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The performance of feature is essential to the degradation state identification for hydraulic pumps. The initial feature set extracted from the 
vibration signal of the hydraulic pump is often high-dimensional and contains redundant information, which undermines the effectiveness 
of the feature set. The novel three-stage feature fusion scheme proposed in this paper aims to enhance the performance of the original features 
extracted from the vibration signal. First, sparse local Fisher discriminant analysis (SLFDA) performs intra-set fusion within the two original 
feature sets, respectively. SLFDA has a good effect on samples with intra-class multimodality, and the feature set fused by it has obvious 
multivariate normal distribution characteristics, which is conducive to the next fusion. Second, our modified intra-class correlation analysis 
(MICA) is used to fuse two feature sets in the second stage. MICA is a CCA (Canonical correlation analysis) -based method. A new class 
matrix is used to modify the covariance matrix between two feature sets, which allows MICA to conveniently inherit the discriminating 
structure while fusing features. Finally, we propose a feature selection algorithm based on kernel local Fisher discriminant analysis (KLFDA) 
and kernel canonical correlation analysis (KCCA) to select the desired features. This algorithm based on Max-Relevance and Min-
Redundancy (mRMR) framework solves the problem that CCA cannot properly evaluate the correlation between features and the class 
variable, as well as accurately evaluates the correlation among features. Based on the experimental data, the proposed method is compared 
with several popular methods, and the feature fusion methods used in some previous studies related to the fault diagnosis of rotating 
machinery are compared with it as well. The results show that the fusion effectiveness of our method is better than other methods, which 
obtains higher recognition accuracy. 
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1.  INTRODUCTION 

Hydraulic pump is one of the important components of a 
hydraulic system, which directly influences the entire 
system's security and reliability [1]. Safety accidents or even 
economic losses are likely to be caused by the failure of a 
hydraulic pump. Consequently, monitoring the performance 
degradation process of hydraulic pumps is essential for 
assuring the system's safe operation [2].  

Nowadays, increasing attention has been paid to equipment 
condition monitoring with vibration analysis methods. The 
vibration signal obtained from the acceleration sensor is 
widely used in condition monitoring for hydraulic pumps due 
to its fast reactivity, and it has obvious non-stationarity and 
nonlinearity as the degree of degradation increases [3]. The 
interactions among the internal friction pairs are transmitted 
to the pump case in the form of vibration. Vibration-based 
analysis generally consists of four steps: data collection and 
analysis, feature extraction, model establishment and 
training,  and pattern  recognition [4].  Feature extraction is a 

crucial step directly related to the accuracy and timeliness of 
degradation state identification, which has attracted the 
attention of many researchers for many years. Yonggang Xu 
et al. [5] proposed empirical scanning spectrum kurtosis for 
extracting the fault features of rolling element bearing. 
Hongru Li et al. [6] applied bispectral entropy to the fault 
diagnosis of hydraulic pump. A team composed of Yılmaz 
Kaya, Samet Bayram, Melih Kuncan, Kaplan Kaplan et al. 
has been committed to the fault diagnosis of bearing for many 
years, and has proposed many interesting feature extraction 
algorithms [7]-[11]. To meet the actual needs, equipment 
fault information often requires multiple or even high-
dimensional features to be fully expressed. Some of the 
methods mentioned above do cause high-dimensional feature 
sets. Nevertheless, a high-dimensional feature set generally 
inclues redundant information, which will weaken the 
effectiveness of fault diagnosis or degradation state 
identification [12], as well as cause a more time-consuming 
phenomenon. Thus, dimensionality reduction, redundant 
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information elimination, and fault information enhancement 
are just the tasks that need to be handled properly.  

Degradation state identification for hydraulic pumps 
belongs to the field of pattern recognition. It is well known 
that information fusion is effective for improving recognition 
reliability and accuracy. Applications of information fusion 
can be found in many fields, such as image analysis, odour 
classification, fault diagnosis, and military decision-making. 
Information fusion can be classified into three levels: signal 
level, feature level, and decision level [13]. As a feature 
extraction step, feature fusion can obtain more 
comprehensive and polished information than signal level 
fusion. It utilizes the correlation of features at an early stage, 
and learning is performed once on the fused features [14]. 
Yongbing Liu et al. [15] used the kernel trick to map the 
original feature space into a high-dimensional space, and then 
applied joint approximate diagonalization of eigen-matrices 
to fuse the features in the new space. Hanshu Cai et al. [16] 
used a linear combination method to fuse 
electroencephalogram features of different modalities, and 
the genetic algorithm was used to conduct feature weighting. 
In Ye Tian’s paper about fault diagnosis for machinery 
components [17], t-distributed stochastic neighbor 
embedding (t-SNE) was employed for feature fusion, which 
can enhance the separability information of features. The 
content described above shows that feature fusion has quite a 
beneficial effect on dimensionality reduction, redundant 
information elimination and fault information enhancement. 

However, the fault data of hydraulic pump always shows 
non-Gaussian and non-linear characteristics, and its sample 
distribution often hides manifold structures. It seems 
probable, then, that the traditional linear fusion methods or 
some methods which cannot comprehensively take the local 
and global information of data into consideration do not 
work. As an important way to deal with nonlinear problems, 
the localization method reveals the low-dimensional 
manifold structure hidden in the data, so it has a remarkable 
application in feature fusion. Locally linear embedding (LLE) 
proposed by Roweis [18] assumes that any data point in the 
high-dimensional space can be reconstructed by local 
neighbors, and this reconstruction relationship remains 
unchanged in the low-dimensional space. Locality preserving 
projections (LPP) proposed by He et al. [19] keep the local 
relationships among the samples unchanged before and after 
fusion. Local Fisher discriminant analysis (LFDA) proposed 
by Masashi Sugiyama [20] effectively combines the ideas of 
LPP and Fisher discriminant analysis (FDA), which was first 
used for facial expression recognition. LFDA was also 
extended to kernel local Fisher discriminant analysis 
(KLFDA) by applying the kernel trick in his paper. LFDA is 
very suitable for samples with within-class multimodality. 
SLFDA proposed by Zhan Wang et al. [21] is developed 
based on LFDA, and it has a stronger ability to obtain 
discriminative information from feature sets. 

