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Abstract: Underwater Wireless Sensor Networks (UWSNs) are established by Autonomous Underwater Vehicles (AUVs) or static Sensor 

Nodes (SN) that collect and transmit information over the underwater environment. Localization plays a vital role in the effective 

deployment, navigation and coordination of these nodes for many applications, namely underwater surveillance, underwater exploration, 

oceanographic data collection and environmental monitoring. Due to the unique characteristics of underwater transmission and acquisition, 

this is a fundamental challenge in underwater networks. However, localization in UWSNs is problematic due to the unique features of 

underwater transmission and the harsh underwater environment. To address these challenges, this paper presents an Improved Grey Wolf 

Optimization Based Node Localization Approach in UWSN (IGWONL-UWSN) technique. The presented IGWONL-UWSN technique is 

inspired by the hunting behavior of grey wolves with the Dimension Learning-based Hunting (DLH) search process. The proposed 

IGWONL-UWSN technique uses the Improved Grey Wolf Optimization Based (IGWO) algorithm to calculate the optimal location of the 

nodes in the UWSN. Moreover, the IGWONL-UWSN technique incorporates the DLH search process to improve the convergence and 

accuracy. The simulation results of the IGWONL-UWSN technique are validated using a set of performance measures. The simulation 

results show the improvements of the IGWONL-UWSN method over other approaches with respect to various metrics. 
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1. INTRODUCTION 

The concept of Underwater Wireless Sensor Networks 

(UWSNs) has attracted a lot of attention recently. Underwater 

Sensor Networks (USNs) can be used for a range of 

applications. Each implementation is critical in its field [1], 

but some could enhance ocean exploration to fulfill the 

number of underwater applications, namely, assisted 

navigation, natural disaster warning systems (e.g., seismic 

and tsunami tracking), ecological applications (e.g., pollution 

tracking, biological water quality), underwater monitoring, 

industrial applications (e.g., marine research), oceanographic 

information collection, and so on [2]. For offshore 

engineering applications, for example, sensors could evaluate 

a number of parameters, namely, mooring tension and base 

intensity, to monitor the structural quality of the mooring 

environment [3]. In addition to the essential features of 

typical Wireless Sensor Networks (WSNs), such as limited 

energy and large-scale deployment, UWSNs have certain 

differences from terrestrial systems. First, underwater 

transmission was detected only by the acoustic signal, which 

has higher error rates and lower bandwidth [4]. In addition, 

beacon nodes are sparser and the scale of node deployment in  

an underwater environment is very large. Non-negligible 
node mobility can lead to general fluctuations in the network 
topology due to water currents [5]. The tracking and detection 
of the intrusion object should rely on the location of the nodes 
in the marine military defense field [6]. 

Localization is a problem of estimating node locations and 
can be done globally using altitude, latitude and longitude 
data or locally using position data with respect to other nodes 
[7]. Location data is required for data tagging because the 
data received from the sink node cannot be recognized 
without node location information and becomes worthless for 
the application. Nodes with location data are called beacon or 
Anchor Nodes (ANs), while nodes without location data are 
called ordinary or blind nodes [8]. Furthermore, localization 
may be required not only for tagging objects, but also for 
finding the best routes in geographic routing and for optimal 
coverage of an area. Location information can be used to 
develop effective management and networking protocols [9]. 
The nodes can be deployed using an Autonomous 
Underwater Vehicle (AUV) or manually, depending on the 
area and network size. In manual deployment, the network is 
accessible to humans and the nodes register their location 
[10]. 
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2. RELATED WORKS 

A mobile AN-based Received Signal Strength Indicator 

(RSSI) localization method in UWSN is presented in [11]. A 

Support Vector Regression (SVR) related to the interpolation 

approach was developed to predict the prediction of Sensor 

Nodes (SNs) on the linear trajectory of mobile ANs. Next, a 

curve matching approach was developed to determine the 

perpendicular distances of SNs to the linear trajectory of the 

mobile ANs. Finally, the simulation results prove that the 

presented method enables more precise SN localization in 

less time than the current methods. 

