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The method presented in the paper is based on in-the-loop computing applied for impulse response to obtain a spectrum with a much higher 
frequency resolution than using FFT. Then, higher spectrum frequency resolution results in greater accuracy in estimation of natural 
frequencies. The frequency resolution of estimated spectrum in this method is completely independent of the length of impulse response 
and, by extension, the method eliminates the problem of spectral resolution limitation using FFT due to finite length of recorded signals. 
This fact is very useful and is the main advantage of the proposed method. The results of the method have been shown and compared in 
quantitative terms to natural frequencies estimated using classical FFT with zero-padding as reference method.  
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1.  INTRODUCTION 

In many technical applications it is very useful to measure 
vibration signals. These signals provide important 
information as the basis for damage detection of a single 
object or whole systems. Vibration-based damage detection 
techniques use many parameters obtained by signal 
processing methods [1], [2]. Some of these parameters can 
only be obtained when the machine is in motion. A good 
example is the use of vibration signals for diagnostic 
techniques of electrical motors described in [3]. The authors 
proposed a method of feature extraction for obtaining feature 
vectors. Then, the detection of deterioration of three-phase 
induction motor using vibration signals was possible to apply 
in practice. We have a significant example here that the 
deterioration of an object's state is successfully detected 
during its operation.  

The situation is completely different when vibration signals 
are measured when the examined object is a single 
component of the machinery, disassembled and tested during 
the scheduled machine shutdown. In this case, we can use 
impulse tests. Having the impulse responses, we are able to 
estimate natural frequencies as fault-oriented parameters. The 
correctness of the damage detection depends on the accuracy 
of natural frequency measurement.  

Natural frequency is one of the fundamental parameters in 
measurement of physical quantities of solids or systems. In 
addition, this indicator has its wide range of applications in 
the methods of damage detection in structures. Natural 
frequencies are sensitive to many kinds of damage and they 

are the most often used damage indicator both formerly and 
nowadays [4]-[8].  

Vibration-based methods for natural frequency estimation 
have been widely studied, as they are non-destructive, 
inexpensive and convenient. Natural frequencies are 
estimated fast and in an easy way using only a single sensor 
trough impulse tests. Mode shapes require measurements at 
numerous locations so they need more time. Damping ratios 
are difficult to measure and sensitive to environmental factors 
such as variations in humidity and temperature [9]. Beside 
absolute values of natural frequencies, changes in natural 
frequencies may be also called the classical damage 
indicators. Changes in natural frequencies for detection of 
fatigue cracks have been often proposed, applied to many 
engineering structures [10], [11]. In addition, relative natural 
frequency changes are used in single and multiple damage 
detection [7]. The reduction in natural frequencies is an 
important information to detect cracks in structures. 
Therefore, an ability for accurate natural frequency 
estimation is very important in the field of fault diagnostics. 
Structural damage detection based on changes of natural 
frequencies has proved that both the changes in Hz and 
relative changes can be unnoticeable if frequency resolution 
of the spectrum is insufficient.  

Differences in natural frequencies due to damage like 
cracks are at the level of several tenths of Hz or even at the 
level of several hundredths of Hz [7], [11]. Therefore, lots of 
algorithms have been proposed to provide accurate natural 
frequency estimation by improving frequency resolution of 
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the spectra. Many interpolated FFT methods were proposed 
to obtain the accurate estimation [12]-[15] as well as 
Adaptive Notch Filter (ANF) [16]. The importance of 
accuracy in the process of measurements of the natural 
frequencies is presented in [17]. The precise natural 
frequency estimation algorithm was presented using the 
vibrational response of structure excited to cross through the 
resonance. Natural frequency estimates were achieved using 
swept-sine excitation.  

In the case of spectral analysis based on FFT it is common 
knowledge that the frequency resolution ∆fFFT is absolutely 
dependent on the length of the signal under analysis. Here, an 
error of natural frequency estimation is in the range ±∆fFFT/2. 
Using the method proposed in the paper, the frequency 
resolution of the spectrum is completely independent of the 
signal length. Therefore, the frequency resolution and, hence, 
the accuracy of the natural frequency measurement can be 
significantly increased over the FFT.  

