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Abstract: The spatial Three-Dimensional (3D) edge network is one of the typical rank-lossless networks. The current network adjustment 

usually uses Least Squares (LS) algorithm, which has the complexity of linearization derivation, computational volume and other problems. 

It is based on high-precision ranging values. This study aims to minimize the sum of the difference between the inverse distance of the 

control point coordinates and the observation distance, the composition of the non-linear system of equations to build a functional model. 

Considering the advantages of the intelligent optimization algorithm in the non-linear equation system solving method, such as no demand 

derivation and simple formula derivation, the Particle Swarm Optimization (PSO) algorithm is introduced and the improved PSO algorithm 

is constructed; at the same time, the improved Gauss-Newton (G-N) algorithm is studied for the calculation of the 3D control network 

adjustment function model to solve the problems of computational volume and poor convergence performance of the algorithm with large 

residuals of the unknown parameters. The results show that the improved PSO algorithm and the improved G-N algorithm can guarantee the 

accuracy of the solution results. Compared with the traditional PSO algorithm, the improved PSO algorithm has a faster optimization speed. 

When the residuals of the unknown parameters are too large, the improved G-N algorithm is more stable than the improved PSO algorithm, 

which not only provides a new way to solve the spatial 3D network, but also provides theoretical support for the establishment of the spatial 

3D network. 
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1. INTRODUCTION 

The modern large-scale equipment manufacturing industry 

requires more and more precision in processing and 

assembly, such as large particle accelerators, ocean 

engineering equipment, etc., which drives the update and 

progress of precision engineering measurement technology. 

As an important part of equipment manufacturing, the high-

precision Three-Dimensional (3D) control network has 

higher and higher precision requirements, mainly relying on 

high-efficiency and high-precision measuring instruments. 

Due to the lack of one-dimensional and two-dimensional 

data, precise 3D coordinate measurement technology is 

mainly used in high-precision and large-scale devices. The 

observation values of angles and distances of global control 

points are determined, and a 3D spatial control network is 

established. In this way, the measurement efficiency is 

improved and the operation of the instrument is unified [1]. 

Numerous scientists have studied how to build a high-

precision 3D control network in two ways. On the one hand, 

more accurate observation values can be obtained by 

continuously improving the performance of measurement 

instruments, and on the other hand, the goal of improving 

accuracy by constructing constraints is achieved in the 

construction of the network [3], but the solution method of 

the adjustment model is rarely studied. The error equation of 

the 3D control network belongs to the non-linear equation set. 

According to the Taylor series linearization, the second-order 

and higher-order terms are rounded off. It is then solved as a 

function of the original Least Square (LS) [5]. Currently, 

optimization methods for non-linear equations can be divided 

into numerical algorithms based on Newton-like iterations 

and intelligent optimization algorithms such as Particle 

Swarm Optimization (PSO) and genetic algorithms [6].  

In recent years, domestic and foreign scientists have 

conducted extensive research on the 3D network solution 

method for laser trackers [7], Fan Baixing et al. [4] utilized 

the tracker distance data with additional center of gravity 

datum constraints, which greatly improved the point 

accuracy. Zhai [8] compared and analyzed the advantages and 

disadvantages of different estimation methods for the 

problem of the 3D measurement network, providing a 

reference for a reasonable solution to the problem. Yang [9] 

solved the initial value of the unknown parameters of the 3D 

measurement network based on the principle of backward 

rendezvous and used the method of common point 

conversion. Xu [10] summarized the Newton method and 

analyzed the Levenberg-Marquardt (L-M) algorithm to 

obtain the optimal solution of the non-linear error equation. 