Before feature fusion, multiple original feature sets may be 
extracted from the vibration signals of hydraulic pump, and 
the correlation among them needs to be considered. 
Canonical correlation analysis (CCA) [22] is a multivariate 
statistical method to study the correlation between two sets of 

variables. It achieves the purpose of understanding the 
correlation between two groups of variables by studying the 
correlation between linear combinations of variables. In 
recent years, many variants of CCA have been proposed one 
after another, such as constrained CCA, nonlinear CCA, 
multiset CCA, and supervised local CCA [23]. In traditional 
CCA-based feature fusion, linear discriminant analysis 
(LDA) [24], principal component analysis (PCA) [25] are 
usually used in advance to reduce the dimensionality of each 
feature set, so as to assure the invertibility and non-singularity 
of the covariance matrix. Xiaoquan Ke et al. [26] integrated 
Fisher discriminant matrix, PCA and CCA in their feature 
fusion scheme, and the experimental results showed that it 
achieved good results in ship recognition. The premise of 
CCA is that the data follows a Gaussian distribution. In 
practice, non-Gaussian data may inhibit the effect of CCA. 
Zhiwen Chen et al. [27] proposed a generalized CCA-based 
fault detection approach with the randomized algorithm, 
which can monitor the non-Gaussian process. Kernel trick 
was also employed to study the non-linear correlation 
between feature sets, and kernel canonical correlation 
analysis (KCCA) was proposed [28]. To utilize class 
information, some variants of CCA with supervised 
properties have been proposed. Multiview supervised CCA 
(MSCCA) [29] considers the class information from 
between-view and within-view. Zuobin Wu et al. [30] 
proposed a feature fusion method that eliminates redundancy 
through intra-class and extra-class discriminative correlation 
analysis (IEDCA-IRE), which is an extended method based 
on CCA. To inherit the discriminative information of the 
feature sets, a class matrix is introduced into the CCA-based 
method. Feature selection based on Max-Relevance and Min-
Redundancy (mRMR) [31] is improved to eliminate the 
irrelevant redundancy.  

Although CCA has provided meaningful results in feature 
fusion, it still has some limitations. First, due to its 
unsupervised property, it cannot take the information 
provided by the class label into consideration. As mentioned 
above, some approaches have been proposed to solve this 
problem, but they may not be suitable for dealing with the 
degradation features of hydraulic pump. The non-stationarity 
of the vibration signal usually makes samples in a class 
multimodal. Consequently, when considering class 
information, we should investigate the structure of the within-
class and between-class locally. Second, CCA maximizes the 
correlation of each canonical variable pair, which makes a 
certain amount of redundancy exist between feature sets. 
Third, CCA runs on the assumption that the data follow a 
multivariate normal distribution (MND). When it is used to 
evaluate the correlation between feature sets and class labels 
in a classification problem, inaccurate results may be 
obtained because the labels do not follow the normal 
distribution. In addition, for data that significantly does not 
follow the MND, CCA cannot obtain a good fusion result. 
Focusing on these issues, we propose a three-stage fusion 
methodology for the degradation features of hydraulic 
pumps. In the first stage, for two given feature sets, SLFDA 
is employed to fuse the features in each set. In this study, the 
data fused by SLFDA has significant MND characteristics. 
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The intra-class correlation analysis (ICA) proposed in [32] 
is modified to fuse the two feature sets in the second stage. 
Modified intra-class correlation analysis (MICA), a method 
based on CCA, can also inherit the class structure that 
contains rich discriminative information after the first stage 
of fusion. In the third stage, a feature selection algorithm 
based on KLFDA and KCCA (mRMR-KCLFDA) is 
proposed to remove redundant features. We use KLFDA to 
evaluate the relevance between the class variable and feature 
candidates, while KCCA evaluates the correlation between 
the selected features and the feature candidate.  

The following contents are also presented: LFDA, CCA, 
etc. related to this study are briefly reviewed in Section 2. In 
Section 3, we elaborate on the theoretical basis and 
procedures of the proposed three-stage fusion. In Section 4, 
three experimental cases are conducted to illustrate the 
superiority and availability of the proposed approach. The last 
section summarizes the full paper and gives several 
conclusions. 
 
2.  THEORETICAL BACKGROUND 
2.1.  FDA and its improved versions 

This subsection reviews existing FDA, LFDA, SLFDA and 
KLFDA theories related to this study. The basic idea of FDA 
is to project k classes of p dimensional data into certain 
directions so that the between-class data can be separated as 
much as possible after projection. Given a data matrix 𝑋𝑋 ∈
 𝑅𝑅𝑛𝑛×𝑝𝑝  with n samples and p features, the sum of squares 
vector within classes 𝐒𝐒𝐄𝐄  and the sum of squares vector 
between classes 𝐒𝐒𝐆𝐆 are defined as follows: 

 
T=ES U AU                                  (1) 

 
T

GS = U BU                                  (2) 
 

where U is the projection matrix, A and B represent the within-
class scatter matrix and between-class scatter matrix, 
respectively, which can be calculated by the following two 
equations: 
 

( ) ( )( ) ( )

1 1
( )( )

i i ii i T
j j

i j

k n
X X X X

= =

= − −∑∑A                 (3) 

 
( ) ( )

1
( )( )

i i T
i

k

i
n X X X X

=

= − −∑B                       (4) 

 
where k, 𝑋𝑋�(𝑖𝑖),𝑛𝑛𝑖𝑖,  𝑋𝑋� and  𝑋𝑋𝑗𝑗

(𝑖𝑖) are the number of classes, mean 
of the 𝑖𝑖 −th class, number of the 𝑖𝑖 −th class, mean of all the n 
samples, and the 𝑗𝑗 −th sample of the 𝑖𝑖 −th class, respectively. 
If the differences among the means of the k classes samples are 
significant, the ∆(𝐮𝐮) value calculated by the following equation 
should be sufficiently great. 
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FDA seeks the projection matrix 𝐔𝐔𝐨𝐨𝐨𝐨𝐨𝐨  that meets the 
following criterion: 
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After the Lagrange multiplier method is employed, the 

following equation can be obtained: 
 

(𝐴𝐴−1𝐵𝐵)𝑢𝑢𝑓𝑓  =  ∆(𝑢𝑢)𝑓𝑓𝑢𝑢𝑓𝑓                         (7) 
 

where ∆(𝐮𝐮) =  [∆(𝑢𝑢)1,∆(𝑢𝑢)2, . . . ,∆(𝑢𝑢)𝑒𝑒] consists of the first 
e largest eigenvalues of 𝐴𝐴−1𝐵𝐵 , and 𝐔𝐔 =  [𝑢𝑢1,𝑢𝑢2, . . . ,𝑢𝑢𝑒𝑒] 
consists of the corresponding eigenvectors. 