A Cross-Layer Protocol with Lower Interference (CLIC) 

and congestion depending on directional reception is 

presented in [12]. In the CLIC method, a combined routing-

MAC model can be developed to utilize the directional beams 

for creating high capacity and low interference data 

transmission links and balance the main aspects affecting the 

network performance to obtain low congestion and low 

collision routes. A Geodesic Search Algorithm (GSA) is 

related to target localization that minimizes the Localization 

Error (LE) using the phase-space constancy of the UWSN to 

efficiently triangulate the targeted nodes regardless of their 

mobility. A malicious AN approach was introduced in [13]. 

A better localization approach for mobile aquaculture 

WSN related to the Improving Dynamic Population Monte 

Carlo Localization (I-DPMCL) method is presented in [14]. 

According to these localization behaviors, specific delays 

were predicted depending on the statistical point of view. A 

performance comparison of I-DPMCL with other Sliding 

Mode Control (SMC)-related methods was also presented. In 

[15], a precise range-based method was modeled and the need 

to utilize the power of SNs expeditiously is a different feature 

of underwater WSNs. An improved analysis for underwater 

localization is developed by providing a general localization 

approach and then installing a normal beacon node to 

determine the accuracy and error of sensor localization. The 

author presented two localization methods, the angle-based 

method and the distance-based method. 

A range-free Radial Basis Function Network (RBFN) and 

a Kalman Filtering (KF) based technique called RBFN+KF is 

presented. Compared to other techniques, the simulation 

results show lower location estimation errors [16]. Moreover, 

the RBFN-oriented approach is more energy-efficient than 

Multilayer Perceptron (MLP)-based localization and 

trilateration methods. An energy-free Heuristic Neural 

Network (HNN) localization method with Deep Learning 

(DL) algorithm for locating the dead Mobile Sensor Nodes 

(MSN) in a largescale Underwater Acoustic Sensor Network 

(UASN) is presented. The HNN localization achieves high 

accuracy and minimum LE compared to the presented DL 

algorithms [17]. 

The problem of localization in the UWSNs poses a great 

challenge due to the unique characteristics of underwater 

transmission and the harsh underwater environment. 

Conventional localization techniques often struggle to 

provide accurate and efficient localization solutions under 

such conditions. To overcome these challenges, this paper 

proposes an Improved Grey Wolf Optimization Based Node 

Localization Approach in UWSNs (IGWONL-UWSN) 

method. 

3. PROPOSED SYSTEM 

In this paper, we present a novel IGWONL-UWSN 

technique to determine the optimal location of SNs in the 

UWSN. The presented IGWONL-UWSN technique is 

inspired by the hunting behavior of grey wolves with the 

Dimension Learning-based Hunting (DLH) search process. 

The proposed IGWONL-UWSN technique utilizes the 

IGWO algorithm to calculate the optimal location of nodes in 

the UWSN. Fig. 1 shows the working procedure of the 

IGWONL-UWSN method, which employs UWSN with 𝑛 

nodes used in the 2D space of 𝑍2, and 𝑚 ANs. There are 𝑛 −
𝑚 unknown nodes. where 𝑚 < 𝑛. The distance of all nodes 

to their near neighbors within their ranging distance was 

evaluated and then a network was used. All effective distance 

measurements are transmitted to the Base Station (BS) 

together with the node conditions using multi-hop routing. A 

graph is created and each evaluated distance is transmitted to 

the BS. This graph for WSN is modeled as 𝐺 with (𝑉, 𝐸), 
where 𝑉 and 𝐸 denote the group of vertices and edges. A 

group of SNs is denoted by the vertices 𝑉 with {𝑣1, 𝑣2, . . 𝑣𝑛}. 
The connection of vertices is denoted as a group of edges 𝐸 

with {𝑒1,2, 𝑒1,3, . . 𝑒𝑖,𝑗 , . . 𝑒𝑛−1,𝑛}. If the connected component 

of 𝐺, 𝐺1 = (𝑉1, 𝐸1) does not have three or more ANs, then any 

SN from the subgraph 𝐺1 cannot be localizable. It assumes 

that each connected element of the graph 𝐺 has at least 3 

anchors. 