     Journal homepage:  https://content.sciendo.com 

https://content.sciendo.com/view/journals/msr/msr-overview.xml


MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 4, 150-157 

151 

All of the above studies are based on the LS algorithm for net 

leveling solution, which needs to linearize the non-linear 

function, requires a large number of complex formulae 

derivations, and is computationally intensive. To address 

these problems, this paper proposes an improved Gauss-

Newton (G-N) algorithm and an improved PSO algorithm for 

the 3D measurement network adjustment solution, which 

reduces the amount of complex derivative calculations in the 

LS solution process. On the one hand, the Newton-type 

iterative algorithm mainly utilizes the curvature information 

provided by the Hessian matrix. There will be some problems 

in solving non-linear equations. First, the computational set 

is too large to solve the control network. Therefore, the 

objective function and its first derivative are used to construct 

a curvature approximation of the objective function. In doing 

so, the second-order information in the Hessian matrix is 

considered to reduce the computational complexity. Second, 

the G-N algorithm ignores the second-order information in 

the Hessian matrix, so the algorithm is effective only when 

the residual function is close to a linear function or zero and 

the approximate Hessian matrix has at least semi-positive 

definiteness [11], so a damped G-N is formed by adding a 

linear search strategy to the G-N. Third, when the objective 

function is complex, it is necessary to ensure that the 

objective function is second-order. The damped G-N 

algorithm is modified by Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) and can solve the problem that the Hessian matrix 

loses its positive definiteness and the descending direction 

cannot be calculated. Finally, an improved G-N algorithm is 

constructed. On the other hand, the PSO algorithm avoids the 

complicated derivation process of solving the adjustment 

model. The computational cost is very low. However, this 

algorithm can easily fall into the local optimal solution. By 

combining with other features, the Linearly Decreasing 

Weight (LDW) strategy and the concept of shrinkage factor 

to adjust the particle velocity and acceleration [8]-[11] an 

improved PSO algorithm was developed to prevent it from 

falling into a local optimum. The 3D edge network is taken 

as an example, the adjustment model of the 3D control 

network is solved, the feasibility of the two improved 

methods proposed in this paper is verified, and the derivation 

of complex functions in the solution process is avoided, 

which provides a new idea for solving the adjustment model. 

The rest of this article is organized as follows. First, we 

introduce the theory underlying 3D control networks and 

formulate the objective function. Then, the method for 

measuring and calculating the edge network is presented. 

Next, different algorithms are used to solve experimental 

systems and the original algorithm is compared with the 

proposed algorithms. Finally, we draw the conclusions from 

this work. 

2. SUBJECT & METHODS 

A. Theoretical basis of 3D control networks 

The adjustment model calculation is based on the LS 

principle [11]. The 3D edge measurement network was taken 

as an example, and the 3D coordinates of the measurement 

station and the control point in the global coordinate system 

were calculated using the observation values from the 

precision distances. The global coordinates of the 𝑖th (𝑖 =
1, 2, … , 𝑚) station and 𝑗th (𝑗 = 1, 2, … , 𝑛) control point are 

represented by (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗), respectively, and 

the distance between the two points is expressed by 𝑆𝑖𝑗(1 ≤

𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛). We observe n control points using m 

stations, and a 3D edge measurement network is constructed, 

as shown in Fig. 1. 

 

Fig. 1.  3D edge measurement network. 

The equation to calculate the observed distance between 

two points is derived using the global coordinates of the 

station and the control point. 

 𝐸(𝑆𝑖𝑗  2) = (𝑋𝑖 − 𝑥𝑗)
2

+ (𝑌𝑖 − 𝑦𝑗)
2

+ (𝑍𝑖 − 𝑧𝑗)
2
 (1) 

Constructing the objective function 

The adjustment model for a non-linear system of equations 

for a 3D edge measurement network is based on the equation 

of the observed distance between two points: 

 
𝑓𝑖𝑗 = (𝑋𝑖 − 𝑥𝑗)

2
+ (𝑌𝑖 − 𝑦𝑗)

2
+ (𝑍𝑖 − 𝑧𝑗)

2
− 𝑆𝑖𝑗

0 2
= 0

𝐹(𝑿) = 𝑓𝑖𝑗(1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛)

