝑥3 + 0.5 ∙ 𝑥𝑥4, 𝑥𝑥4 }      (20) 
 

 
    a) original time series                b) new time series 
 
Fig.3.  An example to illustrate step (2) of the multi-scale analysis. 
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The above two steps constitute our proposed multi-scale 
analysis method. In particular, the original time series is 
expanded by performing step (2), which allows more detailed 
characteristics of the signal to be observed.  

The process of MTDA is shown in Fig.4. 
 

 
 

Fig.4.  The flowchart of MTDA. 
 
3.2.  DETERMINATION OF SUITABLE PARAMETERS FOR MTDA 

The MTDA contains three parameters that need to be 
selected appropriately, including time delay λ, embedding 
dimension m and 𝛽𝛽. To study the influence of parameter λ, a 
Gaussian white noise signal with 2048 data points is used for 
testing. We only use the SE (up pattern), and only use the 
moving-averaging procedure to obtain multi-scale 
information. Since other situations are similar to this, they 
will not be shown here. 

The obtained results are shown in Fig.5. The SE values 
decrease more significantly as the scale increases when λ = 1. 
There is little difference among other curves, and their 

decreasing trends are relatively insignificant. Therefore, the 
most appropriate value of parameter λ is 1, and the SE values 
can be better distinguished in this case, which indicates that 
the algorithm can provide more sufficient information with λ 
= 1.  

 

 
 

Fig.5.  The SE values (up pattern) of white Gaussian noise with 
different time delays. 

 
To determine the optimal parameters (𝛽𝛽,𝑚𝑚 ), we tested 

multiple sets of values and found that the individual 
classification accuracy of each feature can reach a relatively 
high level with (𝛽𝛽,𝑚𝑚 ) = (1.6, 5). Therefore, we set the 
parameters (𝛽𝛽,𝑚𝑚) = (1.6, 5).  

 
4.  JOINT OPTIMIZATION OF FEATURE SELECTION AND 
DEGRADATION STATE IDENTIFICATION USING NSGA-II-SVM 

After performing the above steps, a feature pool that 
contains amounts of information from different scales, 
patterns and indicators is created. However, the feature pool 
generally includes redundant data, which will adversely 
affect   degradation   state  identification   [36].   In this paper,  

 
 

 
 

Fig.6.  The flowchart of joint optimization of feature selection and degradation state identification using NSGA-II-SVM. 
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NSGA-II-SVM is introduced for joint optimization of feature 
selection and degradation state identification. NSGA-II is a 
multi-objective optimization genetic algorithm based on 
nondominated sorting. In most cases, compared with 
strength-Pareto EA and Pareto archive evolution strategy, it 
can find better convergence and solution expansion near the 
Pareto optimal front [31]. NSGA-II has been frequently 
applied in the fields of fault prognosis and diagnosis for 
equipment [3]-[38]. In this paper, NSGA-II is set with two 
objective functions: SVM classification accuracy and the 
total number of features fed into SVM. By setting the 
parameters of the algorithm, the value of the first objective 
function is maximized, and the value of the second one is 
minimized. The result of a multi-objective optimization 
problem is a set containing multiple optimal solutions which 
are called “Pareto Frontiers” [39]. In this study, the Pareto 
Front corresponding to the highest classification accuracy is 
what we need. By performing this step, the feature subset with 
the highest classification accuracy and the lowest dimension 
will be obtained. Meanwhile, the result of degradation state 
identification for hydraulic pumps will also be obtained. The 
process of joint optimization is shown in Fig.6. Note that the 
individual chromosome in the population takes the form of 
binary codes, and “1” means the corresponding feature is 
selected, “0” means it is not selected. 
 
5.  THE PROPOSED DEGRADATION STATE IDENTIFICATION 
METHOD 

In this paper, a degradation state identification approach for 
hydraulic pumps is proposed based on MTDA and NSGA-II-
SVM as follows: 

1.  MTDA is used to analyze the vibration signal and extract 
the features of the hydraulic pump under six different 
degradation states. We set β = 1.6, time delay λ = 1, 
embedding dimension m = 5, and two scale factors 𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚  = 20, 
𝜏𝜏′ =  (1.4, 1.5, 1.6); 

2.  NSGA-II-SVM is employed to choose the feature subset 
with the highest classification accuracy and identify different 
degradation states. 

 
6.  EXPERIMENTAL VALIDATION AND COMPARISONS 
6.1.  Experimental data acquisition 

To verify the effectiveness of the proposed method, a 
hydraulic pump full life test platform was set up to collect 
data. The platform consists of a cooling system, a control 
system, signal monitoring, acquisition and display system, a 
pressure regulating system, and a drive system as shown in 
Fig.7.  