 

Fig. 1.  Working process of the IGWONL-UWSN approach. 

A. Design of the Improved Grey Wolf Optimization Based 

(IGWO) algorithm 

The Greedy Wolf Optimization (GWO) algorithm is a 

Swarm Intelligence (SI) optimization technique in which the 

process of finding the global optimum is motivated by the 

hunting behavior of the Greedy Wolf (GW) population. There 

is a strict hierarchy in the GW population, and a few GWs 

with absolute discourse power guide a population of GWs 

towards the prey. GWs are usually divided into 4 groups: 𝛼, 

𝛽, 𝛿, and 𝜔 wolves. The rights are from larger to smaller to 

simulate the leadership class. Collective hunting is a social 

behavior of GWs. It mainly consists of three phases: (1) 

approaching, harassing and tracking the target; (2) encircling 

and hunting the prey until it stops moving; and (3) attacking 
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the target. First, create a mathematical process for the social 

hierarchy of the GW and the model of the social hierarchy of 

GW. The 𝛼 wolf is used as the optimal solution, i.e. the fitness 

of the individual is optimal, the suboptimal solution is the 𝛽 

wolf, and the fittest solution is the 𝛿 wolf, i.e. the global 

optimum or the local optimum solution of the main function, 

with the minimum or maximum values of the main function. 

The remaining candidate solution is called the 𝜔 wolf. The 

hunting strategy is based on the 𝛽, 𝛿, and 𝜔 wolves following 

the above three wolves. More specifically, look for the three 

best solutions first and then search around the area to find the 

best solution and improve the 𝛽 and 𝛿 wolves later. The GW 

strategy of prey hunting can be described using (1): 

 𝐷 = |𝐶 ⋅ 𝑋𝑝(𝑧) − 𝑋(𝑧)| (1) 

The equation for the position update of GW is given below: 

 𝑋(𝑧 + 1) = 𝑋𝑝(𝑧) − 𝐴 ⋅ 𝐷  (2) 

Coefficient vector: 

 𝐴 = 2𝛼 ⋅ 𝑟1 − 𝛼 (3) 

 𝐶 = 2 ⋅ 𝑟2 (4) 

From the equation, 𝑋𝑝 stands for the vector prey location, 

𝑋 represents the place vector of the GWs, 𝑧 denotes the 

number of iterations, 𝐷 shows the distance vector between the 

individuals and the hunt, 𝑟1 and 𝑟2 are the random vector 

numbers from the interval of zero and one and 𝛼 denotes the 

convergence factor (decreases linearly in two to zero with the 

iteration number).  

GWs could find the location of the prey and encircle it. 

Once the GW has identified the location of the prey, it leads 

the wolf population to encircle the prey in the guidance of  𝛽 

and 𝛿. The tracking of the prey location can be 

mathematically modeled as follows: 

 𝐷𝛼 = |𝐶1 ⋅ 𝑋𝛼 − 𝑋| 

 𝐷𝛽 = |𝐶2 ⋅ 𝑋𝛽 − 𝑋| (5) 

 𝐷𝛿 = |𝐶3 ⋅ 𝑋𝛿 − 𝑋| 

From the expression, 𝐷𝛼 , 𝐷𝛽 and 𝐷𝛿  signify 𝛼, 𝛽 and 𝛿 and 

the distance to other individuals, respectively; 𝑋𝛼 , 𝑋𝛽 and 𝑋𝛿  

show the existing location of 𝛼, 𝛽 and 𝛿, respectively; 𝐶1, 𝐶2 

and 𝐶3 represent a random vector and X indicates the existing 

location of the GW. Equation (6) determines the step length 

and direction of 𝜔 individuals from the wolf pack near 𝛼, 𝛽 

and 𝛿, and (7) describes the final location of 𝜔. The steps of 

GWO are shown in Fig. 2. 