  (2) 

where 𝑆𝑖𝑗
0  is the measured distance and the unknown 

parameter 

𝑿
3(𝑚+𝑛)×1

=   (𝑋1, 𝑌1, 𝑍1, ⋯ , 𝑋𝑚, 𝑌𝑚, 𝑍𝑚, 𝑥1, 𝑦1, 𝑧1, ⋯ , 𝑥𝑛, 𝑦𝑛 , 𝑧𝑛)𝑇
 

is used for t = 3(m+n). When solving the non-linear 

equations, the global minimum of ∥ 𝐹(𝑿) ∥2 (2-norm) is 

equivalent to the non-linear system of equations 

𝐹(𝑿) = 0 [16]. The global minima of ∥ 𝐹(𝑿) ∥2 and 

∥ 𝐹(𝑿) ∥2
2 are the same; they are defined as 

 min ∥ 𝐹(𝑿) ∥2
2= ∑  

𝑖=𝑛,𝑗=𝑚
𝑖=1,𝑗=1 (∥∥𝑓𝑖𝑗∥∥

2
) (3) 

Therefore, (3) is used as the objective function for solving 

the 3D edge measurement network. 

Get the initial value of an unknown parameter 

For example, we used a laser tracker to measure the 3D 

coordinates of the control points according to the principles 

of spherical coordinate measurement. Laser trackers are 

widely used in the precision industry and in engineering due 
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to their high measurement accuracy, efficiency and ease of 

use [3]. For large-scale measurements, single station 

measurements cannot be used. At present, global control 

points are usually acquired by multi-station measurements, 

and the coordinate values of control points in a station 

coordinate system are determined by spherical coordinate 

transformations. Table 1 shows the technical parameters of 

the AT402 laser tracker. 

Table 1.  Technical parameters of the laser tracker AT402. 

Parameter name Technical parameter 

Measurement space Max distance 160 m 

Horizontal ± 360° 

Vertical ± 145° 

Angular measuremet accuracy ± (15 µm/m + 6 µm/m) 

Preheating time 8 min 

Absolute ranging accuracy ± 10 µm 

 

Assume that the coordinate values of control point j in the 

coordinate system of the ith station are (𝑋𝑖𝑗 , 𝑌𝑖𝑗 , 𝑍𝑖𝑗). The 

observation values of horizontal angle, zenith angle, and 

oblique distance from the ith station to the control point j are 

𝐻𝑖𝑗 ,⋅ 𝑉𝑖𝑗 , and 𝑆𝑖𝑗 , as shown in Fig. 2. 

O
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Xij

Yij

Zij

 ith station

 

Fig. 2.  Principle of spherical coordinate measurement systems. 

The coordinate values of the control points in the station 

coordinate system can then be determined by spherical 

coordinate transformations. 

 {

𝑋𝑖𝑗 = 𝑆𝑖𝑗sin 𝑉𝑖𝑗cos (2𝜋 − 𝐻𝑖𝑗)

𝑌𝑖𝑗 = 𝑆𝑖𝑗sin 𝑉𝑖𝑗sin (2𝜋 − 𝐻𝑖𝑗)

𝑍𝑖𝑗 = 𝑆𝑖𝑗cos 𝑉𝑖𝑗

 (4) 

The first station coordinate system is regarded as the global 

coordinate system. According to the principle of common 

point coordinate conversion, at least three or more common 

points between two adjacent stations are needed to calculate 

the initial value of each station's position of the global 

coordinate system. 

 (

𝑋𝑖𝑗

𝑌𝑖𝑗

𝑍𝑖𝑗

) = 𝑅0 (

𝑥𝑗 − 𝑋𝑖0

𝑦𝑗 − 𝑌𝑖0

𝑧𝑗 − 𝑍𝑖0

) (5) 