LFDA is developed by combining the ideas of LPP and FDA. 
In LFDA, the local between-class scatter matrix 𝐁𝐁�  and local 
within-class scatter matrix 𝐀𝐀� are defined as follows [20]: 
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where the superscripts 𝑐𝑐𝑐𝑐 and cm represent the class labels of 
samples 𝑥𝑥𝑔𝑔 and 𝑥𝑥𝑚𝑚, respectively, and 
 

,
,

(1 / -1/ )    ˆ  
1 /                      

g m ib
g m

P n n if cg cm i
W

n otherwise
= =

= 


          (10) 

 

,
,

/         ˆ   
0            

a g m i
g m

P if cg cm i
W

otherwise
n = =

= 


             (11) 

 
the closeness between 𝑥𝑥𝑔𝑔  and 𝑥𝑥𝑚𝑚  is quantified by the affinity 
value 𝑃𝑃𝑔𝑔,𝑚𝑚, which is defined as: 
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where gη is the local scaling of 𝑥𝑥𝑔𝑔, and mη  is the local scaling 
of 𝑥𝑥𝑚𝑚. 

LFDA seeks the projection matrix 𝐔𝐔�𝐨𝐨𝐨𝐨𝐨𝐨  that meets the 
following criterion: 
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SLFDA is developed based on LFDA, which removes the null 

space of the local mixture scatter matrix of LFDA that has no 
discriminative information. The local mixture scatter matrix 
𝐌𝐌𝐥𝐥𝐥𝐥 is defined as: 



 
 
 

MEASUREMENT SCIENCE REVIEW, 21, (2021), No. 5, 123-135 
 

126 

,
, 1

1 ˆ ( )( )
2

n
cg cm cg cmls T

g m g m g m
g m

W x x x x
=

= − −∑lsM       (16) 

where  
,

,

/              if   
 

1 /                      otherw
ˆ

ise
g mls

g m

P n cg cm
W

n
=

= 


            (17) 

 
Suppose that the eigenvalue decomposition is applied to 𝐌𝐌𝐥𝐥𝐥𝐥 

as follows: 
 

-1
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A matrix 𝐕𝐕𝐨𝐨𝐨𝐨𝐨𝐨 is defined in advance as: 
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where 𝐁𝐁� = 𝐃𝐃𝐓𝐓𝐁𝐁�𝐃𝐃 and 𝐀𝐀� = 𝐃𝐃𝐓𝐓𝐀𝐀�𝐃𝐃. 

SLFDA seeks the projection matrix 𝐔𝐔�𝐨𝐨𝐨𝐨𝐨𝐨  that meets the 
following criterion: 
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The linearized Bregman iteration [33] is extended to solve 

problem (20), and the iteration process is expressed as: 
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For other unfinished details, please refer to [21]. 
LFDA can be extended to a non-linear variant KLFDA 

through the kernel trick. Similar to the form of equation (7), the 
solution of the following generalized eigenvalue problem is 
considered in the process of KLFDA [20]: 
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In equation (23), 𝑟𝑟 is a regularization parameter with a small 
value. 𝐊𝐊  is the kernel matrix. 𝐈𝐈𝐧𝐧  is an identity matrix. In 
particular, the (𝑐𝑐,𝑚𝑚)-th element of the Gaussian kernel matrix 
used in this paper is given as: 
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Where 𝐃𝐃�𝐚𝐚  and 𝐃𝐃�𝐥𝐥𝐥𝐥  are two diagonal matrices, and their 

diagonal elements are given as follows: 
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It is noted that FDA reduces the dimensionality of the feature 

set to 𝑘𝑘 − 1 at most, where 𝑘𝑘 is the number of classes, while 
LFDA, SLFDA and KLFDA have not this limitation. 

 
2.2.  CCA and KCCA 

Suppose a data matrix 𝐙𝐙 with 𝑛𝑛 samples and (𝑝𝑝 + 𝑞𝑞) features 
has the following form: 
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where each sample can be expressed as: 
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Problem (29) can be transformed into solving the orthonormal 
eigenvectors of the following two matrices 𝐌𝐌𝟏𝟏 and 𝐌𝐌𝟐𝟐: 
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𝐖𝐖𝐱𝐱𝐨𝐨𝐨𝐨𝐨𝐨 =  [𝑤𝑤𝑥𝑥1,𝑤𝑤𝑥𝑥2 , … ,𝑤𝑤𝑥𝑥𝑒𝑒]  and 𝐖𝐖𝐲𝐲𝐨𝐨𝐨𝐨𝐨𝐨 =
 [𝑤𝑤𝑦𝑦1,𝑤𝑤𝑦𝑦2, … ,𝑤𝑤𝑦𝑦𝑒𝑒]  consist of the orthonormal eigenvectors 
corresponding to the first e largest eigenvalues of 𝐌𝐌𝟏𝟏 and 𝐌𝐌𝟐𝟐, 
respectively.  