 
2.  METHODOLOGY 

The method proposed in this Section is based on the 
multiplication of autocorrelation function of impulse 
response with harmonic wave. Using the proposed method it 
is possible to transform impulse response into its spectrum by 
arbitrary and freely adjustable frequency resolution. If 
frequency resolution for the spectra obtained using fast 
Fourier transform (FFT) is declared as ∆fFFT=fs/N, the new 
spectral resolution Δfscr of the spectra obtained through the 
proposed method is independent of signal length N and 
sampling frequency fs. The idea of the method consists of a 
loop as shown in the form of diagram in Fig.1. The algorithm 
presented here computes the values of lines of the discrete 
spectrum S(fi) against frequency fi with a step depending on 
the predetermined frequency resolution Δfscr.  

At the very beginning, the method reads the recorded 
impulse response. Then, in the second step, the spectral 
resolution value Δfscr is read. The resolution Δfscr is user 
definable and can be integer or non-integer. The in-the-loop 
computation results in the spectrum of the impulse response 
at this frequency resolution. However, the spectral resolution 
Δfscr may change during the operation of the proposed 
algorithm if needed. Therefore, the spectrum of impulse 
response can be computed by required frequency resolution 
only around the natural frequencies preliminary detected 
using FFT, e.g. one-tenth of ∆fFFT, one-hundredth of ∆fFFT. 
Thus, the accuracy of natural frequency measurement can be 
significantly improved and the amount of computation can be 
reduced.  

Another preliminary operation of the algorithm is 
determining the auto-correlation function (ACF) of the 
impulse response. The ACF is defined as follows [18], [19] 
 

( ) ( ) ( )
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τ τ
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= +∫              (1) 

 
where x(t) represents impulse response and τ is delay time. 
The use of the ACF here will allow better observation of the 

dominant harmonic components existing in the impulse 
response.  

After starting the algorithm in the loop, the cosine wave x(fi) 
is declared for discrete time vector tk (tk=k⋅∆t, ∆t=1/fs, 
k=0,1,2,..,N-1). This wave is obtained as follows 
 

( ) ( )cos 2 ( )i scr kx f i f tπ= ⋅∆ ⋅                   (2) 

 

 
 

Fig.1.  Diagram of the method for computing the spectrum with 
predefined frequency resolution.  

 
In numerical calculations the length of data representing the 

autocorrelation function and cosine wave length should be 
equal. Therefore, subsequent calculations only take into 
account the ACF for positive time delay τ as follows 

 

( ) ( )0IR IRR Rτ τ τ+ = >                          (3) 
 

The next calculations are executed in the loop for 
incrementing frequency of cosine wave until it reaches the 
upper limit of frequency range of the spectrum. This way, the 
frequency step constitutes frequency resolution of calculated 
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spectrum and the method has resulted in the spectrum with 
own frequency resolution completely independent of impulse 
response length N.  

The algorithm denotes values of multiplication of ACF and 
x signal and it results in the M(fi) values. Next, spectrum S(fi) 
is obtained by summation of the M(fi) values and the sum 
obtained here is multiplied by sampling period Δt, where 
samples of input data vectors are numbered by n=1..N. 
Frequencies fi are growing linearly as the index i increases 
from i=0 to i=(fs/2)/Δfscr, where Δfscr means frequency 
resolution of the spectrum. Thus, the frequency fi is in the 
range from zero to the half of sampling frequency to fill up 
useful frequency range due to the Kotelnikov-Shannon 
theorem, up to the Nyquist frequency fNyq=fs/2.  

In general, the proposed method of spectrum calculation is 
based only on the autocorrelation function of analyzed 
impulse response and calculation of cosine wave to do simple 
mathematical functions. 
 