where (𝑋𝑖0, 𝑌𝑖0, 𝑍𝑖0) and 
0R  are the initial position and 

posture values of the ith station of the global coordinate 

system, respectively. The initial coordinate values  

𝑿0
3(𝑚+𝑛)×1

= (𝑋10, 𝑌10, 𝑍10, ⋯ , 𝑋𝑚0, 𝑌𝑚0, 𝑍𝑚0, 𝑥10, 𝑦10, 𝑧10, ⋯ , 𝑥𝑛0, 𝑦𝑛0, 𝑧𝑛0)𝑇
 

B. Adjustment method 

At present, the 3D edge measurement network is mainly a 

rank-deficient free network adjustment model based on the 

central datum constraint and is calculated by the LS principle 

[1]. In this article, the optimization method of non-linear 

equations is used to solve the objective function of the 

measurement network. With respect to the adjustment model 

consisting of non-linear equations, the improved G-N 

algorithm and the improved PSO algorithm are developed. 

The improved G-N algorithm 

The Newton-type algorithm uses an iterative approach to 

calculate the optimal value of the objective function by 

neglecting third-order and higher-order terms at the initial 

iteration point using a Taylor series expansion, as follows 

[17]: 

 𝑓𝑖𝑗(𝑿𝑘 + 𝒔𝑘) ≈ 𝑓𝑖𝑗(𝑿𝑘) + 𝒈𝑖𝑗
𝑘 𝒔𝑘 +

1

2
𝒔𝑘 𝑇𝑮𝑘𝒔𝑘 (6) 

where 𝑓𝑖𝑗 is the residual function of the distance, 𝑿𝑘 is an 

approximation of an unknown parameter, 𝒔𝑘 = 𝑿 − 𝑿𝑘 

represents the residuals of an unknown parameter, 

𝒈𝑖𝑗
𝑘 = ∇𝑓𝑖𝑗(𝑿𝑘) is the gradient of the distance residual 

function, and 𝑮𝑘 = ∇2𝑓𝑖𝑗(𝑿𝑘) is the second-order derivative 

of the distance residual function. 

Considering the objective function 

min ∥ 𝐹(𝑿) ∥2
2= ∑𝑖=1,𝑗=1  (∥∥𝑓𝑖𝑗∥∥

2
) of the non-linear system 

of equations based on the observation distance values to 

represent an unconstrained minimum problem, 𝑿𝑘 is an 

approximation of an unknown parameter and the gradient of 

∥ 𝐹(𝑿) ∥2
2  refers to (7). 

 𝒈𝑘(𝑿) = ∑  
𝑖=𝑚,𝑗=𝑛
𝑖=1,𝑗=1 𝑓𝑖𝑗(𝑿𝑘)∇𝑓𝑖𝑗(𝑿𝑘) = 𝑱(𝑿𝑘)𝑇𝐹(𝑿𝑘) (7) 

Where 𝑱(𝑿𝑘) is the Jacobian matrix of 𝐹(𝑿𝑘) and 

𝑮(𝑿𝑘) = 𝑱(𝑿𝑘)𝑇𝑱(𝑿𝑘) + 𝑺(𝑿𝑘) is the Hessian matrix of 

∥ 𝐹(𝑿) ∥2
2, where the quadratic form of the objective function 

∥ 𝐹(𝑿) ∥2
2 is defined in (8). 

 𝑚𝑘(𝑿) = 𝐹(𝑿𝑘) + 𝒈𝑘𝒔𝑘(𝑿) +
1

2
𝒔𝑘

𝑇𝑮(𝑿𝑘)𝒔𝑘 (8) 

After the right side of (8) is minimum and in order to make 

its first derivative zero, the Newton iteration formula can be 

calculated, as referred to in (9). 

 {
−𝑮𝑘

−1𝒈𝑘 = 𝒔𝑘

𝑿𝑘+1 = 𝑿𝑘 − 𝑮𝑘
−1𝒈𝑘

 (9) 



MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 4, 150-157 

153 

where Xk and Xk+1 are the unknown parameter values of the 

kth and (k+1)th iterations, respectively, 𝛼𝑘 and 𝑑𝑘 are the step 

factor and the descending direction of the kth iteration. For the 

unconstrained optimization problems, the initial values of the 

unknown parameters must first be provided. The step factor 

should be calculated according to the minimum problem to 

determine the direction of descent. Consequently, 𝑿𝑘+1 =
𝑿𝑘 + 𝛼𝑘𝑑𝑘 is obtained. It can be seen that by combining (9) 

and (7), the step factor of the kth iteration is 1 and the search 

direction is −𝑮𝑘
−1𝒈𝑘. The G-N method discards the second-

order entry S(X) in the Hessian matrix G(X) and yields the  

G-N iterative method: 

𝑿𝑘+1 = 𝑿𝑘 − (𝑱(𝑿𝑘)𝑇𝑱(𝑿𝑘))
−1

𝑱(𝑿𝑘)𝐹(𝑿𝑘) = 𝑿𝑘 + 𝑑𝑘 

 (10) 

The initial values in (10) serve as the starting point for the 

iterative solution using the G-N algorithm. 

The G-N method is usually used to solve non-linear LS 

problems, but it requires the 𝑱(𝑿𝑘)𝑇𝑱(𝑿𝑘) matrix to be at least 

full rank and needs a descent direction for the linear search. 

To ensure that the search direction of the objective function 

decreases at each step, a damped G-N method can be created 

by adding a linear search strategy to the G-N algorithm and 

improving (10): 

𝑿𝑘+1 = 𝑿𝑘 − 𝛼𝑘(𝑱(𝑿𝑘)𝑇𝑱(𝑿𝑘))
−1

𝑱(𝑿𝑘)𝐹(𝑿𝑘) = 𝑿𝑘 + 𝛼𝑘𝑑𝑘 

 (11) 

where 
k  is a one-dimensional search factor that generally 

assumes a value between 0.5 and 1 [6]. 

Considering that the matrix 𝑱(𝑿𝑘)𝑇𝑱(𝑿𝑘) often becomes 

singular when the adjustment model of the control network is 

solved, the first iteration direction 𝑑1 is calculated according 

to the initial value 𝑿0 of the unknown parameter, and the 

positivity of the iteration direction is determined by the 

eigenvalue of the parameters. If the eigenvalue is positive, the 

initial value is included in the iterative process of the 

algorithm. Otherwise, the algorithm applies the trust region 

strategy and corrects 𝑑1 using the following approach: 

 𝑑1 = (𝑱(𝑿0)𝑇𝑱(𝑿0) + 𝜇𝑰)−1𝑱(𝑿0)𝐹(𝑿0) (12) 

where 𝜇 = 1 × 10−5 and I is the identity matrix. 

Considering that the algorithm can only solve problems 

where the initial iteration value is close to the true value of 

the unknown parameters, the algorithm may not converge if 

the second-order entry S(X) in the G-N method is large. To 

ensure the feasibility of the algorithm in the presence of a 

large residual, a BFGS-corrected damped G-N algorithm is 

proposed. The approximate Hessian matrix is constructed and 

the secant approximation of the second-order information 

discarded by the G-N method via the second-order entry S(X) 

is constructed such that the Hessian approximate matrix 𝑯𝑘+1 

of the (k+1)th iteration is closest to 𝑯𝑘, and the information 

of the kth iteration is fully guaranteed. 

 𝑯𝑘+1 = (𝑰 −
𝒔𝑘𝑦𝑘

𝑇

𝒔𝑘
𝑇𝑦𝑘

) 𝑯𝑘 (𝑰 −
𝑦𝑘𝒔𝑘

𝑇

𝒔𝑘
𝑇𝑦𝑘

) +
𝒔𝑘𝒔𝑘

𝑇

𝒔𝑘
𝑇𝑦𝑘

 (13) 

here 𝒚𝑘 = 𝒈𝑘+1 − 𝒈𝑘. 

The BFGS-corrected damped G-N algorithm is used to 

solve the 3D edge measurement network adjustment model. 

The algorithm flow is shown in Fig. 3. 

