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Abstract: A steady-state sinusoidal and distortion-free excitation source is very important for the accuracy and consistency of the calibration 

parameters of micro-electro-mechanical systems (MEMS) inertial sensors. To solve the problem that the current MEMS inertial measurement 

unit (IMU) calibration device is unable to reproduce the spatial motion of linear and angular vibration coupling, research topics on the 

coupling vibration characteristics and parameter identification for an electromagnetic linear-angular vibration exciter are proposed. This 

research paper used Ampere's law and Lorentz force to establish the analytical expressions for the electromagnetic force and electromagnetic 

torque of the electromagnetic linear-angular vibration exciter. Then, the main purpose of this paper is to establish uniaxial and coupled 

vibration electromechanical analogy models containing mechanical parameters based on the admittance-type electromechanical analogy 

principle, and the parameter identification model is also obtained by combining the impedance formula with the additional mass method. 

Finally, the validity of the coupling vibration characteristics and the parameter identification model are verified by the frequency response 

simulation and the additional mass method, and the relative error of each parameter identification is within 5% in this paper. 
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1. INTRODUCTION 

In recent years, with the rapid development of micro-

electro-mechanical systems (MEMS) inertial sensors, 

attention has been paid to the exciters used for MEMS inertial 

sensor calibration, and higher requirements have been placed 

on the output performance of the exciters [1]. Traditional 

sensor calibration methods often use electromagnetic exciters 

[2], and compared to uniaxial vibration excitation, linear-

angular composite vibration excitation can simulate the actual 

dynamic environment more accurately. An electromagnetic 

linear-angular vibration exciter can not only output uniaxial 

linear vibration and angular vibration, but also has the 

function of outputting linear and angular vibration 

synchronously. However, there is coupling vibration when 

the exciter synchronously outputs linear-angular vibration, 

the research on exciter vibration has mostly focused on 

uniaxial vibration, and research on its linear and angular 

vibration has been conducted independently [3] without 

considering the correlation between the two types of 

vibration. The independent research of vibration forms can 

certainly simplify the problem, but it separates the inherent 

connection and cannot reflect the actual vibration situation of 

the propulsion axis system. 

The operating principle of the electromagnetic linear-
angular vibration exciter is that the moving coil generates an 
ampere force in the magnetic field, which drives the moving 

part to emit vibration. Therefore, it can be divided into two 
aspects: electromagnetics and dynamics. As for 
electromagnetics, a closed magnetic field must be established 
in different directions in the air gap of the exciter to generate 
linear and angular vibration at the same time, and current 
must flow in different directions in the moving coil. Based on 
Ampere's law, an electromagnetic force and torque are 
simultaneously applied to the coil, and the moving parts are 
excited by the Ampere force generated by the coil to generate 
vibration. However, multi-axis vibration may cause the 
vibration of the moving part to be eccentric, resulting in 
mutual influence between the two vibration modes, 
generating coupled vibration [4]. And the coupled vibration 
caused by the deflection may lead to fatigue, fracture and 
friction problems in the internal structure of the exciter, which 
will affect the overall performance of the exciter [5]. 
Therefore, the study of the coupled vibration characteristics 
of this exciter has important engineering significance. With 
the attention and recognition of the influence of coupled 
vibration on machinery, research on coupled vibration has 
gradually developed in recent years. Researchers have 
studied a large number of analysis methods, such as the 
energy method, the transfer matrix method, the finite element 
method, and the wave approximation method [6]. In recent 
years, many scholars have conducted research on the 
establishment of coupled vibration models. Huang [7] 
established a lumped parameter model based on the coupled 
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torsional-longitudinal vibration phenomenon of ship 
propellers and conducted numerical simulations and 
experimental tests based on the proposed model. The results 
showed that the natural frequency is not affected when the 
maximum acceleration increases with increasing speed and 
load. 

