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Abstract: Globally, cardiovascular disease kills more than 500000 people every year, thus becoming the primary reason for death. 

Nevertheless, cardiovascular health monitoring is essential for accurate analysis and therapy of heart disease. In this work, a novel deep 

learning-based StrIppeD NAS-Network (SID-NASNet) for arrhythmia categorization into octa-classes with electrocardiogram (ECG) signals 

is presented. First, the ECG signals are recorded in real time using 12-lead electrodes. Then, the Discrete Wavelet Transform (DWT) is used 

to denoise the signals to reduce repetition and increase resilience. The noise-free ECG signals are fed into a K-means clustering algorithm 

to group ECG signal segments into a set number of clusters to identify patterns that may indicate heart abnormalities. Subsequently, the deep 

learning-based NASNet with Stripped convolutional layers is used to detect ECG irregularities of arrhythmia. Each sample point is examined 

for its local fractal dimension before extracting the heartbeat waveforms within a predetermined window length. A bio-inspired Dingo 

Optimization (DO) algorithm is used in the SID-NASNet to normalize the parameters to improve the efficiency of the network with low 

network complexity. The efficiency of the proposed SID-NASNet is assessed with specificity, accuracy, precision, F1 score and recall based 

on the MIT-BIH arrhythmia dataset. From the test results, the proposed SID-NASNet achieves an accuracy of 98.22% for effective 

categorization of ECG signals. The proposed SID-NASNet improves the overall accuracy of 1.24%, 3.76%, 1.87%, and 0.22% better than 

ECG-NET, Deep Learning (DL)-based GAN, 1D-CNN, and GAN-Long-Short Term Memory (LSTM), respectively. 

Keywords: ECG signal, arrhythmia classification, deep learning, discrete wavelet transform, stripped convolution, Dingo optimization 

algorithm. 

 

1. INTRODUCTION 

Recently, the landscape of cardiac health monitoring has 

undergone a transformative evolution, particularly in the area 

of electrocardiogram (ECG) technology [1]. With the surge 

in portable monitoring devices, an urgent need for accurate, 

reliable, and real-time detection and classification of 

arrhythmias has emerged [2]. The monitoring of vital signals 

is essential in smart medical devices such as the ECG [3], 

photoplethysmogram (PPG) [4], and electroencephalogram 

(EEG) [5]. Recent Machine Learning (ML) and Deep 

Learning (DL) approaches have advanced the landscape of 

ECG-based arrhythmia detection. Sophisticated algorithms 

can analyze ECG signals with unprecedented accuracy and 

distinguish between normal sinus rhythms and different 

arrhythmic conditions [6]. The process of categorizing ECG 

data  into  distinct  illness  classes  is a challenge  for  pattern 

recognition. Highly accurate computerized ECG 

classification could be a cost-effective mass screening 

method for cardiac problems [7], [8]. 

Several techniques have been described for the 

identification of cardiac arrhythmias, including heart-rate 

inconsistency, spectral inspection, progressive frequency 

distribution, and nonlinear signal processing approaches [9], 

[10]. These techniques typically analyze three basic 

components: P-wave, T-wave, and Q-wave, R-wave and S-

wave (QRS) complex, as shown in Fig. 1. In recent days, deep 

learning techniques, particularly neural networks such as 

Deep Neural Network (DNN) [11], Long-Short Term 

Memory (LSTM) [12], You Only Look Once (YOLO) [13] 

and so on with multiple layers, have revolutionized various 

fields by enabling machines to learn intricate patterns from 

vast amounts of data. In order to properly treat heart diseases, 
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the system must function consistently in everyday situations, 

which means that the monitor should not interfere with 

people's comfort and daily activities. Sometimes, some ECG 

arrhythmia classification algorithms may misclassify an 

arrhythmia as a normal rhythm or vice versa [14], [15]. This 

could pose challenges for healthcare providers tasked with 

interpreting ECG results, which is important for potentially 

irrelevant treatments due to false positives or false negatives 

[16].  

 
                        (a)                                                (b) 

Fig. 1.  (a) Characteristics of the ECG signal, (b) Regular ECG sheet 

samples. 