X0，k=1 calculate d1

d1 positive 

definiteness

no

yes

d1  rectifyXk+1=Xk +α d1，k=k+1

Calculate d k

dk positive 

definiteness

no

dk=-HkgkXk+1=X k+α  d k，k=k+1

(Xk+1-Xk)s>0.0001

no

end

yes

yes

 

Fig 3.  Improved G-N algorithm process. 

Based on the principle of spherical coordinate 

measurements and the method of common point coordinate 

transformation, the initial values of the unknown parameters 

are determined, the adjustment is calculated according to the 

flow of the BFGS-corrected damped G-N algorithm. Set up 

the iterative calculation formula of the unknown parameters. 

If dk is singular, the search direction is not the descending 

direction, but the trust threshold strategy is used for iterative 

correction. If 𝑯𝑘  is singular, the convergence of the algorithm 

cannot be guaranteed for large residuals. A secant 

approximation of the information items of 𝑯𝑘 is constructed 

and the iterative calculation is performed. The 3D global 

coordinates of the station and the control point are then 

determined as (𝑋𝑖 , 𝑌𝑖 , 𝑍𝑖) and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) , respectively. 

The improved SO 

The PSO algorithm has its origins in the study of bird 

predatory behavior. The basic idea of the PSO algorithm is to 

achieve the optimal solution of the equation through 

cooperation and information sharing among the individuals in 
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the group [12]. A group of massless random particles is 

designed by initialization to simulate the birds in the flock, 

and the optimal solution is obtained by iterative calculation. 

The particles have only two properties: velocity and position. 

The velocity indicates the speed of movement, and the 

position indicates the direction of movement [13]. Each 

particle independently searches for the optimal solution in the 

search space and records it as the current individual extreme 

value. By sharing information with other particles in the 

entire particle swarm, the optimal individual extreme value is 

determined as the current global optimal solution of the entire 

particle swarm, and all particles in the particle swarm update 

their own velocity and position according to the current 

individual extreme value and the current global optimal 

solution shared by the entire particle swarm [13].  

There are 3 (m+n) unknown parameters in the space 3D 

edge measurement network. Suppose that in a large search 

space with 3 (m+n) dimensions, a community is composed of 

n particles, where the ith particle is expressed as a 3 (m+n)-

dimensional vector:  

𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖3(𝑚+𝑛)),   𝑖 = 1,2, … , 𝑁.  

The velocity of the ith particle is expressed as 0, and the 

optimal solution of the individual and the optimal solution of 

the entire population are maintained simultaneously. The 

position and velocity of the ith particle are updated according 

to (14) and (15): 

 𝒙𝑖𝑑+1 = 𝒙𝑖𝑑 + 𝒗𝑖𝑑 (14) 

 𝒗𝑖𝑑 = 𝜔 × 𝒗𝑖𝑑−1 + 𝑐1𝑟1(𝒑𝑖𝑑 − 𝒙𝑖𝑑) + 𝑐1𝑟2(𝒑𝑔𝑑 − 𝒙𝑖𝑑)

  (15) 

where 𝒑𝑖𝑑 is the individual known optimal solution, 𝒑𝑔𝑑 is 

the global known optimal solution, c1, c2 are the learning 

factors, 𝜔 is the inertia weight, r1, r2 are the random numbers 

within, 𝒙𝑖𝑑 and 𝒗𝑖𝑑 are the position and velocity of the dth 

optimization, respectively. The global search ability is strong 

when the 𝜔 value is large, and the local search ability is strong 

when it is small [14]. Therefore, the strategy of LDW is 

considered: 

 𝜔(𝑡) = (𝜔𝑖𝑛𝑖 − 𝜔
end

)(𝐺𝑘 − 𝑘)/𝐺𝑘 + 𝜔
end

 (16) 

where k stands for the current iteration times and 𝐺𝑘 for the 

maximum iteration times, 𝜔𝑖𝑛𝑖  and 𝜔end are the minimum 

inertia coefficient and the maximum inertia coefficient 

defined in advance, and are generally 0.4 and 0.9. Optimizing 

the velocity using LDW results in an improved PSO 

algorithm that balances the global search ability and local 

search ability of the algorithm. Accordingly, a larger positive 

𝜔 value is specified in the initial stage of the algorithm, with 

𝜔 gradually decreasing linearly as the search progresses. In 

the later stage of the search, the smaller 𝜔 value can ensure 

that the particles search carefully near the extreme point, so 

that the algorithm can ensure a greater probability of 

convergence to the global optimal solution. 