The dynamic model parameters are the basis for a precise 
analysis of the dynamic properties of the vibration system of 
the exciter. Therefore, the identification of the coupling 
vibration parameters of an electromagnetic linear-angular 
vibration exciter has important engineering significance [8]-
[9]. Modal analysis is an important method for parameter 
identification of mechanical structures. By establishing a 
modal model of the structure and combining it with 
experiments, the dynamic parameters of the structure can be 
identified [10]. Wen [11] identified the modal parameters of 
a double-curved cable-stayed bridge through forced vibration 
experiments, and calculated the modal parameters based on 
frequency response curves under the different excitation 
conditions. Song [12] used a modal parameter identification 
method based on experimental vibration data to estimate the 
parameters of a concentrated mass mechanical system in a 
vibration experiment. However, the structure of the 
electromagnetic linear-angular vibration exciter is relatively 
complex and the analysis process is more cumbersome. Since 
the electromagnetic exciter has both mechanical and 
electrical systems and the mathematical models of the 
mechanical and electrical systems are essentially the same, 
the use of the electromechanical analogy theory to analyze 
complex shaker vibration systems can greatly simplify the 
analysis process [13]. In the research on the application of 
electromechanical analogy to parameter identification, 
Saraswat [14] established a lumped parameter model for the 
electromagnetic vibration screening system and developed a 
parameter identification model for the electromagnetic 
vibration screen based on the electromechanical analogy, 
which takes into account the nonlinearity of the system. 
Based on the lumped parameter model for the 
electromagnetic uniaxial exciter, Tiwari [15] established the 
identification model of the key parameters of the exciter 
based on modal analysis and combined with the principle of 
electromechanical analogy. 

This article focuses on the study of the coupling vibration 
characteristics during the operation of the electromagnetic 
linear-angular vibration exciter and proposes a parameter 
identification method suitable for this exciter. First, the 
electromagnetic force and electromagnetic torque models of 
the electromagnetic linear-angular vibration exciter are 
introduced and then their expressions are established. On this 
basis, the differential equations of motion for the uniaxial and 
coupled vibration of the exciter are established, and the 
coupling vibration characteristics are analyzed based on the 
vibration equations. Second, based on the principle of 
admittance-type electromechanical analogy, electromecha-
nical analogy models for uniaxial and coupled vibration 
containing mechanical parameters are established. Based on 
the model, an impedance formula with dynamic parameters is 
derived and the identification model of its dynamic 
parameters is obtained by combining the additional mass 
method. Finally, the above conclusions on the vibration 
characteristics and the theoretical models are verified by 
simulations. 

2. MODELS OF ELECTROMAGNETIC FORCE AND TORQUE 

The dynamic properties of an electromagnetic linear-

angular vibration exciter are analyzed. First, the analytical 

expressions for the electromagnetic force and the 

electromagnetic torque of the exciter are established. Then, a 

uniaxial and a coupled vibration model of the exciter are 

created based on these expressions. Fig. 1 shows the driving 

structure of the exciter, which mainly consists of permanent 

magnets, the inner core, the outer core, the moving coil 

(circumferential coil and axial coil), coil bobbin and the 

moving table. 

 

Fig. 1.  The driving structure of the exciter. 

Permanent magnets are radially magnetized and they stick 

to the outer wall of the inner core. It is arranged alternately in 

four equal parts along the circumference and three equal parts 

along the axis. The permanent magnets at the upper and lower 

ends along the axis and the inner and outer cores form a linear 

vibration air gap magnetic field, while the permanent magnets 

in the middle and the inner and outer cores form an angular 

vibration air gap magnetic field. The moving coil is divided 

into a circumferential and an axial part. The circumferential 

coil is located in the linear vibration air gap magnetic field 

and the axial coil in the angular vibration air gap magnetic 

field. After the moving coil has been energized with 

sinusoidal alternating current, circumferential coil emits an 

axial electromagnetic force and the axial coil an axial 

electromagnetic torque in accordance with the Lorentz force 

law. After the magnetic circuit and coil structure are 

determined, when the moving coil is energized with 

sinusoidal alternating current, the exciter generates a 

compound linear-angular vibration that varies with the 

current, and the electromagnetic force and electromagnetic 

torque are proportional to the moving coil current. 