 𝑋1 = 𝑋𝛼 − 𝐴1 ⋅ (𝐷𝛼) 

 𝑋2 = 𝑋𝛽 − 𝐴2 ⋅ (𝐷𝛽)  (6) 

 𝑋3 = 𝑋𝛿 − 𝐴3 ⋅ (𝐷𝛿) 

 𝑋𝑧+1 =
𝑋1+𝑋2+𝑋3

3
 (7) 

B. Process involved in the IGWONL-UWSN technique 

The proposed IGWONL-UWSN technique utilizes the 

IGWO algorithm to calculate the optimal location of nodes in 

the UWSN. The goal of IGWONL-UWSN localization in a 

UWSN is to find the coordinates of 𝑛 − 𝑚 unknown nodes 

and use the previous data about the locations of 𝑚 ANs. The 

presented main function for node localization contains 

2 phase processes. The primary one is a ranging system in 

which the nodes determine their distances in ANs based on 

the signal propagation time or RSSI, and the secondary one is 

the position estimation of the nodes, i.e. using the ranging 

data. The LE was minimized by applying optimization 

techniques. Initially, all ANs in the application estimate their 

distance to each of their neighboring target nodes. RSSI 

ranging technology is used to determine the distance between 

the nodes. 

 

Fig. 2.  Steps involved in GWO. 

The distance between the unknown nodes 𝑜(𝑥, 𝑦) is 

denoted as 𝑑1, 𝑑2, 𝑑𝑛 and AN was obtained by the hop count 

and the average hop distance between the nodes. The ranging 

error is  𝜀1, 𝜀2, 𝜀𝑛, the estimation coordinates (𝑥, 𝑦) satisfy the 

following inequalities: 

 

{
 
 

 
 
𝑑1
2 − 𝜀12 < (𝑥 − 𝑥1)

2 + (𝑦 − 𝑦2)
2 ≤ 𝑑1

2 + 𝜀12

𝑑2
2 − 𝜀22 < (𝑥 − 𝑥2)

2 + (𝑦 − 𝑦2)
2 ≤ 𝑑2

2 + 𝜀22
                                          . . . .
                                          . . . .
𝑑𝑛
2 − 𝜀𝑛

2 < (𝑥 − 𝑥𝑛)
2 + (𝑦 − 𝑦𝑛)

2 ≤ 𝑑𝑛
2 + 𝜀𝑛

2

  (8) 

where 𝑑 refers to the actual distance between 2 nodes and 𝜀 

denotes the ranging error. The localization problem has been 

changed to searching for coordinates (𝑥, 𝑦) that minimize the 

objective function 𝑓(𝑥, 𝑦). This optimizer 𝑓(𝑥, 𝑦) guarantees 
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minimum total error. 

𝑓(𝑥,𝑦) = ∑ ∑ |√((𝑥𝑖 − 𝑥𝑗)
2 + (𝑦𝑖 − 𝑦𝑗)

2) − 𝑑𝑗|
𝑛
𝑖=𝑚+1

𝑚
𝑗=1   (9) 

where (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are the coordinates of the locations 

of nodes 𝑖 and 𝑗. 𝑑𝑗 denotes the distance between unknown 

nodes to AN 𝑗. 

4. RESULTS AND DISCUSSION 

In this section, the simulation results of the IGWONL-

UWSN method are examined in detail. Fig. 3 shows a 

comparison of the IGWONL-UWSN system in terms of the 

number of Localized Nodes (LN) under different anchors. 