In this area, we focus on the development of precise and 

efficient arrhythmia classification using deep learning 

methods, drawing inspiration from such scenarios [17]. The 

proposed method for classifying ECG signals with cardiac 

arrhythmias can be applied in various critical areas such as 

clinical diagnosis, remote patient monitoring, and emergency 

response. It improves the accuracy in detecting abnormal 

heart rhythms to enable timely medical interventions. This 

approach supports the development of advanced wearable 

technology for continuous heart monitoring. The main 

contributions of the research work can be summarized as 

follows: 

• In the present study, a novel StrIppeD NAS-Network 

(SID-NASNet) is presented to identify abnormal 

rhythms in ECG signals.  

• The first step is to record ECG data in real time using 

12-lead electrodes, and denoising these signals with 

Discrete Wavelet Transform (DWT) removes noise 

artifacts. 

• The noise-free ECG signals are fed into a K-means 

clustering algorithm to group ECG signal segments into 

a set number of clusters to detect patterns that may 

indicate heart abnormalities.  

• DL-based NASNet with Stripped convolutional layers 

to detect ECG irregularities in cardiac arrhythmias.  

• A bio-inspired Dingo Optimization (DO) algorithm is 

used in the SID-NASNet to normalize the parameters to 

improve the efficiency of the network with low network 

complexity. 

The remaining paper have been divided into the five 

classes listed below. Section 2 summarizes the literature 

review; Section 3 presents the SID-NASNet to categorize the 

octa-classes of arrhythmias from ECG signals; Section 4 

presents the results and discussion; and Section 5 contains the 

conclusion and future work. 

2. LITERATURE OVERVIEW 

Recently, researchers have presented numerous ways to 

classify ECG signals to treat arrhythmias. A summary of 

various recent ML and DL studies to categorize different 

arrhythmia signals is given in this section. 

In 2023, Roy et al. [18] designed ECG-NET with a deep 

LSTM auto-encoder to detect irregularities using ECG 

signals. The encoder component condenses the ECG data into 

a latent space model with a reduced size, while the decoder 

component endeavors to reconstruct the original ECG signal. 

Using the frequency distribution of these reconstruction 

losses, a threshold value for anomalous reconstruction losses 

is determined. This model was used on openly accessible 

ECG-5000 dataset with the highest accuracy of 98.0% for 

anomaly detection. 

In 2023, Qin et al. [19] developed a DL-based GAN for 

ECG irregularity detection based on one-class classification. 

The discriminator used a mini-batch discrimination training 

technique to generate ECG signals. This involved integrating 

a Bi-LSTM layer into a GAN framework. The aim was to 

develop a robust anomaly detector capable of accurately 

identifying deviations. The results obtained with this 

technique achieve an accuracy of 95.05% in the MIT-BIH 

arrhythmia dataset. 

In 2023, Wang et al. [20] presented a DL approach for ECG 

signal processing using a two-tiered hierarchical deep 

learning architecture with GAN. The initial model, known as 

Memory-Augmented Deep AutoEncoder with GAN 

(MadeGAN), was developed for differentiating irregular 

signals from regular ECG signals. In the evaluation of the 

proposed method, ECG signals from the MIT-BIH dataset 

were used to demonstrate its effectiveness. 

In 2022, Chen et al. [21] designed an automated framework 

adept at discerning between normal and abnormal ECG 

readings. This approach introduces a DNN model equipped 

with multiple channels and scales, providing an end-to-end 

framework to categorize ECG signals without the need for 

feature extraction. Experimental results show that the method 

can distinguish between normal and pathological ECG 

signals and achieves high identification rates. 

In 2021, Ullah et al. [22] presented an efficient technique 

for precise categorization of the ECG signals. For this model, 

a 1D-CNN architecture was developed that includes a Fully-

Connected (FC) layer, two downsampling layers, and two 

convolutional layers. In this model, the 1D data is converted 

into 2D images, resulting in improved classification accuracy. 

Subsequently, a 2D-CNN was used, which includes three 2D 

convolutional layers, three downsampling layers, one input 

layer, one output layer, and one FC layer. The proposed 1D 

and 2D architectures achieved impressive accuracies of 

97.38% and 99.02%, respectively. 

In 2021, Lai et al. [23] developed a DL architecture that 

includes three key stages: feature extraction, ECG-lead subset 

selection, and decision-making for comprehensive evaluation 

of various common types of ECG abnormalities. The ECG-

lead subset selection unit was integrated into the architecture 

to effectively streamline complexity. This module pinpointed 

leads II, aVR, V1, and V4 as the optimal 4-lead ECG subset. 