The analytical model expression of the air gap magnetic 

field is obtained based on the equivalent current method: 
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where B is the MFD, A is the magnetic potential, μ0 is the 

permeability of the vacuum, M is the magnetization. 

The radial magnetic induction intensity generated by each 

permanent magnet is calculated separately. Based on the 

position relationship between the permanent magnets and the 
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magnetization direction of each permanent magnet, the 

analytical model expression of the magnetic field structure 

can then be obtained by superimposing the magnetic fields 

generated by the permanent magnets. 

The radial magnetic induction expression at any position in 

space for the permanent magnet structure is obtained from 

(1): 
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where i is the number of permanent magnets. 

The definition of the Lorentz force is obtained from the 

Lorentz force law: 
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Substituting (2) into (3) gives the expressions for the 

electromagnetic force F and the electromagnetic torque T: 
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where R1 is the inner radius of the coil, R2 is the outer radius 

of the coil, Z1 is the height of the bottom surface of the coil, 

Z2 is the height of the top surface of the coil, ϕ1 is the initial 

angle of the coil, ϕ2 is the stop angle of the coil. 

Therefore, the analytical expressions for the electro-

magnetic force F and the electromagnetic torque T received 

by the coil assembly are: 
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where k is the number of coils. 

3. ANALYSIS OF COUPLED VIBRATION DYNAMICS 

A. Uniaxial vibration model of the linear-angular vibration 

exciter 

In terms of uniaxial vibration, this exciter can generate 

uniaxial linear and angular vibrations of the moving part by 

relating the permanent magnet and the moving coil to each 

other. The moving part is connected to the exciter body, 

which splits the exciter into two parts: the moving part and 

the body. Therefore, two vibration lumped parameter models 

are created for the two vibration modes, as shown in Fig. 2. 

The variables in Fig. 2 are as follows: Mb is the mass of the 

exciter body; kb is the equivalent stiffness of the exciter body; 

cb is the damping coefficient of the exciter body; xb is the 

displacement change of the exciter body; Mx is the mass of 

the moving part; kx is the stiffness of the moving part; cx is the 

damping coefficient of the moving part; x is the displacement 

change of the moving part; F is the excitation force of the 

linear vibration; Jr is the equivalent rotational inertia of the 

exciter body; kr is the equivalent torsional stiffness of the 

exciter body; cr is the torsional damping coefficient of the 

exciter body; θr is the angle rotated by the exciter body; Jt is 

the equivalent rotational inertia of the moving part; kt is the 

torsional stiffness of the moving part; ct is the torsional 

damping coefficient of the moving part; T is the excitation 

torque of the angular vibration; θ is the angle rotated by the 

moving part. 

 

Fig. 2.  The Lumped parameter model; (a) linear vibration  

(b) angular vibration.  

Due to the large mass and the large moment of inertia of 

the exciter body, the excitation from the coil is not sufficient 

to generate motion. Therefore, the platform can be neglected 

in the analysis. According to Newton's second law, the 

differential equation for linear vibration can be obtained as 

follows: 

 x x x
M x c x k x F+ + =  (7) 

The differential equation for angular vibration can be 

obtained as follows: 

 
t t t

J θ c θ k θ T+ + =  (8) 

B. Linear-angular coupling vibration model and analysis 

of coupling characteristics 

Coupled vibrations refer to the vibration input of one 

vibration mode (or in a generalized coordinate direction) 

caused by the vibration input of two (or more) vibration 

modes, leading to a response in another vibration mode (or in 

another generalized coordinate direction). 

To simplify the analysis, the moving parts are represented 

as a uniaxial system as shown in Fig. 3. Fig. 3 shows the basic 

coupled vibration model of the uniaxial system consisting of 

a spring and a disc. This model is used to replace the vibration 

system of the moving part. The mass Mx, the moment of 

inertia Jt, the stiffness kx, and the torsional stiffness of the disc 

kt are equivalent to those of the moving part. 