To solve the premature problem of the PSO algorithm [15], 

the concept of shrinkage factor is considered. By adjusting 

the experience value c1 of its own particles and the experience 

value c2 of the other particles, i.e. the acceleration constant of 

the algorithm, the step size of the particles flying to the local 

and global optimal positions is controlled simultaneously, so 

that the problem of the particles staying too long near the 

local extreme value is avoided. The shrinkage factor is: 

 𝜁 =
2

|ℎ−𝑛−√𝑐2−4𝑐|
 (17) 

where 𝑐 = 𝑐1 + 𝑐2. Accordingly, the formula for the velocity 

is: 

 𝑣𝑖𝑑 = 𝜁 × 𝜔 × 𝑣𝑖𝑑−1 + 𝑐1𝑟1(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐1𝑟2(𝑝𝑔𝑑 − 𝑥𝑖𝑑)

  (18) 

By optimizing the inertia weight 𝜔 and the learning factors 

c1, c2 in the PSO algorithm, the algorithm can reasonably 

control its search time in local extremes, and at the same time 

converge faster to the global optimal solution. 

With the initial values 𝑿0 of the unknown parameters, (3) 

is solved according to the improved PSO algorithm and the 

adjustment calculation of spatial 3D edge network is 

performed. The process is as follows: 

1. For the constructed objective function, it is assumed that 

the population size is N = 40, and the unknown range is 

set. According to the initial coordinate values 𝑿0 of all 

control points in the global coordinate system, an initial 

set of random velocities is set, which are generally 

0.1-0.2 times their positions. The learning factor value 

c1, c2 is 2.05 and the number of iterations is 2000. Five 

populations are assumed to have evolved 

simultaneously. 

2. The objective function corresponding to each solution 

has been calculated according to (3), the current 

individual extreme value and the global optimal solution 

of each random solution have been found, the position 

and velocity of the random solution can be updated 

according to (14) and (15), and the position and velocity 

of crossing the boundary can be adjusted. 

3. The stochastic solution of the objective function value 

has been evaluated. Then the historical and global 

optimal position of the particles can be updated. 

4. If the minimum condition is satisfied, the global optimal 

result is output and the program is terminated. 

Otherwise, steps (2) and (3) are repeated. 

5. The improved PSO algorithm described above solves 

the spatial 3D edge measurement network. 

3. RESULTS 

As shown in Fig. 4, 12 control points and 4 stations were 

set up within a 15103 m space. The temperature is 

relatively stable. All control points were observed at each 

station. The measurements are performed with a Leica AT402 

laser tracker [18]-[19]. Before the experiment, the instrument 
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was checked to ensure that it meets the nominal accuracy 

requirements. Each station corresponds to 12 distances from 

the stations to the point, 4 stations have 48 distances. 

 

Fig. 4.  Layout of the control points and stations. 

A. Experiment 1 

The initial 3D coordinates of the stations and control points 

are obtained by spherical coordinate transformations. The 

global 3D coordinates of the stations and control points were 

determined by the rank deficient free network adjustment 

method with additional barycentric reference constraints [5], 

the improved PSO method and the improved damped G-N 

method. The laser tracker has a high precision ranging 

capability, and the instrument was verified to meet nominal 

accuracy standards prior to the experiment. The laser 

tracker’s ranging value can be used as a reference value to 

evaluate the adjustment of the network. In addition to the 3D 

coordinates of the station and the control points in the global 

coordinate system, the distance between the station and the 

control points was calculated according to (18), and then the 

distance difference Δ𝐷𝑖𝑗  and the average value were 

calculated. 