In both the training and test datasets, the architecture using 

this 4-lead subset showed significant improvement over the 

architecture using the entire 12-lead ECG. 
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In 2022, Jamil and Rahman [24] presented a DL technique 

to categorize ECG data into 16 types of arrhythmias. They 

used Continuous Wavelet Transform (CWT) to convert 

filtered ECG data into a 2D signal. DCNN was integrated into 

the attention unit and then provided a time-frequency domain 

representation of the CWT, extracting a Spatial Feature 

Vector (SFV). The proposed model achieved 99.84% 

accuracy with a Reduced Feature Vector (RFV) for 

arrhythmia classification using k-fold cross-validation.  

In 2021, Rath et al. [25] developed the ECG samples used 

as essential inputs for the HD detection model. To improve 

HD detection, DL and ML structures were recognized and 

relevant classification models were developed and evaluated. 

The GAN framework aimed to address imbalanced data by 

creating and utilizing more synthetic data for recognition. 

GAN-LSTM achieved a peak accuracy of 0.992 compared to 

alternative models, as shown by the simulation results using 

the standard MIT-BIH dataset. 

In 2020, Hwang et al. [26] presented a YOLO-based 

arrhythmia detection structure that continuously detects every 

heartbeat and classifies irregular rhythms from extended ECG 

recordings. The model replaces bounding boxes with a 

bounding window and uses a 1D-CNN instead of a 2D-CNN 

using raw ECG signals. The variable lengths of the bounding 

window allow the model to predict different arrhythmias and 

regulate the optimal size of the heartbeat window for 

detection. However, the model's accuracy decreases due to its 

dependence on the attention unit. 

In 2020, Atal and Singh [27] developed an optimization-

based deep CNN system for automatic categorization of 

cardiac abnormalities. The Bat-Rider Optimization 

Algorithm (BaROA) was created by combining the MOBA 

and ROA techniques. This BaROA-based DCNN classifier 

was used to classify ECG signals as either exhibiting 

arrhythmia or not. Despite the initial low accuracy, an 

accuracy of 93.19 was achieved when tested on the MIT-BIH 

dataset. 

The literature overview shows that the extraction and 

categorization of physical features is very labor-intensive, 

which reduces the effectiveness of current methods. 

Arrhythmias, from common types such as atrial fibrillation to 

complex arrhythmias, pose challenges due to sporadic or 

subtle ECG changes, especially with noisy recordings. 

Recognizing diverse ECG patterns for different arrhythmias 

is a formidable task for deep learning algorithms. To 

overcome these challenges, an automatic signal 

decomposition and classification model was developed to 

classify the octa-arrhythmia cases using ECG signals. 

3. PROPOSED METHOD 

In this work, a novel SID-NASNet is developed for 

effective categorization of ECG signals for the identification 

of octa-arrhythmia cases. The schematic representation of the 

proposed method is shown in Fig. 2. The ECG signals are 

compiled from the MIT-BIH dataset and denoised using 

DWT to eliminate the noisy artifacts. The K-means clustering 

technique was applied to cluster similar segments of the 

signal together to identify cardiac abnormalities. The 

clustered ECG signals are fed to the DO SID-NASNet with 

Stripped convolutional layers to detect the octad classes of 

ECG arrhythmias. 

 

Fig. 2.  The overall schematic depiction of the proposed model. 

A. MIT-BIH Arrhythmia Database 

In this research, the MIT-BIH arrhythmia dataset available 

from the PhysioNet website is used [28]. There are octa beats 

such as 2316 Normal beats (N), 219 Left Bundle branch 

blocks (LB), 240 Right Bundle branch block beats (RB), 45 

Atrial Premature beats (AP), 171 Ventricular Premature beats 

(VP), 315 Atrial Fibrillation beats (AF), 127 Ventricular 

Fibrillation  beats  (VF),  and  628  Ventricular  Tachycardia 

beats (VT). At a sampling frequency of 360 Hz, two leads 

were used to collect information. The proposed method 

divides the ECG signal into 200 sampling components. 

Fixed-length frames were used to retrieve the ECG waves 

around the largest peak of the R-R interval. In this dataset, 

arrhythmias are categorized into 8 groups, and the 

corresponding number of beats for each class is shown in 

Table 1. 
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Table 1.  Description of MIT-BIH database for octa-classes. 