 

Fig. 3.  The basic coupled vibration model of uniaxial system. 

Fig. 3 shows that the axis undergoes torsional deformation 

at both positive and negative torques accompanied by axial 

contraction (or coupling). 
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Further analysis shows that the axial response contraction 

reaches its maximum value synchronously with the maximum 

torsional deformation when the axis is subjected to a positive 

torque. Moreover, the length of the axis is shortest when the 

axial contraction reaches its maximum value. Conversely, 

when the deformation of the axis is restored, the contraction 

also recovers synchronously and the length of the axis returns 

to its initial length when the deformation is zero. Similarly, 

when the axis is subjected to a negative torque, the torsional 

deformation and axial contraction occur synchronously and 

the length of the axis is shortest when the deformation reaches 

its maximum value. After the negative torque has 

disappeared, the axis returns to its initial state. When the 

torsional deformation of the axis goes through a cycle, it is 

always accompanied by cycles of axial deformation and 

torsional deformation that occur simultaneously, indicating 

that the frequency of the axial vibration is twice as high as the 

frequency of torsional vibration. 

When the object is subjected to external loads due to its 

different geometric shapes and physical properties, the 

stiffness is nonlinear, resulting in mutual influence of 

different axial vibrations. We turn this non-linear stiffness 

into a coupling stiffness. Since there is a coupling stiffness, 

the torsional deformation of the moving parts, whether 

forward or reverse, leads to an axial coupling deformation. If 

the moving parts vibrate axially, the coupling stiffness also 

leads to torsional coupling deformation. Assuming an 

undamped state with a coupling stiffness of k, the function 

δ(θ) is defined as the sign of the coupling stiffness. Based on 

the angular variation of the moving component, the direction 

of the axial restoring force is determined as follows: when 

θ > 0, δ(θ) = 1, the axial restoring force is kθ; when θ < 0, 

δ(θ) = -1, the axial restoring force is -kθ; when θ = 0, δ(θ) = 0, 

the axial restoring force is 0. Therefore, the axial restoring 

force can be represented as Ftx = δ(θ)kθ. Similarly, the 

torsional restoring torque can be derived as Txt = δ(θ)kx. 

Based on Newton's second law, the mathematical model 

for coupled free vibrations without damping can be derived 

as follows: 
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By applying the basic principles of solving vibration 

equations, the natural frequencies and mode matrix of the 

system can be obtained by solving (10). First, assuming that 

the angle and displacement are sinusoidal functions, the 

expressions are as follows: 
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where ω is the angular frequency, t is time, X is the amplitude 

of the displacement and θ is the amplitude of the angle. 

By substituting (11) into (10), we get: 
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The two natural frequencies of the system 2

n1
 , 2

n 2
  and 

the modal matrix [S] can be obtained as follows: 
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As shown in (13), k = 0 is equivalent to the absence of 

coupling between the angular and linear vibrations of the 

system. 

Based on (10) and assuming that the torque excitation of a 

uniaxial angular vibration system is Tsinωθt, where ωθ is the 

angular frequency of the torque excitation and T is the 

excitation amplitude, and the axial excitation is 0, the 

equation of motion of the system is given by: 
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Equation (16) is a stiffness-coupled equation. To decouple 

(16): 
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Substituting (17) into (16) and multiplying both sides of 

the equation by [S]T: 
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It can be shown that the equation has been successfully 

decoupled and diagonalized. Further solving leads to the 

steady-state solution: 
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where 

( )2 2 2

2

01 2 2

2
t t x t

t x t

k k J D k J D
P

J M J D

− +
=

+
  

2 2 2 2

2

02 2 2 2

2
x t x x

x t x

M D k k k k M D
P

M D J M k

+ +
=

+
 

Thus, according to (19), the torsional and axial response 

equations under the specified torque excitation can be 

calculated as follows: 
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Since θ has the same sign as sinωθt in (20), the axial 

displacement ∆x caused by the torsional vibration can be 

obtained as follows: 
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Equation (21) can be extended to a Fourier series as 

follows: 
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In (23), the Fourier expansion of the axial displacement 

from (22) is obtained. It can be observed that there are high-

frequency components in the axial vibration response caused 

by torque excitation, of which the 2nd harmonic component 

has a larger and more prominent amplitude, while the 4th 

harmonic component has a much smaller amplitude than the 

2nd harmonic component. 