KCCA is a non-linear extension of CCA, which seeks 
canonical variable pairs by maximizing the following 
correlation coefficients: 

 
𝜌𝜌KCCA

=
𝐖𝐖�𝐱𝐱𝑻𝑻𝐊𝐊𝐗𝐗𝐊𝐊𝐘𝐘𝐖𝐖�𝐲𝐲

�(𝐖𝐖�𝐱𝐱𝑻𝑻𝐊𝐊𝐗𝐗𝐊𝐊𝐗𝐗𝐖𝐖�𝐱𝐱 + 𝜒𝜒𝐖𝐖�𝐱𝐱𝑻𝑻𝐊𝐊𝐗𝐗𝐖𝐖�𝐱𝐱)(𝐖𝐖�𝐲𝐲𝑻𝑻𝐊𝐊𝐘𝐘𝐊𝐊𝐘𝐘𝐖𝐖�𝐲𝐲 + 𝜒𝜒𝐖𝐖�𝐲𝐲𝑻𝑻𝐊𝐊𝐘𝐘𝐖𝐖�𝐲𝐲)
 

(32) 
 

where 𝐊𝐊𝐗𝐗  and 𝐊𝐊𝐘𝐘  are the centralized kernel matrices. The 
centralized Gaussian kernel matrices are employed in this study. 
They are obtained by centering the matrices obtained according 
to equation (24), and χ is a regularization parameter. For other 
unfinished details about KCCA, please refer to [28]. 
 
3.  PROPOSED METHOD 
3.1.  Modified intra-class correlation analysis (MICA) 

In the paper [32], to take advantage of intra-class correlation, 
a class matrix was introduced into ICA. Multiplying the data 
matrix and the class matrix together is equivalent to summing 
the intra-class samples. In this paper, a new class matrix 𝐋𝐋𝐜𝐜 ∈
𝑅𝑅𝑛𝑛×𝑘𝑘 is introduced (𝑛𝑛 and 𝑘𝑘 are the sample size and the number 
of the classes, respectively). Each sample corresponds to each 
row of 𝐋𝐋𝐜𝐜. For instance, if there are three classes (marked as 
𝑐𝑐1, 𝑐𝑐2, 𝑎𝑎𝑛𝑛𝑎𝑎 𝑐𝑐3) and the number of intra-class samples is 10, 20, 
and 30, respectively, [1/10, 0, 0], [0, 1/20, 0], [0, 0, 1/30] denote 
𝑐𝑐1, 𝑐𝑐2, 𝑎𝑎𝑛𝑛𝑎𝑎 𝑐𝑐3 , respectively. Given two data matrices 𝐗𝐗 ∈
 𝑅𝑅𝑛𝑛×𝑝𝑝  and 𝐘𝐘 ∈  𝑅𝑅𝑛𝑛×𝑞𝑞 (where 𝑞𝑞  and 𝑝𝑝  are the respective 
numbers of features), the covariance matrix 𝐒𝐒𝐋𝐋 between 𝐗𝐗 and 
𝐘𝐘 with class correlation is defined as: 

 

1 [( ][( ]
1

T T T

k
=

−L c cS HX) L HY) L                  (33) 

 

where 𝐇𝐇𝐗𝐗 and 𝐇𝐇𝐘𝐘 mean centering 𝐗𝐗 and 𝐘𝐘, respectively. An 
operation that calculates the mean values of the within-class 
samples is implicit in equation (33), which is more effective 
than the summing operation in ICA in terms of inheriting class 
structure. It is common to evaluate the relationship between 
classes with the mean values of the within-class samples, such 
as equation (4). 

MICA seeks the optimal 𝐖𝐖�𝐱𝐱𝐨𝐨𝐨𝐨𝐨𝐨  and 𝐖𝐖�𝐲𝐲𝐨𝐨𝐨𝐨𝐨𝐨  that meet the 
following criterion: 

 

ˆ ˆ
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        (34) 

where the definitions of 𝐒𝐒𝟏𝟏𝟏𝟏 and 𝐒𝐒𝟏𝟏𝟐𝟐 are shown in equation (30). 
Problem (34) can be transformed into solving the orthonormal 

eigenvectors of the following two matrices 𝐌𝐌𝟏𝟏�  and 𝐌𝐌𝟐𝟐� :  
 

ˆ

ˆ

T

T





-1 -1
1 11 L 22 L

-1 -1
2 22 L 11 L

M = S S S S

M = S S S S
                            (35) 

 
𝐖𝐖�𝐱𝐱𝐨𝐨𝐨𝐨𝐨𝐨 =  [𝑤𝑤�𝑥𝑥1,𝑤𝑤�𝑥𝑥2, . . . ,𝑤𝑤�𝑥𝑥𝑒𝑒]  and 𝐖𝐖�𝐲𝐲𝐨𝐨𝐨𝐨𝐨𝐨 =
 [𝑤𝑤�𝑦𝑦1,𝑤𝑤�𝑦𝑦2, . . . ,𝑤𝑤�𝑦𝑦𝑒𝑒]  consist of the orthonormal eigenvectors 
corresponding to the first e largest eigenvalues of 𝐌𝐌𝟏𝟏�  and 𝐌𝐌𝟐𝟐� , 
respectively. 
 
3.2.  Feature selection based on KLFDA and KCCA (mRMR-
KCLFDA) 
3.2.1.  Motivation 

As a popular feature selection algorithm, mRMR follows the 
criterion derived from the following parent criterion: 

 
max ( , ), ({ , 1, , }; )iD S c D I x i m c= = …               (36) 

 
where 𝑆𝑆 = {𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1, . . . ,𝑚𝑚}  denotes a feature set 𝑆𝑆  with 𝑚𝑚 
features, 𝐼𝐼  means calculating mutual information (MI), and c 
denotes the class variable. The purpose of mRMR is to find 𝐷𝐷 
that shares the largest mutual information with 𝑐𝑐. This scheme 
is also called Max-Dependency. To get the value of 𝐷𝐷, we need 
to estimate the multivariate density p( 𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚 , 𝑐𝑐 ) and 
p(𝑥𝑥1, . . . , 𝑥𝑥𝑚𝑚), which is often hard to achieve. Consequently, a 
criterion which is equivalent to the Max-Dependency, mRMR, 
is proposed, and it has the following form: 
 

1
1

1

1
max [ ( ; ) ( ; )]

j m
i m

j j ix X S x Sm
I x c I x x

−
−

∈ − ∈−
− ∑               (37) 

 
where 𝑆𝑆𝑚𝑚−1  is the existing feature subset, which consists of 
𝑚𝑚 − 1 features.  