Class number Classes Number of segments 

0 N 2316 

1 RB 240 

2 LB 219 

3 VP 171 

4 AP 45 

 

QRS duration calculation: QRS boundaries are 

determined by comparing the raw heartbeats with the start 

and end of each QRS. As a result, the determination of the 

QRS boundaries coincides with the acquisition of the ECG 

signals. The chest-ECG QRS duration is predicted at a 

location on the body other than the chest. Cardiac ECG QRS 

duration values are obtained by calibrating the chest-ECG 

QRS period estimates. The proposed method can be fairly 

well regulated by learning the bias using simple linear 

regression.  

B. Discrete Wavelet Transform (DWT) 

The DWT [29] is used for ECG signal processing, 

including the evaluation of ECG signals. It decomposes a 

signal into different frequency components, revealing both 

time and frequency information. The DWT decomposes the 

ECG signal 𝑥(𝑛) into approximation coefficients 𝐴 and 

aspect coefficients 𝐷 on different scales or levels. The 

decomposition is usually performed iteratively, resulting in 

several levels of approximation and detail coefficients. The 

number of levels depends on the selected wavelet and the 

desired resolution. Equation (1) is used to obtain the 

approximation coefficients 𝐴 and the detail coefficients 𝐷 at 

level 𝑗: 

 𝐴(𝑘) = ∑ 𝑥(𝑛) × 𝑝(2𝑘 − 𝑛)𝑛  (1) 

 𝐷(𝑘) = ∑ 𝑥(𝑛) × 𝑞(2𝑘 − 𝑛)𝑛  (2) 

where 𝑝(𝑛) and 𝑞(𝑛) are the low-pass and high-pass filter 

coefficients associated with the selected wavelet, 

respectively, 𝑥(𝑛) is the ECG input signal, 𝐴(𝑘) and 

𝐷(𝑘) are the approximation and detail coefficients at level k, 

respectively. The DWT breaks down the signal into different 

resolutions, where each pixel shows a previous 

approximation detail from the previous resolution, thus 

capturing the depth and approximation characteristics. 

C. K-means clustering algorithm 

The K-means clustering algorithm [30] is used to group 

data-points into a predetermined number of clusters in the 

context of analyzing ECG signal to detect cardiac 

abnormalities. K-means clustering is used to group similar 

segments of the signal to potentially identify patterns 

indicative of cardiac abnormalities. The K-means method 

begins by arbitrarily selecting K centroids in the feature space 

to form the initial clusters. Each data point is assigned to its 

adjacent centroid and grouped accordingly. Convergence 

occurs when also a set number of iterations is reached or 

when the centroids stabilize. K-means aims to reduce the sum 

of squared distances between the data points and their 

centroids, effectively dividing the data into K clusters. 

Mathematically, the objective function 𝐶 is defined as: 

 𝐶 = ∑ ∑ ||𝑥 − 𝜇𝑖||
2

𝑥∈𝐶𝑖

𝐾
𝑖=1  (3) 

where 𝐾 refers to the number of clusters, 𝐶𝑖 represents the 

data-points assigned to cluster 𝑖, 𝜇𝑖 is the centroid of cluster 

𝑖, and ||𝑥 − 𝜇𝑖||
2 denotes the squared Euclidean distance 

between data-point 𝑥 and centroid 𝜇𝑖. In the context of ECG 

signal analysis, the features used for clustering can be derived 

from various features of the signal such as amplitude, 

frequency, and waveform morphology. To set the parameters 

of the K-means algorithm for abnormality detection in ECG 

signals. Typically, the number of clusters (K) is set to 2. Set 

the number of clusters to 15 to ensure robustness and avoid 

poor local minima. Select a high value of 300 to ensure 

convergence. Normalize the data using Standard Scaler to 

handle different magnitudes in the ECG signals. After 

clustering, the segments of the ECG signal belonging to the 

same cluster will have similar patterns that can be further 

analyzed to detect cardiac abnormalities or arrhythmias. 

D. StrIppeD NAS-Network (SID-NASNet) 

The deep learning-based SID-NASNet was developed for 

ECG classification and usually consists of Stripped 

convolutional layers followed by pooling and FC layers. 