Based on (10), a uniaxial vibration system is subjected to 

an excitation of Fsinωxt, where ωx is the angular frequency of 

the axial excitation and F is the excitation amplitude. The 

torsional excitation is zero and the equation of motion is as 

follows: 
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Using the same method, the axial and torsional response 

equations under the specified axial excitation can be obtained 

as follows: 
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Equation (25) shows that the magnitude of the coupled 

torsional vibration response ∆θ caused by axial excitation 

depends on the initial state of the exciter torque angle. When 

θ(t=0) = 0, δ(θ) = 0, then ∆θ = 0. In other words, an axial 

excitation will not induce any coupled torsional vibration 

response. 

By adding both the axial excitation Fsinωxt and the 

torsional excitation Tsinωθt to (10), the vibration equation for 

the synchronized output of the linear-angular vibration 

exciter can be obtained as follows: 
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It can be deduced that the vibration response equation 

under axial-torsional excitation is as follows: 
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Equation (28) shows that the displacement and angular 

responses obtained under the influence of axial-torsional 

excitation are actually the linear superposition of their 

respective responses under individual excitation. 

4. PARAMETER IDENTIFICATION MODEL BASED ON 

ELECTROMECHANICAL ANALOGY 

A. Electromechanical analogy model 

The electromagnetic linear-angular vibration exciter is a 

mechatronic system. By applying the principle of 

electromechanical analogy, the vibration system can be 
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converted into a circuit diagram, which allows the use of the 

established theory of circuit analysis to simplify the analysis 

process. Using the impedance-based electromechanical 

analogy principle, the vibration system can be converted into 

a circuit diagram. The dynamic parameters of the mechanical 

system and the electrical parameters of the circuit system are 

modeled analogously. This results in the uniaxial vibration 

electromechanical analogy model, as shown in Fig. 4. 

 

Fig. 4.  The  uniaxial  vibration electromechanical analogy model; 

(a) linear (b) angular (c) coupled linear and angular. 

Combining the model from Fig. 4(a) and Fig. 4(b) leads to 

the uniaxial vibration electromechanical analogy model, as 

shown in Fig. 4(c). Since the differential equation structure of 

the linear and angular vibration of the exciter is the same, both 

types of vibration have the same electromechanical analogy 

model. The mechanical parameters in the model are 

represented as sets, each containing a linear vibration 

parameter and an angular vibration parameter. Specifically, 

M corresponds to the mass of the moving component Mx, and 

the moment of inertia Jt; R corresponds to the axial and 

torsional stiffness (stiffness is the reciprocal of compliance) 

1/kx and 1/kt, respectively, of the moving component; G 

corresponds to the axial and torsional damping (damping is 

the reciprocal of resistance), 1/cx and 1/ct, of the moving 

component, respectively; N corresponds to the linear 

vibration force factor N1, and the angular vibration force 

factor N2; P corresponds to the linear vibration excitation 

force F, and the angular vibration excitation torque T. The 

electrical parameters of the circuit include the coil resistance 

Re, the coil inductance Le and the coil voltage V. 

B. Uniaxial vibration parameter identification model 

The dynamic parameters of the exciter can be determined 

by analyzing its response around the resonant frequency. 