 {

(𝑋𝑖 − 𝑥𝑗)
2

+ (𝑌𝑖 − 𝑦𝑗)
2

+ (𝑍𝑖 − 𝑧𝑗)
2

= 𝑆𝑖𝑗  2

Δ𝐷𝑖𝑗 = 𝑆𝑖𝑗 − 𝑆0 𝑖𝑗

Δ𝐷 = ∑  
𝑖=𝑚,𝑗=𝑛
𝑖=1,𝑗=1  Δ𝐷𝑖𝑗

 (18) 

The calculation results are shown in Fig. 5, where the rank 

deficient free network adjustment is abbreviated as LS. 

As shown in Fig. 5, the LDW is better than the non-

Linearly Decreasing Dynamic Weight (nLDW). The 

adjustment model of the 3D edge network is solved by the 

LS, the improved PSO algorithm and the improved G-N 

method. It is noteworthy that all three algorithms yielded the 

same 48-segment distances. The maximum distance 

differences were 0.009, 0.01, and -0.011 mm, and the 

minimum differences were -0.011, -0.009, and -0.011 mm. 

The average distance differences for the respective 

algorithms were -0.0003, -0.0006, and 0 mm. These results 

confirm the feasibility of the two methods proposed in this 

work to solve the adjustment model for the 3D edge network. 
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(a) LDW and nLDW of PSO. 

 
(b) Different algorithms. 

Fig. 5.  Calculation results using different algorithms. 

B. Experiment 2 

By comparing the initial values of the unknown parameters 

with the results from the first experiment, we tested the initial 

values of the unknown parameters with large residuals. The 

LS [5], the improved PSO algorithm and the improved G-N 

method are used to calculate the 3D coordinates of the 

stations and the control points in the global coordinate 

system. Referring to (14), the difference Δ𝐷𝑖𝑗  and the average 

difference Δ𝐷 are calculated. As shown in Fig. 6, the 

calculation results show the difference between the calculated 

values and the actual distances of the 48-segment distances. 
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(c) Improved G-N Ranging number. 

Fig. 6.  Δ𝐷𝑖𝑗calculated using different algorithms. 

The LS [5], the improved PSO algorithm and the improved 

G-N method required two, four, and two iterations, 

respectively, for the calculations. When these methods are 

applied to solve the 3D edge measurement network 

adjustment model, the effect of the distance difference is as 

shown in Fig. 6. The maximum values of the distance 

difference results for the three respective solution methods 

were 0.011, 0.09, and 0.009 mm; the minimum values were -

0.009, -0.098, and -0.011 mm; and the mean values were 

0.0007, -0.003, and -0.0004 mm. It is evident that the 

improved G-N solution method and LS perform significantly 

better than the improved PSO method. In particular, the 

improved G-N algorithm showed greater robustness than the 

other algorithms. This shows that the improved G-N 

algorithm is able to effectively solve initial unknown 

parameter values with relatively large residuals. 

4. CONCLUSION 

In this article, different solutions for the adjustment model 

of the 3D control network are investigated. In view of the 

problems of the existing adjustment methods, such as the 

large computational volume, the large number of complex 

function derivation calculations, etc., a non-linear 

mathematical model is established, the PSO and G-N 

algorithms are introduced and improved, and the 

mathematical model is solved. To overcome the limitations 

of the G-N and PSO algorithms, the BFGS-corrected damped 

G-N algorithm and the improved PSO algorithm were 

proposed. Using the 3D edge measuring network as an 

example, the non-linear equations are constructed based on 

the distance observations. In addition, the adjustment solution 

objective function is formed. The analysis of the experimental 

data proves the effectiveness of the algorithm in solving the 

adjustment model. In particular, when dealing with large 

initial residuals, the proposed BFGS-corrected damped G-N 

algorithm outperformed the LS and improved PSO 

algorithms in terms of robustness. Therefore, this method 

provides a new way to solve the adjustment model of the 3D 

control network. This is of great practical significance for 

improving the accuracy of the control network solution and 

performing high-precision industrial and engineering 

measurements. 
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