MI uses an approximate strategy, i.e., the average or the sum, 
to evaluate the relationship between multidimensional variables 
and a variable [34]. As a result, it lacks consideration of 
complementarity between features [35]. In some papers, the 
measurements of CCA or KCCA were introduced into feature 
selection. Their roles are to measure the correlation between 
variables, so as to not only avoid estimating multivariate density 
but also take the complementarity between features into account. 
However, CCA contains an assumption that the data follows a 
multivariate Gaussian distribution, which makes it not suitable 
to evaluate the correlation between features and class variables 
when it faces a classification problem. In addition, we also 
consider that KLFDA and SLFDA have some similar 
operations, so do KCCA and MICA. Compared with other 
feature selection algorithms, the feature selection algorithm 
with similar operations is more suitable for the data after the 
fusion of SLFDA and MICA. Therefore, we propose a feature 
selection algorithm based on KLFDA and KCCA as shown in 
the following subsection.  
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3.2.2.  The feature selection algorithm proposed in this paper 
Inspired by equations (5)-(7), we can find that ∆(𝐮𝐮) =

 [∆(𝑢𝑢)1,∆(𝑢𝑢)2, . . . ,∆(𝑢𝑢)𝑒𝑒] reflects the discriminative ability of 
each feature in the reduced feature set 𝑋𝑋𝑈𝑈. We believe that this 
discriminative ability is a manifestation of the correlation 
between a feature and the class variable. So similarly, given a 
feature 𝑓𝑓𝑘𝑘 and a class variable 𝑐𝑐, equation (23) can be used to 
solve the correlation between them as follows: 

 
1 2( ; ) ( , , )KLFDA k nf c sumρ λ λ λ=                  (38) 

 
where 𝑠𝑠𝑢𝑢𝑚𝑚(∙)  is the summation over the elements in the 
parentheses. 𝜆𝜆1, 𝜆𝜆2, … 𝜆𝜆𝑛𝑛  are the 𝑛𝑛  eigenvalues obtained 
according to equation (23). In fact, we only use one feature, 
𝑓𝑓𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛×1 , to produce the kernel matrix in equation (23). 
Although equation (38) does not have the form of Pearson’s 
correlation, it does quantify the correlation between a feature 
and the class variable. Considering equation (32) and equation 
(38), mRMR-KCLFDA has the following criterion: 
 

( ; )
( ) max
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k f F S
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f c
J f

f S
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 
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                  (39) 

 
where 𝐹𝐹 denotes the original feature set, and 𝑆𝑆  denotes the 
already selected feature set. The detailed process of the 
algorithm is: 

Step 1: Calculate the correlation between each feature and the 
class variable according to equation (38). 

Step 2: Select the feature with the greatest value in Step 1 as 
the first selected feature 𝑓𝑓𝑎𝑎. 

Step 3: Move the selected feature from 𝐹𝐹 to 𝑆𝑆. 
Step 4: Select the next feature according to equation (39). 
Step 5: If the number of features to be selected is greater than 

the size of 𝑆𝑆, go to Step 3. 
 

3.3.  Procedure of the three-stage feature fusion 
Before implementing feature fusion, we first acquire the 

vibration signals of the hydraulic pump in different degradation 
states and divide them into some samples. As important sources 
of degradation state information, the statistical features of time 
domain and frequency domain are widely used in equipment 
fault diagnosis and state monitoring due to their simple 
calculation and high efficiency. In this paper, 11 time-domain 
features and 12 frequency-domain features are extracted from 
the vibration signals as shown in Table 1. and Table 2., and then 
they are put in two data sets for fusion. Given two data sets (𝑋𝑋 ∈ 
𝑅𝑅𝑛𝑛×𝑝𝑝,𝑌𝑌 ∈ 𝑅𝑅𝑛𝑛×𝑞𝑞, where 𝑝𝑝 and 𝑞𝑞 denote the number of features) 
and sample labels, the fusion methododogy consists of the 
following three stages: 

Stage 1: Utilize SLFDA to perform intra-set fusion on the two 
data sets 𝑋𝑋 and 𝑌𝑌, respectively. The two new data sets obtained 
have the following forms: 

 
1( 1)( 1) ( )
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ˆ
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

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                     (40) 

where 𝑈𝑈�𝑜𝑜𝑝𝑝𝑜𝑜1  and 𝑈𝑈�𝑜𝑜𝑝𝑝𝑜𝑜2  are the projection matrices calculated 
according to equation (20). SLFDA has a good fusion effect on 
the data that does not follow the MND. 𝑋𝑋�  and 𝑌𝑌�  have more 
significant MND characteristics than 𝑋𝑋  and 𝑌𝑌 , which will 
facilitate the next stage of fusion. 

Stage 2: Utilize MICA to fuse 𝑋𝑋� and 𝑌𝑌� , and the new data set 
has the following form: 

 

( 2 ) ( 1) ( 1 ) ( 2) ( 2 )
ˆ ˆ ˆ ˆ[ , ]n e n d xopt d e n d xopt d eZ X W Y W× ⋅ × × × ×=        (41) 

 
where 𝑊𝑊�𝑥𝑥𝑜𝑜𝑝𝑝𝑜𝑜 and 𝑊𝑊�𝑦𝑦𝑜𝑜𝑝𝑝𝑜𝑜 are the projection matrices calculated 
according to equation (34). This stage inherits the class 
structures of 𝑋𝑋 and 𝑌𝑌, which contain discriminative information. 
MICA also explores the correlation across different features 
within the same class. 

Stage 3: Utilize mRMR-KCLFDA to select the 𝑎𝑎3 desired 
features from 𝑍𝑍 and concatenate them. Finally, 𝑋𝑋 and 𝑌𝑌 are 
transformed into one data set through the above operations, 
which is more concise and efficient in classification. 

 
4.  EXPERIMENTAL VALIDATION 
4.1.  Experimental data acquisition 

To verify the effectiveness of the proposed method, a 
hydraulic pump test platform shown in Fig.1. was set up for data 
acquisition, which consists of a cooling system, a control system, 
a signal monitoring, acquisition and display system, a pressure 
regulating system, and a drive system. 