According to Fig. 4, the impedance formula Z can be 

determined as follows: 

 ( ) 




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+=
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
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According to the impedance formula, the imaginary part of 

the impedance is equal to 0 and the modulus of the admittance 

is the largest, when MRωω 11 == , i.e. the frequency is the 

resonance frequency. Taking linear vibration as an example, 

the resonant frequency under load ( )RmMωω +== 12
 can be 

obtained by conducting a load experiment by setting a 

standard mass block with the mass m on the workbench. The 

values for mass and stiffness can be calculated based on the 

unloaded and loaded resonant frequencies of the linear 

vibration, and the calculation formula is as follows: 
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To obtain the value of the force factor N, it is necessary to 
measure the current I in the coil and the linear acceleration 
signal A of the moving part in the linear vibration mode of the 
exciter. According to Ampere's law F = IBL, the calculation 
formula for the force factor N1 in linear vibration is as 
follows: 

 1x
F M A IN=  =  (32) 
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I


=  (33) 

By performing an FFT analysis of the voltage, current, and 
acceleration signals, the impedance value at the resonant 
frequency can be obtained. According to the impedance 
formula equations (29), the imaginary part of the impedance 
is zero when the moving part is at the resonant frequency. The 
formula for calculating the damping coefficient cx is as 
follows: 
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 (34) 

To calculate the values of rotational inertia Jt, torsional 
stiffness kt and damping coefficient ct for angular vibration 
mode, experimental data must be collected for the exciter, 
which should be substituted into (30) ~ (34) together with the 
rotational inertia value Jm of the standard mass block. 

C. Coupled vibration parameter identification model 

The exciter can output linear and angular vibration signals 
synchronously. Based on its operating principle, a coupled 
vibration equivalent electromechanical analog model can be 
created, as shown in Fig. 5. The upper part of the model 
represents the linear vibration part and the lower part 
represents the angular vibration part. 

 

Fig. 5.  Coupled vibration electromechanical analog model. 
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The analysis of (28) shows that the coupled vibration has 

no effect on the torsional vibration under ideal conditions. 

Therefore, M2 = Jt, R2 = 1/kt, and G2 = 1/ct in the model. 

Based on the model, the impedance expression Z1 can be 

determined as follows: 
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 (35) 

The expression for the coupling stiffness k can be obtained 

by combining the natural frequency of the coupled linear 

vibration, ω3 (corresponding to ωn1), with 
1

1ω MR=  and 

(35) as follows: 

 ( ) ( )3 3t t x x
k k J ω k M ω= − −  (36) 

Since the value of the coupling stiffness k is small 

compared to the motion part stiffness kx, it can be ignored. 

Therefore, M1 = Mx and R1 = 1/kx in the model. However, the 

coupling vibration causes a change in the damping value of 

the linear vibration, so that G1 is the coupled force 

conduction, the reciprocal of the coupling vibration damping 

c1. According to the impedance formula (35), the imaginary 

part of the impedance of the linear vibration part of the model 

is 0 when 
3 1 1

1ω M R= . The impedance value of the 

angular vibration part is much smaller than that of the linear 

vibration part, so it can be ignored. Consequently, the value 

of the coupling linear vibration damping c1 can be 

determined. The calculation formula is: 
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5. SIMULATION VERIFICATION 

A. Validation of coupled vibration characteristics by 

simulation 

 

Fig. 6.  Time-domain  and  corresponding frequency spectrum for 

the  angular  vibration:  (a) angular  vibration  time-domain curve, 

(b) angular excitation spectrum, (c) displacement response time-

domain curve, (d) displacement response spectrum. 

 

Fig. 7.  Time-domain and corresponding frequency-domain spectra 

for  the  linear  vibration:  (a)  linear vibration time-domain curve, 

(b) linear vibration excitation spectrum, (c) angle response time-

domain curve, (d) angle response spectrum. 