3.  NUMERICAL STUDIES 

This chapter conducts a numerical experiment to apply the 
method described in Section 2. For this purpose, the impulse 
responses (IRs) of three degree-of-freedom (3-dof) system 
were analyzed. To illustrate the accuracy improvement of 
frequency determination trough spectral resolution 
improvement, a set of impulse responses of 3-dof system was 
generated. The natural frequencies have been estimated using 
in-the-loop method and classical FFT. It was made by finding 
the local maximum in the obtained spectrum. 

The unit impulse response function of a multi degree-of-
freedom system can be expressed as [20] 
 

( )
1

( ) sin 2r
n

t
r dr

r
h t A e f tδ π−

=

= ⋅ ⋅∑              (4) 

 
where Ar, δr, and fdr are the r-th modal constant, the r-th modal 
damping, and r-th damped natural frequency of the system, 
respectively.  

To model impulse responses with randomized natural 
frequencies in this study, three ranges of natural frequency 
changes of 3-dof system were proposed. Thus, the generated 
impulse responses consist of harmonics with fd1, fd2, and fd3 
frequencies in (3-5) kHz, (12-15) kHz, and (18-20) kHz 
ranges, respectively. Exemplary synthesized impulse 
response is shown in Fig.2. and its spectra are shown in Fig.3.  

 

 
 

Fig.2.  Impulse response for numerical studies. 

 

 
 

Fig.3.  Spectra of impulse response of 3-dof system: spectrum 
obtained using FFT (at the top); spectrum obtained using in-the-loop 
computing (at the bottom).  

 
Then, a thousand impulse responses were synthesized by 

sampling frequency fs=65536 Hz as often used in measuring 
tasks when signals of vibration or sound are acquired and 
analyzed. The length of IRs was fixed to N=2048 samples in 
length which allowed all possible impulse responses to be 
completely decaying.  

When spectrum is obtained using FFT, the frequency 
resolution ∆fFFT is equal to the quotient fs/N [19]. In this case, 
theoretical frequency error in natural frequency estimation is 
in the range ±∆fFFT/2. Considering sampling frequency and 
length of IR mentioned above, frequency resolution using 
FFT equals 32 Hz and errors of natural frequency estimation 
are in the range ±16 Hz. After using FFT in practice, the same 
range of errors has been obtained as shown in Fig.4. The 
frequency error was calculated here as the difference between 
the estimated natural frequency on the base of estimated 
spectrum and the value already known before the 
determination of the spectrum as randomized value of 
damped natural frequency fdr in (4).  

Using in-the-loop technique, frequency resolution Δfscr is 
not related to impulse response length at all. The frequency 
resolution can be arbitrary given. For the purposes of this 
numerical study it can be fixed to 0.1 Hz. Frequency errors 
after comparing known value of natural frequency to 
frequency estimated using in-the-loop computing are 
presented in Fig.5. As we can see here, the natural frequency 
estimation errors are much below the range when using FFT. 
In practice, further increasing the frequency resolution results 
in a further reduction in the spread of errors in the estimation 
of natural frequencies.  

The numerical study results also show that the error in 
frequency estimation using in-the-loop computing does not 
always have a sign in both directions. It can be either only 
positive or only negative.  
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Fig.4.  Errors in natural frequency estimation using FFT:  
a) estimating fd1, b) estimating fd2, c) estimating fd3. 

 

 
 

Fig.5.  Errors in natural frequency estimation using in-the-loop 
computing: a) estimating fd1, b) estimating fd2, c) estimating fd3.  

4.  RESULTS FOR REAL DATA  
In this testing, data from the measurement of acoustic 

impulse response of an axial compressor blade were taken 
into consideration. This impulse response was obtained by 
manually hitting the blade with an impact hammer in a point 
placed at the convex side of the blade body. The blade was 
rigidly mounted in the suitably profiled jaws of a vice. 
General view of the test stand and experimental setup are 
shown in Fig.6. and Fig.7., respectively.  

 

 
 

Fig.6.  General view of the test stand. 

 

a)  
 

b)  
 

c)  
 

Fig.7.  Experimental setup: a) blade mounted using hydraulic press; 
b) M – microphone, B – blade body, P – point of impulse excitation; 
c) impact hammer used for impulse excitation.  

c) 
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The acoustical impulse response was measured with a free 
field microphone and 2048 samples in length were recorded 
at the sampling rate of 65536 Hz.  