The hydraulic pump for this study is an axial piston pump with 
the following parameters: type: L10VS028DFR, displacement 
at the rated working condition: 28 𝑚𝑚𝑚𝑚/𝑟𝑟 , rated pressure: 
22 𝑀𝑀𝑃𝑃𝑎𝑎,  and rated rotation speed: 1480 𝑟𝑟/𝑚𝑚𝑖𝑖𝑛𝑛.  Two 
acceleration sensors are installed in two mutually orthogonal 
directions, respectively, as shown in Fig.2. They acquire 
vibration signals at a sampling frequency of 50 𝐾𝐾𝐾𝐾𝐾𝐾,  each 
sampling lasts for 1 s, and the interval between two samplings 
is 30 s. 

The single loose boot is studied in this paper because the loose 
boot is one of the common fault patterns of hydraulic pump. The 
gap between the plunger and the boot will increase when the 
loose boot occurs. To acquire vibration signals close to the 
actual situation, the normal plungers are replaced with failed 
plungers obtained after equipment maintenance. Five different 
degrees of the loose boot, as shown in Fig.3., are considered. 
Vernier calliper is used to measure the maximum radial distance 
between the boot and the plunger under five different degrees. 
The five measurements considered as the loose degree are 
0.12 mm, 0.18 mm, 0.3 mm, 0.42 mm, and 0.64 mm, 
respectively. Therefore, a total of five different degradation 
states are considered. For each sensor, 100 groups of vibration 
data in each degradation state are collected, and each group 
consists of 4095 data points. Some examples of vibration data 
are shown in Fig.4. Three experimental cases based on the 
vibration signals of these two channels are presented in the 
following 3 subsections. 
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Table 1.  Time-domain features. 
 
Feature 
mark 

Feature name Calculation 
formula 

Feature 
mark 

Feature name Calculation 
formula 

1f  Mean 

1

1 N

n
n

x
N =
∑  2f  Square root amplitude 2

1

1 N

n
n

x
N =

 
 
 
∑  

3f  Variance 
( )2

1
1

1
1

N

n
n

x f
N =

−
− ∑  4f  Root mean square 

2

1

1 N

n
n

x
N =
∑  

5f  Peak to peak max( ) min( )n nx x−  
6f  Skewness 3

1

1 3

1 N
n

n

x f
N f=

 −
  
 

∑  

7f  Kurtosis 
( )

( )

4

1
1

2
31

N

n
n

x f

N f
=

−

−

∑
 

8f  Crest factor 

4

max nx
f

 

9f  Clearance factor 

2

max nx
f

 10f  Form factor 4

1

N

n
n

Nf

x
=
∑

 

11f  Impulse factor 

1

max n
N

n
n

N x

x
=
∑

 
   

where ( )1,2, ,n Nx n =  is a signal series, N is its length. 
 
 
 

Table 2.  Frequency-domain features. 
 

Feature 
mark 

Calculation formula Feature 
mark 

Calculation formula Feature 
mark 

Calculation formula 

12f  
1

1 N

n
n

s
N =
∑  13f  

( )2
12

1

1
1

N

n
n

s f
N =

−
− ∑  14f  

( )

( )

3
12

1
3

13

N

n
n

s f

N f
=

−∑
 

15f  
( )4

12
1

2
13

N

n
n

s f

Nf
=

−∑
 

16f  
1

1

N

n n
n

N

n
n

s v

s

=

=

∑

∑
 

17f  
( )2

16
1

N

n n
n

v f s

N
=

−∑
 

18f  
( )2

1

1

N

n n
n

N

n
n

v s

s

=

=

∑

∑
 

19f  
( )

( )

4

1

2

1

N

n n
n
N

n n
n

v s

v s

=

=

∑

∑
 

20f  ( )

( )

2

1

4

1 1

N

n n
n

N N

n n n
n n

v s

s v s

=

= =

∑

∑ ∑
 

21f  17

16

f
f

 22f  
( )3

16
1

3
17

N

n n
n

v f s

Nf
=

 − ∑
 

23f  
( )4

16
1

4
17

N

n n
n

v f s

Nf
=

 − ∑
 

where ( )1,2, ,n Nns =  is a spectrum, N is the number of spectrum lines; nv is the frequency value of the  
thn − spectrum line. 
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Fig.1.  Hydraulic pump test platform. 
 
 

 
 

Fig.2.  Layout of the two vibration sensors. 
 
 

 
                 a)             b)              c)             d)              e)  

 
Fig.3.  Five different degrees of loose boot: a) 0.12 mm;  

b) 0.18 mm; c) 0.3 mm; d) 0.42 mm; e) 0.64 mm. 
 

4.2.  Case 1: Validation under the condition of large sample 
size 

As described in subsection 3.3, two original data sets 𝑋𝑋 ∈ 
𝑅𝑅500×23 and 𝑌𝑌 ∈ 𝑅𝑅500×23 are extracted from all the vibration 
data, where 𝑋𝑋  and 𝑌𝑌  are derived from two different sensors 
(marked as channel 1 and channel 2), and each degradation state 
has 100 samples in each set. The 23 features in each set are those 
shown in Table 1. and Table 2. The method described in 
subsection 3.3 is used to fuse 𝑋𝑋 and 𝑌𝑌. The size of the fused 
feature sets at each stage are set as: 𝑎𝑎1 = 𝑎𝑎2 = 10, 2𝑒𝑒 = 8, 𝑎𝑎3 = 
7, which are determined after several simple attempts.  