To verify the phenomenon of coupled vibration harmonics, 

m = 1 kg, J = 1 kg m2, kt = 5.0 N m-1, kx = 0.8 N m-1 and 

k = 2 N m-1 are set in the simulation, with the excitation 

frequency set to 10 Hz. To facilitate comparison and 

observation, the excitation amplitude is dimensionless, with 

the y-axis of the simulation curve representing the amplitude 

without unit. By simulation calculation, the time-domain 

response curve and the corresponding results of the frequency 

spectrum analysis of the vibration system under the excitation 

are obtained, as shown in Fig. 6 and Fig. 7. 

 

Fig. 8.  The axial displacement curve under the linear vibration 

excitation. 

 

Fig. 9   The axial response displacement curve under the angular 

vibration excitation. 
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Fig. 8 and Fig. 9 show the displacement curves under 

linear vibration excitation and the displacement response 

curves under angular vibration excitation, respectively. The 

comparison of the two curves shows that the coupled axial 

displacement caused by the angular vibration excitation is 

much smaller than the displacement caused by the linear 

vibration excitation itself, indicating that the coupling effect 

of the angular vibration on the linear vibration can be ignored. 

B. Verification of the parameter identification model 

In this paper the effectiveness of the proposed method is 

verified using numerical simulation examples. The excitation 

in the vibration differential equation is simplified to a 

sinusoidal signal with time t as a variable, i.e., F = A0sinωt, 

T = B0sinωt, where A0 and B0 are the excitation amplitudes of 

linear vibration and angular vibration, respectively, and ω is 

the angular frequency. The excitation amplitudes are set to 

A0 = 10 and B0 = 0.2, and the angular frequency ω = 2π. A 

standard block with a mass of m = 4 kg and a moment of 

inertia of Jm = 0.4  (kg m2) is added. The dynamic parameters 

of the exciter are set with preset value parameters, and a 

simulation model is created based on the vibration differential 

equation to obtain the acceleration signals under specified 

excitation for both the unloaded and loaded cases. The 

frequency response curves of the acceleration signals 

obtained by FFT analysis are shown in Fig. 10. Fig. 10(a), 

Fig. 10(b) and Fig. 10(c) correspond to the frequency 

response curves of linear vibration, angular vibration, and 

coupled vibration, respectively. The corresponding resonant 

frequencies are determined from the frequency response 

curves and converted into angular frequencies, as shown in 

Table 1. 

Table 1.  The vibration resonance frequency. 

Parameter Freque-

ncy  

[Hz] 

Angular 

frequency 

[rad·s-1] 

Freque-

ncy 

[Hz] 

Angular 

frequency 

[rad·s-1] 

Linear 

vibration 

35.50 223.05 25.23 158.52 

Angular 

vibration 

78.20 491.34 55.80 350.60 

Coupled 

linear 

vibration 

35.60 223.68 25.50 160.22 

 

 
                                          (a)                                                                    (b)                                                                         (c) 

Fig. 10.  The vibration frequency response curve: (a) linear vibration, (b) angular vibration, (c) coupled vibration.  

 

Fig. 11.  The impedance-frequency curve: (a) linear vibration,  

(b) angular vibration. 

The values of resistance and force factor are defined with 

the resistance Re = 7 Ω and the force factor N1 = 12 for linear 

vibration or the force factor N2 = 0.5 for angular vibration. 

The simulation of the impedance-frequency graph of linear 

and angular vibrations is carried out using an impedance 

model, as shown in Fig. 11. The graph shows that the 

impedances of the linear and angular vibrations reach their 

maximum values at the resonant frequency, which are 7.7182 

and 7.0025, respectively. By substituting these impedance 

values and resonant frequency values into the parameter 

identification model, the identification results are obtained, as 

shown in Table 2. 

Table 2.  Comparison of identification results. 