The results show that the IGWONL-UWSN method achieves 

higher LN values. For example, on 10 anchors, the IGWONL-

UWSN system achieves a superior LN value of 163, while 

the Smell Sensing (SS)-Differential Evolution (DE), SS-

Network Lifetime (NL), Cuckoo Search (CS)-NL and GWO-

NL techniques achieve a lower LN value of 142, 139, 128 and 

119, respectively. On 50 anchors, the IGWONL-UWSN 

approach achieves an improved NL value of 198, while the 

SS-DE, SS-NL, CS-NL and GWO-NL systems achieve a 

lower LN value of 182, 177, 165 and 147, respectively. 

 

Fig. 3.  LN analysis of the IGWONL-UWSN approach under 

distinct anchors. 

A detailed LE assessment of the IGWONL-UWSN method 

compared to other systems under distinct number of anchors 

can be found in Fig. 4. The simulation values show that the 

IGWONL-UWSN method resulted in improved performance 

with lower LE values. On 10 anchors, the IGWONL-UWSN 

method achieves better performance with a minimum LE 

value of 0.181, while the SS-DE, SS-NL, CS-NL and GWO-

NL approaches achieve higher LE values of 0.319, 0.461, 

0.477 and 0.563, respectively. At the same time, the 

IGWONL-UWSN system achieves optimal performance on 

50 anchors with a lower LE value of 0.053, while the SS-DE, 

SS-NL, CS-NL and GWO-NL methods achieve maximum 

LE values of 0.281, 0.344, 0.356 and 0.445, respectively. 

 

Fig. 4.  LE analysis of the IGWONL-UWSN approach under 

distinct anchors. 

A comprehensive LE result of the IGWONL-UWSN 

technique with other methods under distinct transmission 

ranges. The simulation values show that the IGWONL-

UWSN method has resulted in improved performance with 

minimum LE values. At a 10 m transmission range, the 

IGWONL-UWSN technique achieves better performance 

with a minimum LE value of 0.134, while the SS-DE, SS-NL, 

CS-NL and GWO-NL approaches achieve higher LE values 

of 0.205, 0.286, 0.397 and 0.518, respectively. At the same 

time, the IGWONL-UWSN system achieves the best 

performance at a 30 m transmission range with a minimum 

LE value of 0.016, while the SS-DE, SS-NL, CS-NL and 

GWO-NL methods achieve the maximum value. 

The computational complexity of IGWONL-UWSN is 

balanced against its performance in terms of localization 

accuracy. While the GWO algorithm used in IGWONL-

UWSN may require computational resources, especially for 

large-scale networks, it has the advantage of optimizing the 

node coordinates to efficiently minimize the LE. The trade-

offs between computational complexity and performance 

depend on factors such as network size, environmental 

conditions and the desired localization accuracy. Therefore, 

it is important to evaluate the computational requirements of 

IGWONL-UWSN in relation to its localization performance 

to achieve an optimal balance. 

5. CONCLUSION 

In this paper, we have developed a new IGWONL-UWSN 

algorithm to determine the optimal location of SNs in the 

UWSN. The presented IGWONL-UWSN technique is 

inspired by the hunting behavior of grey wolves with the DLH 

search process. The proposed IGWONL-UWSN technique 
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utilizes the IGWO algorithm to calculate the optimal location 

of the nodes in the UWSN. In addition, the IGWONL-UWSN 

technique incorporates the DLH search process for greater 

convergence and accuracy. The simulation results of the 

IGWONL-UWSN technique are validated using a set of 

performance measures. The simulation results illustrate the 

developments of the IGWONL-UWSN method over other 

systems in terms of various metrics. In the future, node 

mobility can be considered in the development of the 

IGWONL-UWSN technique in the UWSN. Future directions 

in this area could include the development of adaptive 

algorithms capable of adapting to changing environmental 

conditions, the integration of machine learning techniques to 

improve localization accuracy, and the exploration of 

applications in emerging areas such as underwater robotics 

and autonomous systems. 
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