As shown in Fig.5., the fusion result of each stage is visualized 
using t-SNE [36], where the fused feature sets of Stage 1 are 
merged into a 20-dimensional set for visualization (Fig.5.b) to 
Fig.5.d)). The fusion effect of each stage is obvious. The 
original feature sets 𝑋𝑋  and 𝑌𝑌  are also merged into a 46-
dimensional set for visualization (Fig.5.a)). It can be seen that 
the scattered points of different colors are mixed. For a 
comparison, CCA is used to fuse 𝑋𝑋� and 𝑌𝑌� , which are the two 
feature sets obtained from Stage 1, and the fusion result is also 
visualized (Fig.5.e)). It can be seen that its fusion effect is worse 
than that of MICA. For a comparison between mRMR and 
mRMR-KCLFDA, mRMR is used to select the desired features 
from 𝑍𝑍, which is the feature set obtained from Stage 2. The 
results of these two feature selection algorithms form a data set, 
and the samples of each set are divided into a training set and a 
testing set at a ratio of 1:1. Support vector machine (SVM) [37] 
with Gaussian kernel is used for classification. The 
classification accuracy with different number of features is 
shown in Fig.5.f). It can be seen that mRMR-KCLFDA selected 
better feature combinations in most cases and found the eighth 
feature as a redundant one. Fig.6. is used to illustrate the 
significance comparison of the MND of the samples before and 
after the SLFDA fusion. One hundred samples from channel 1 
and those from channel 2 are taken as examples, all of which 
belong to the loose degree 0.12 mm. The comparison results are 
displayed by the Q-Q diagram. It can be seen that most of the 
samples before fusion are farther from the line 𝑦𝑦 = 𝑥𝑥, and most 
of the samples after fusion are very close to the line, which 
confirms that the fused samples have very significant MND 
characteristics. 

For deeper comparisons, five existing algorithms are also used 
to fuse features: LLE, LPP, CCA, locality preserving CCA 
(LPCCA) [38], and discriminant CCA (DisCCA) [39]. Each 
method results in an 8-dimensional feature set, respectively. 
The feature selection algorithm mRMR is also used to select 7 
features from each feature set fused by these methods. SVM, 
random forest (RF) [40] and Naïve Bayes (NB) [41] are chosen 
as the classifiers. The classification accuracies shown in Table 3. 
reinforce the following 3 conclusions: first, LLE does not 
perform well. Second, DisCCA performs well due to the use of 
class information. Third, the proposed method shows the best 
performance. 
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Fig.4.  Time-domain waveforms of several vibration signal samples: a) - e) originate from sensor 1, and f) - j) originate from sensor 2. Each column 
corresponds to the same degree of loose boot. Five different degrees of loose boot are 0.12 mm, 0.18 mm, 0.3 mm, 0.42 mm, and 0.64 mm from 
left to right. 
 
 

 
 

Fig.5.  Some illustrations of the fusion effects in Subsection 4.2: a) t-SNE on the original features. b) - d) t-SNE on the fused features of 
Stage 1, Stage 2 and Stage 3, respectively. e) t-SNE on the fused features through CCA. (f) Comparison of classification accuracy between 
mRMR and mRMR-KCLFDA at different number of features. 
 
 

Table 3. Classification accuracies for feature fusion in case 1. 
 

method LLE+ 
mRMR 

LPP+ 
mRMR 

CCA+ 
mRM
R 

LPCCA
+ 
mRMR 

DisCCA+ 
mRMR 

The proposed 
method 

Classification 
accuracy 

SVM 66 % 88 % 88 % 89.8 % 91.2 % 93.2 % 
RF 55.75 % 77.74 % 78.2 % 79.78 % 86.6 % 89.38 % 
NB 58.4 % 65.6 % 70 % 75.69 % 88 % 90 % 
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Fig.6.  Significance comparisons of MND displayed by Q-Q diagram: a) channel 1; b) channel 2. 

 
 

4.3.  Case 2: Validation under the condition of small sample 
size 

Two original feature sets 𝑋𝑋 ∈ 𝑅𝑅175×23  and 𝑌𝑌 ∈ 𝑅𝑅175×23 are 
extracted from part of the vibration data, where 𝑋𝑋  and 𝑌𝑌  are 
derived from two different channels, and each degradation state 
has 35 samples in each set. The method described in subsection 
3.3 is used to fuse 𝑋𝑋 and 𝑌𝑌. The size of the fused feature sets at 
each stage are set as: 𝑎𝑎1 = 𝑎𝑎2 = 10, 2𝑒𝑒 = 8, 𝑎𝑎3 = 7. Similar to 
Subsection 4.2, all the results are visualized as shown in Fig.7. 
For a comparison, DisCCA is used to fuse 𝑋𝑋� and 𝑌𝑌� , which are 
the two feature sets obtained from Stage 1, and the fusion result 
is also visualized (Fig.7.e)). It can be seen that its fusion effect 
is worse than that of MICA. The classification accuracy 
obtained by the proposed method is 100 % (Fig.7.f)). 

For deeper comparisons, the 5 existing algorithms used in 
Subsection 4.2 are also used to fuse the features. Both PCA and 
SLFDA are used in advance to reduce the dimension of each 
original feature set to 10 (i.e., 𝑎𝑎1 = 𝑎𝑎2 = 10). The size of the 
fused feature sets in other cases is not specified. The values 
shown in Table 4. are the highest classification accuracy and the 
size of the corresponding feature set, where the classification 
accuracy is obtained by SVM. The symbol “~” in Table 4. 
denotes the five algorithms used. The following three 
conclusions can be drawn from this table and Fig.7.: first, using 
PCA in advance to reduce dimensionality is always 
unsuccessful on these original feature sets, while using SLFDA 
can get better results. Second, our proposed method 
outperforms these five existing methods in classification 
accuracy (100 %). Third, the fused feature set obtained by our 
proposed method has a lower dimension in most cases. 

 

 
Fig.7.  Some illustrations of the fusion effects in Subsection 4.3: a) t-SNE on the original features. b) - d) t-SNE on the fused features of 
Stage 1, Stage 2 and Stage 3, respectively. e) t-SNE on the fused features through DisCCA. f) Comparison of classification accuracy 
between mRMR and mRMR-KCLFDA at different number of features. 
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Table 4.  Classification accuracies and the number of corresponding features for feature fusion in case 2  
(except the proposed method). 

 
method LLE LPP CCA LPCCA DisCCA 
PCA+~ 52.43 % (15) 53.68 % (18) 57.5 % (14) 57.95 % (11) 56.35 % (10) 
SLFDA+~ 98.86 % (14) 97.73 % (12) 97.73 % (11) 97.73 % (13) 98.86 % (13) 
SLFDA+~+mRMR 98.86 % (13) 98.86 % (12) 97.73 % (10) 98.86 % (11) 98.86 % (8) 

 
Table 5.  Comparison of some previous studies about the rotating machinery fault with the proposed method. 