Parameter Preset value Estimated value Error 

[%] 

M [kg] 4 4.0824 2.1 

J [kg·m²] 0.4 0.4140 3.5 

Kx [N·m-1] 2.0×105 2.0311×105 1.6 

Kt [N·m-1] 1.0×105 1.0019×105 1.9 

cx [N/(m·s-1)] 200 200.55 0.3 

ct [N/(m·s-1)] 100 100.40 0.4 

K [N·m-1] 5000 5017.08 3.4 

 

Comparison of the frequency response curve and the 

impedance-frequency curve shows that the impedance 

reaches its maximum value at the resonant frequency, which 



MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 1, 17-26 

25 

is consistent with the analysis in the previous section. As 

shown in Table 2, under the specified excitation, the 

estimated parameter values obtained by the identification 

model are almost identical to the given values, and the 

relative error of each parameter identification is within 1%. It 

can be concluded that the parameter identification model can 

achieve high-precision parameter identification results under 

noise-free conditions.  

 

Fig. 12.  Comparison of noise identification results. 

To investigate the effect of noise on the identification 

results, white noise with signal-to-noise ratios (SNRs) of 

20 dB  and  30 dB was added to  the excitation  source of the 

linear vibration as an example. Numerical simulations were 

carried out to determine the resonant frequencies at different 

noise levels, and the identification results are shown in 

Fig. 12. 

The numerical simulation results show that the 

identification results are in good agreement with the set 

values regardless of the presence of noise, and the relative 

error of each parameter identification is within 5%. Thus, it 

can be seen that the proposed model can achieve high-

precision parameter identification results under both noise-

free or noisy conditions. 

This identification method determines the unloaded and 

loaded resonant frequencies of the moving part by placing an 

additional standard mass block on the moving table. To verify 

the influence of the parameters of the additional mass block 

on the identification accuracy, various sizes of additional 

masses are set and simulated. Using linear vibration as an 

example, the additional mass values m1, m2, m, m3, and m4 are 

set, where m1 = 0.5 kg, m2 = 2 kg, m = 4, m3 = 8 kg and 

m4 = 12 kg. The corresponding resonant frequencies are 

determined by simulation and the identification results are 

shown in Table 3. 

From the identification results in Table 3, it can be seen 

that the relative errors in the identification of m1, m2, and m4 

are larger than those of m and m3. This indicates that changes 

in the mass value of the additional standard block have a 

certain impact on the identification accuracy. Furthermore, 

excessively large or small additional masses increase the 

difficulty in detecting and analyzing acceleration signals. 

 

Table 3.  Identification results under load conditions. 

Additional mass Total mass of moving components [M/kg] Stiffness of moving components [Kx/(N·m-1)] 

Preset value Estimated value Error [%] Preset value Estimated value Error [%] 

m 4 4.0824 2.1 2.0×105 2.0311×105 1.6 

m1 4 4.2639 6.6 2.0×105 2.1441×105 7.2 

m2 4 4.1402 3.5 2.0×105 2.0420×105 2.1 

m3 4 4.1281 3.2 2.0×105 2.0479×105 2.4 

m4 4 4.1558 3.9 2.0×105 2.0462×105 2.3 

 

6. CONCLUSION 

In this paper, the coupling vibration characteristics of an 

electromagnetic linear-angular vibration exciter are analyzed 

by creating a theoretical model. The theoretical expressions 

of electromagnetic force and torque and the coupling 

vibration equation of the exciter are derived to analyze its 

coupling vibration characteristics. Based on the 

electromechanical analogy principle, the proposed dynamic 

parameter identification method is suitable and effective.  

The displacement response caused by angular vibration 

excitation has high-order harmonics, while the angle response 

frequency caused by linear vibration excitation is identical to 

the original excitation frequency. This phenomenon confirms 

the coupling vibration characteristics that the angular 

vibration affects the linear vibration. The coupling 

displacement   caused  by  the   coupling  vibration  is   much  

smaller than that caused by the linear vibration excitation 

itself, indicating that the influence of the coupling vibration 

is negligible. 

The identification results of the proposed method under 

noise-free and noisy conditions are almost consistent with the 

given values, and the relative errors of each parameter 

identification are within 5%, which proves the method's 

accuracy and noise resistance. Changing the mass value of the 

additional standard block in the model has a certain impact 

on the identification accuracy.  
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