The hydraulic pump used in this paper is an axial piston 
pump. Its parameters are as follows: type: L10VS028DFR, 
rated rotation speed: 1480 r/min, rated pressure: 22 MPa, 
displacement at the rated working condition: 28 ml/r. Three 
acceleration sensors are, respectively, installed in three 
mutually orthogonal directions as shown in Fig.8. They 
acquire vibration signals at a sampling frequency of 50 KHz, 
each sampling lasts for 1 s, and the interval between two 
samplings is 30 s.  

 
 

Fig.7.  Hydraulic pump full life test platform. 
 

 
 

Fig.8.  Layout of the three vibration sensors. 
 
Considering that loose boot is one of the common fault pat 

terns of hydraulic pumps, we study the single loose boot of 
the hydraulic pump. The normal plungers are replaced with 
failed plungers obtained in the equipment maintenance to 
acquire more realistic vibration signals. As is presented in 
Fig.9., loose boot is considered under five different degrees. 
Vernier calliper is used to measure the longest radial distance 
between the plunger and the boot under the five different 
degrees. The measurement results defined as the loose degree 
are 0.12 mm, 0.18 mm, 0.3 mm, 0.42 mm, and 0.64 mm, 
respectively. Therefore, a total of six different degradation 
states, the normal state is one of them, are studied. 100 groups 
of vibration data in each degradation state are collected, and 
each group consists of 4095 data points. Some examples of 
vibration data are shown in Fig.10.  

 

 
 

Fig.9.  Loose slipper plungers. 
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Fig.10.  Part vibration signal samples. 
 
 

6.2.  Comparison among MTDA, MMPE and MMSDE  
The proposed method is applied to identify the six different 

degradation states of the hydraulic pump. First of all, MTDA 
is applied to obtain the features with 𝜏𝜏max  = 20 and 𝜏𝜏′ =
 (1.4, 1.5, 1.6). Second, NSGA-II-SVM is used to choose 
the feature subset with the highest classification accuracy and 
identify different degradation states. NSGA-II-SVM using 
MMPE (simplified into MMPE-NSGA-II-SVM) and NSGA-
II-SVM using MMSDE (simplified into MMSDE-NSGA-II-
SVM) are also employed to conduct the degradation state 
identification. Each method is implemented 15 times to 
reduce random effects. The highest classification accuracy 
and the corresponding number of features obtained in each 
run are shown in Fig.11. The statistical results of accuracy are 
shown in Table 1. The minimum number of features 
corresponding to the highest accuracy and the lowest 
accuracy is also shown in parentheses after them.  

The  following  three conclusions can be drawn.  First  of 
all,  the proposed method achieves the highest  identification 

accuracy (100-99.4 %). Second, it is more evident that the 
proposed method requires the least features (5-3) to obtain the 
highest identification accuracy. Third, other methods get 
lower identification accuracy (99.4 %-97.2 %), and it is more 
obvious that they require more features (7-4). Therefore, the 
superiority of the proposed method is reinforced.  

There are three reasons for the results. First of all, MTDA 
combines the ideas of information theory and texture analysis 
technique, which makes it not only able to reflect the detailed 
structure of the signal, but also reflect the changes of signal 
complexity. Furthermore, MTDA mines rich information 
based on vibration signals by constructing state transition 
patterns and state patterns. Second, MTDA has an excellent 
performance in detecting frequency and amplitude changes. 
Third, in contrast, MMPE and MMSDE have insufficient 
ability to reflect signal information. 

 
6.3.  Comparison of the proposed method with previous 
studies 

Table 2. gives some studies related to the fault diagnosis of 
rotating machinery, and our study is also attached to the last 
row. The highest classification accuracy found in each 
reference is recorded in the table. All methods are also tested 
on our hydraulic pump data to show fair comparison results. 
Four classifiers, Random Forest (RF), K nearest neighbor 
(Knn), NaiveBayes, and SVM are used.  

The proposed method achieves higher accuracy than most 
other methods in our dataset (100 %-97.67 %). Melih’s 
method also obtains high classification accuracy (100 %-
96.17 %). However, the feature set fed to the classifier has 
256 dimensions. The high-dimensional feature set may cause 
some trouble for subsequent operations such as feature 
selection and fusion, if necessary. By comparison, our feature 
set has only 5 dimensions. There are two reasons why the 
accuracy obtained by LBP is lower than that obtained by 1D-
TP. One is that each data sample contains only 4095 data 
points, which will generate a small-size image, and the other 
is that 1D-TP has a stronger anti-noise capacity. 

 
 
 

 
                                            (a)                                                                                                        (b) 

 
Fig.11.  Comparison results of three methods using experimental signals: a) classification accuracy; b) number of features corresponding 

to classification accuracy. 
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Table 1.  Degradation state identification of the three methods in the experiment. 
 
The proposed method MMPE-NSGA-II-SVM MMSDE-NSGA-II-SVM 
Max Min Mean Max Min Mean Max Min Mean 
1.000(4) 0.994(3) 0.998 0.994(7) 0.978(6) 0.987 0.989(7) 0.972(4) 0.981 

 
 

Table 2.  Comparison of the proposed method with previous studies about the rotating machinery fault. 
 