 
Authors Feature fusion 

method 
Model in the liter-

ature 
Dataset source Accuracy 

(%) 

Ugochukwu 
Ejike Akpudo 
et al. [42]  

LLE Signal + MFCC + 
LLE + SVM 

Solenoid pump testbed of authors. 100 

Our experimental hydraulic pump data. 60.85 

Jiang Lingli et 
al. [43]  

LPP Signal + MPE + 
LPP + ELM 

Gearbox test equipment of authors. 100 

Our experimental hydraulic pump data. 81.5 
Yazhou Li et 
al. [44] 

A method based 
on weighted fea-
ture fusion pro-
posed by the au-
thors 

Signal + Original 
feature set + Fea-
ture fusion + SVM 

CWRU bearing fault database. 99.61 

The experimental bearing data of Xi’an 
Jiaotong University. 

99.38 

Our experimental hydraulic pump data. 89.4 

Xiao Yu et al. 
[45]  

FSASR+ SM-
LFDA 

Signal + EMD + 
Original feature set 
+ Feature fusion + 
SVM 

CWRU bearing fault database. 100 

Our experimental hydraulic pump data. 90.75 

Xiaoli Zhao et 
al. [46]  

GLMFA Signal + multi-do-
main feature set + 
GLMFA + Im-
proved EW-KNN 

CWRU bearing fault database. 98.7 
The experimental bearing data of the 
HBERC. 

100 

Our experimental hydraulic pump data. 92.3 
Hongru Li et 
al. [47]  

A relative entropy 
fusion method 
proposed by the 
authors 

Signal + Several 
complexity features 
+ Feature fusion + 
SVM 

The experimental hydraulic pump data 
of authors. 

93.3 

Our experimental hydraulic pump data. 85.74 

Authors of 
this paper 

A three-stage fea-
ture fusion meth-
odology proposed 
by the authors 

Signal + Two multi-
domain feature set 
+ Feature fusion + 
SVM 

Experimental setup of authors. 93.2 

where some acronyms and their meanings are given as follows: 
MFCC Mel Frequency Cepstral Coefficient MPE Multiscale Permutation Entropy 
ELM Extreme Learning Machine CWRU Case Western Reserve University 
FSASR Features Selection by Adjusted rand in-

dex and Standard deviation Ratio 
SM-LFDA Support Margin Local Fisher Discrimi-

nant Analysis 
EMD Empirical Mode Decomposition GLMFA Global-Local Margin Fisher Analysis 
EW-KNN Euclidean Weighted K-Nearest Neighbor HBERC Hangzhou Bearing Experimental Re-

search Center 
 

4.4.  Case 3: Comparison of some previous studies with the 
proposed method 

Some previous studies related to the fault diagnosis and 
detection of rotating machinery,  as well as our study, are listed 
in Table 5. The rightmost column of the table shows the highest 
classification accuracy corresponding to each dataset. 
Considering that feature fusion is the focus of our study, we 
replace the feature fusion method in our model with that in each 
previous study and test each of the new models on our hydraulic 
pump data, which is convenient for highlighting the comparison 

among different feature fusion methods. Our experimental 
hydraulic pump data is the same as the data used in Case 1, and 
all the accuracy values corresponding to it are obtained by SVM. 

The accuracy value obtained by the proposed method is the 
greatest among all the accuracy values corresponding to our 
hydraulic pump data (93.2 %). All the models in the table 
include their original feature extraction methods, such as the 
MFCC in the first model, and the feature fusion method in 
each model needs to adapt to the characteristics of the original 
features. The two methods, FSASR+SM-LFDA and GLMFA, 
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also achieve high classification accuracy (90.75 % and 
92.3 %). Not only are the original features fused by them, but 
also their fusion ideas are somewhat similar to our methods. 
Thus, the superiorities of the proposed feature fusion 
methodology are reinforced. 

 
5.  SUMMARY 

To effectively enhance the performance of the degradation 
features of hydraulic pumps, a novel three-stage feature fusion 
is proposed. The two original feature sets are extracted from the 
vibration signals. SLFDA is used to perform intra-set fusion on 
the two original feature sets, then MICA, a CCA-based method, 
is used to fuse two feature sets, and finally the mRMR-
KCLFDA is used to select the desired features. This paper has 
three major contributions as follows: 

1) MICA is proposed to fuse two feature sets in the second 
stage, which is developed from ICA. MICA modifies the 
calculation method of the class matrix, the mean values of the 
within-class samples are used to evaluate the relationship 
between classes, which makes it more convenient to inherit the 
discriminating structure. 

2) A feature selection algorithm mRMR-KCLFDA based on 
KLFDA and KCCA is proposed, which has a framework 
similar to mRMR. In this algorithm, KLFDA quantifies the 
correlation between each feature candidate and class variable, 
and KCCA quantifies the correlation between each feature 
candidate and the selected feature set. The algorithm avoids not 
only the estimation of complex multivariate density, but also the 
inaccuracy of CCA in estimating the correlation between 
feature and class variable. Additionally, since it includes some 
operations similar to the methods used in the first two stages, it 
is more suitable for our fusion framework than other feature 
selection algorithms. 

3) SLFDA, MICA and mRMR-KCLFDA are closely linked 
with one another in an orderly manner, which results in the 
proposed three-stage feature fusion methodology. Non-linear 
and non-Gaussian hydraulic pump data, as well as the manifold 
structure and intra-class multimodal sample caused by it can be 
handled well with this methodology, whose effectiveness and 
superiority in fusing the degradation features of the hydraulic 
pump were demonstrated with experimental data. 

Still, we have not studied how to conduct fusion on more than 
2 feature sets. The inability to be easily extended to the multiple 
feature sets is a limitation of the proposed method, which is 
mainly due to the inability of MICA to handle more than 2 
feature sets. In our future work, we will try addressing the 
limitation from two perspectives. One is to replace MICA with 
a method that can handle multiple feature sets, and the other is 
to fuse multiple data sets in advance at the signal level.  
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