The method verified for really measured IRs has revealed 
that phase shifting of harmonics makes the spectrum very 
illegible. This problem has been solved by using the 
autocorrelation function for IR’s time history. The 
autocorrelation function was obtained in normalized 
sequence to have at zero lag the value of 1.0. Then, it is 
natural to choose the cosine function (see Fig.1.) as sweeping 
operator for having the spectrum amplitudes.  

The acoustic impulse response has been recorded by 
sampling frequency equal to 65536 Hz and 2048 samples in 
length. Then, the frequency resolution for spectra resulting 
from FFT is 32 Hz, whereas spectral frequency resolution in 
in-the-loop computing can be freely determined, as already 
mentioned in Section 2. Spectral frequency resolution can be 
significantly below the resolution of 32 Hz, e.g. 0.1 Hz. Apart 
from the in-the-loop computing method, FFT with zero-
padding technique has been utilized to have reference point 
to which errors of frequency estimation are calculated.  

The acoustic impulse response of the blade is presented in 
Fig.8. Spectra obtained both using classical FFT and in-the-
loop computing are presented in Fig.9.  

 

 
 

Fig.8.  Acoustical impulse response of the blade. 

 

 
 

Fig.9.  Spectra of acoustic impulse response: obtained using FFT (at 
the top), obtained using in-the-loop computing (at the bottom).  

One dominant harmonic is observed. This is the case when 
the position of observed harmonic on the frequency scale 
depends on the type of a tip of the impact hammer and/or 
point of excitation is in different place of the impulse 
excitation of object under testing. The results of estimation of 
natural frequency of the blade are graphically represented in 
Fig.10. The differences in natural frequency estimation 
between results obtained using FFT with zero-padding (as 
reference technique) and in-the-loop method are in the range 
from 0 to 0.5 Hz. 

 

 
 

Fig.10.  Estimated natural frequency using FFT with zero-padding 
technique (red) and in-the-loop computing (green).  

 
The determined value of the natural frequency is obviously 

one of the many natural frequencies of the considered blade. 
In the given example, the dominant form of blade response is 
in the frequency range up to several kHz. It is known that 
other methods of blade excitation (as well as other materials 
of the tip of the impact hammer) make it possible to observe 
the values of natural frequencies in many other ranges. 
However, different approaches to obtain impulse responses, 
including acoustic ones, do not change the assumptions and 
basics of the presented method for improving the accuracy of 
natural frequency measurement.  

 
7.  CONCLUSIONS 

The method presented in the paper creates new possibilities 
for improving the accuracy of natural frequency measurement 
when impulse tests are performed and using the classical FFT 
in signal analysis. These assumptions were tested in a 
numerical simulation and experimentally on the example of a 
rotor machine blade. It was made possible by the 
enhancement of frequency resolution of the impulse response 
spectrum with in-the-loop computing. It has been proved that 
the proposed method allows to obtain the spectrum with 
arbitrarily increased frequency resolution regardless of the 
length of the analyzed impulse response, which is not allowed 
by the FFT algorithm. In practice, natural frequencies can be 
more precisely identified.  

The presented method can be very useful in cases where 
frequency resolution using pure FFT is insufficient due to the 
accuracy of natural frequency estimation. The method of in-
the-loop computing allows then to reduce maximum possible 

0 0.005 0.01 0.015 0.02 0.025 0.03
Time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

A
m

pl
itu

de
 (P

a)

0 5000 10000 15000 20000

Frequency (Hz)

0

0.5

1

N
or

m
al

iz
ed

 a
m

pl
itu

de

0 5000 10000 15000 20000

Frequency (Hz)

0

0.5

1



 
 
 

MEASUREMENT SCIENCE REVIEW, 21, (2021), No. 4, 93-98 
 

98 

error in natural frequency measurements many times in 
relation to FFT. In addition, the proposed method is based 
only on the original length of the impulse response without 
artificial lengthening required when using FFT with zero-
padding technique.  
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