Author(s) Feature 
extraction 

method 

Model Dataset Accuracy(%) 

RF Knn Naive
Bayes 

SVM 

Kaplan 
Kaplan et 
al. [26] 

Local Binary 
Pattern (LBPAll) 

Signal2Image+
LBPAll+Classifi
er 

Experimental setup of 
authors. 

100 100 100 ____ 

Our experimental 
hydraulic pump data. 

93.1 90.33 95 98 

Melih 
Kuncan et 
al. [22] 

One 
Dimensional 
Ternary Pattern 
(1D-TP) 

Signal+1D-
TP+Classifier 

Experimental setup of 
authors. 

100 100 ____ 100 

Our experimental 
hydraulic pump data. 

98.8 96.17 98.67 100 

Yongbo Li 
et al. [20] 

Modified 
Multi-scale 
Symbolic 
Dynamic 
Entropy 
(MMSDE) 

Signal+MMSD
E+Minimum 
Redundancy 
Maximum 
Relevance 
(mRMR) for 
feature 
selection+Classi
fier 

The experimental 
planetary gearbox data of 
Shandong University. 

___ ____ ____ 99.75 

Our experimental 
hydraulic pump data. 

97 98 98.67 97.67 

Jinde 
Zheng et 
al. [40] 

Multi-scale 
Permutation 
Entropy (MPE) 

Signal+MPE+L
aplacian Score 
for feature 
selection+Classi
fer 

Case Western Reserve 
University Bearing Fault 
Database. 

____ ____ ____ 100 

Our experimental 
hydraulic pump data. 

92.3 86.67 89.67 96.67 

Bing Han 
et al. [41] 

Hierarchical 
Lempel-Ziv 
Complexity 
(HLZC) 

Signal+HLZC+
Classifier 

Experimental setup of 
authors. 

___ ____ ____ 94.72 

Our experimental 
hydraulic pump data. 

87.6 88.67 82.33 92.3 

Zhenya 
Wang et al. 
[42] 

Generalized 
Refined 
Composite 
Multi-scale 
Sample Entropy 
(GRCMSE) 

Signal+GRCMS
E+Supervised 
Isometric 
Mapping(S-
Isomap)+classifi
er 

Experimental setup of 
authors. 

___ ___ ___ 99.72 

Our experimental 
hydraulic pump data. 

98.63 96.06 97.96 99.78 

Authors of 
this paper 

Multi-scale 
Ternary 
Dynamic 
Analysis 
(MTDA) 

Signal+MTDA+
NSGA-II-SVM 

Experimental setup of 
authors. 

97.76 97.67 98.33 100 

 
7.  SUMMARY 

This paper proposes a novel method for identifying the 
degradation states of hydraulic pumps, which uses MTDA to 
extract features and uses NSGA-II and SVM to conduct 
feature selection and pattern recognition.  

This  paper  has two  main  contributions.  On the one hand, 

our proposed MTDA inherits the advantages of some 
previous studies such as 1D-TP and SDE, which makes it 
more capable of describing the dynamic characteristics and 
complexity of non-stationary signals. Specifically, MTDA 
conducts ternary pattern conversion independently on the 
local segments of each signal sample, which is similar to 1D-
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TP. Then SE and SDE are calculated to estimate the 
dynamical changes and complexity of each signal sample. 
The proposed multi-scale analysis enables MTDA to provide 
a more precise estimation of entropy. The effectiveness of 
MTDA and its superiorities in degradation feature extraction 
are fully validated using simulated and experimental data.  

On the other hand, a novel degradation state identification 
scheme for hydraulic pumps based on MTDA, NSGA-II and 
SVM is proposed. After the feature extraction process, 
NSGA-II-SVM is introduced to realize the joint optimization 
of feature selection and pattern recognition. Due to the fast 
calculation, good convergence and excellent multi- objective 
optimization ability of NSGA-II, as well as the good 
classification performance of SVM, NSGA-II-SVM can find 
the desired feature subset and conduct high-precision pattern 
recognition. The superiorities of the proposed scheme in this 
paper are verified in Section 6. Compared with some previous 
studies related to the fault diagnosis of rotating machinery, it 
can obtain higher classification accuracy and lower feature 
set dimension. 

However, our proposed method has a disadvantage: MTDA 
extracts some features that contain redundant information. 
For a given signal sample, four features, SE and STE of up 
pattern and low pattern, are acquired. From the theoretical 
perspective, there is a strong correlation between the up 
pattern and the low pattern. Although we alleviate this 
disadvantage through feature selection, there are other better 
methods worth exploring. 

In our future work, we plan to address this disadvantage in 
two ways. One is to learn from more advanced texture 
descriptors to avoid deriving two patterns from the same 
signal, and the other is to study an effective algorithm to fuse 
the extracted features. 
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