Stripped convolutional layers use a series of 1D 

convolutional filters with the ECG input signal. Each filter 

passes through the signal to extract local patterns and capture 

relevant features at different temporal scales. The output of a 

1D convolutional layer at position 𝑖 was calculated as 

follows: 

 𝑍(𝑖) = ∑ 𝑥(𝑖 + 𝑗) × 𝑤
𝑓−1
𝑗 (𝑗) + 𝑏 (4) 

where 𝑆(𝑖) refers to the result at position 𝑖, 𝑥(𝑖 + 𝑗) is the 

input signal at position 𝑖 + 𝑗, 𝑤(𝑗) is the weight of the 

convolutional filter at position  j,  b  is the bias term, and  f  is 

the size of the convolutional filter. The NASNet [31] 

effectively extracted relevant temporal features from ECG 

signals while maintaining computational efficiency by using 

Stripped convolutional layers [32]. After the Stripped 

convolutional layers, the maxpool layers are used for 

downsampling the feature maps by reducing their spatial 

dimensionality while preserving the important features. The 

output of a maxpooling operation at position 𝑖 is estimated as 

 𝑍(𝑖) = max (𝑥(𝑖 × 𝑠: (𝑖 + 1) × 𝑠)) (5) 

where 𝑥(𝑖 × 𝑠: (𝑖 + 1) × 𝑠) represents the input signal slice 

over which pooling is performed, and 𝑠 is the size of the 

pooling window. The output of each convolutional layer 

consists of multiple feature maps, each capturing different 

aspects of the input signal. These feature maps represent 

higher-level representations of the ECG input signal. Fig. 3 

shows the proposed SID-NASNet for efficient ECG 

categorization. In the NASNet, the FC layers are replaced by 

a global pooling layer succeeded by a SoftMax layer for ECG 

signal classification. The global average pooling summarizes 

the spatial features of all channels in a single vector. 
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 𝑍(𝑖) =
1

𝑁
∑ 𝑥(𝑗)𝑁

𝑗=1  (6) 

where N is the number of elements. The SoftMax layer 

converts the aggregated features into class probabilities. 

 𝑃(𝑍 = 𝑖) =
𝑒𝐿𝑖

∑ 𝑒𝐿𝑖𝐶
𝑗=1

 (7) 

where 𝐿𝑖 is the logit for class 𝑖 and 𝐶 refers to the number of 

classes. By adapting NASNet in this manner, we can 

effectively utilize its architecture for ECG signal 

classification tasks by capturing relevant temporal features 

for accurate classification. During training, a definite cross-

entropy loss function was used to measure the change 

between the predicted and true class prospects, which 

facilitates the optimization of the network's parameters. 

 

Fig. 3.  Architecture of the proposed Stripped NAS-Network. 

E. Dingo optimization algorithm 

The DO algorithm [33] is a metaheuristic technique 

inspired by the hunting behavior of dingoes. This algorithm 

aims to optimize parameters such as weights and biases of the 

NASNet for ECG signal classification to detect cardiac 

abnormalities. This algorithm has three strategies for 

tracking, organization strategies and scavenging behavior are 

attack options. Initialize the search agent, set the maximum 

number of iterations i, the inertia weight, and the learning 

factor. This behavior is represented as 

     𝑑𝑖(𝑠 + 1) = 𝛽1 ∑
[𝜑𝑖(𝑠)−𝑑𝑖(𝑠)]

𝑎
−  𝑑∗(𝑠)𝑎

𝑗=1  (8) 

where 𝑑𝑖(𝑠 + 1) refers to the new location of the search 

agent, a denotes the arbitrary number generated in the interval 

{2, sizePop/2}, where sizePop refers to the total population, 

𝜑𝑖(𝑠) is the subset of dingoes where 𝜑 ∈D, 𝑑𝑖(𝑠) is the 

present dingo, 𝑑∗(𝑠) is the finest dingo found in the previous 

iteration, 𝛼 refers to the arbitrary number generated 

uniformly between the interval [-0.5, 0.5]. Next, initialize the 

hectic search agent and randomly generate the D-dimensional 

vector where each component has a value between 0 and 1 

and it is expressed as 

 𝑑𝑖(𝑠 + 1) = 𝑑∗(𝑠) + 𝛽1 ∗ 𝑒𝛽2 ∗ (𝑑𝑥(𝑠) − 𝑑𝑖(𝑠)) (9) 

where 𝛽1 refers to the random number in the range of [-2, 2], 

𝛽2 refers to the random number generated consistently in the 

range of [-0.5, 0.5], x is the arbitrary number generated in the 

interval from 1 to the size of the maximum search agent, and 

𝑑𝑥(𝑠) are the x dingoes selected where 𝑖 ≠ 𝑥. This is 

expressed as 

 𝑑𝑖(𝑠 + 1) =
1

2
[𝑒𝛽2 ∗ 𝑑𝑥(𝑠) − (−1)𝜎 ∗  𝑑𝑖(𝑠)] (10) 

where x is the arbitrary number generated in the range from 1 

to the size of the maximum search agent and 𝑑𝑥(𝑠) is the x 

dingo selected where 𝑖 ≠ 𝑥 and 𝜎 is the generated arbitrarily 

binary number 𝜎 ∈ {0,1}. Then calculate the search agent’s 

fitness value and derive it as 

 𝑆𝑅(𝑖) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(max)−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(max)−𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑚𝑖𝑛)
 (11) 

where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑚𝑎𝑥) and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑚𝑖𝑛) are the best and 

worst fitness ratios in the current generation and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) 

defines the current fitness value of the i-th dingo. The low 

survival rate is expressed as 

  𝑑𝑖(𝑠) = 𝑑∗(𝑠) +
1

2
[𝑑𝑥(𝑠) − (−1)𝜎 ∗ 𝑑𝑦(𝑠)] (12) 

Here, 𝑑𝑖(𝑠) is the update of the search agents with low 

survival rate, 𝑑𝑥 and 𝑑𝑦 are the arbitrary numbers created in 

the interval from 1 to the maximum size of the dingoes, 𝑑∗(𝑠) 

is the best search agent found in the previous phase, and 𝜎 is 

a random variable for the addition or subtraction of vectors. 

Exit the program when the condition is met to obtain the 

optimal results. 

4. RESULTS AND DISCUSSION 

In this section, we present the results of our work and 

analyze their implications. The results are discussed in detail, 

highlighting the main findings of our proposed approach. The 

obtained results are compared with previous research to 

demonstrate the competence of the proposed approach. 

Finally, we address the potential and areas for future research. 

This comprehensive discussion provides a thorough 

understanding of the implications of the proposed approach. 

A. Experimental results of the proposed model 

In this section, the experimental results of the proposed 

SID-NASNet model for ECG signal classification are 

presented. The significant improvements in classification 

accuracy were observed across multiple ECG signals for 

octa-arrhythmia categories using the proposed SID-NASNet 

model. 

The experimental results of the proposed SID-NASNet 

model on a sample of eight different ECG signals are shown 

in Fig. 4. The ECG signals are processed by portioning the 

specific region from the ECG sheets, as shown in column 1. 

The segmented ECG images are shown in column 2 after 

DWT denoising has removed the distortions. These ECG 

signals are denoised and provided to the NASNet as output 

for the detection of rhythm abnormalities, especially class 0 

and 7. 
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Fig. 4.  Experimental fallouts of the proposed SID-NASNet model. 
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B. Simulation details and metrics 

The experimental setup of the research was carried out 

using MatLab 2020b on a Windows 10 PC with an Intel i5 

2.10 GHz processor and 8GB RAM. The evaluation of the 

proposed SID-NASNet involved analyzing various metrics 

including network metrics derived from the collected dataset. 

The evaluation metrics such as ACcuracy (AC), PRecision 

(PR), SPecificity (SP), REcall (RE), and F1-score (F1) are 

used to determine the effectiveness of the proposed SID-

NASNet in classifying arrhythmia cases. 

 𝑆𝑃 =
𝑇𝑛𝑒𝑔

𝑇𝑛𝑒𝑔+𝐹𝑝𝑜𝑠
 (13) 

 𝑃𝑅 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑝𝑜𝑠
 (14) 

 𝑅𝐸 =
𝑇𝑝𝑜𝑠

𝑇𝑝𝑜𝑠+𝐹𝑛𝑒𝑔
 (15) 

 𝐴𝐶 =  
𝑇𝑝𝑜𝑠+𝑇𝑛𝑒𝑔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 (16) 

 𝐹1 = 2 (
𝑃𝑅∗𝑅𝐸

𝑃𝑅+𝑅𝐸
) (17) 

where 𝑇𝑝𝑜𝑠  and 𝑇𝑛𝑒𝑔 signify true positives and true negatives, 

𝐹𝑝𝑜𝑠 and 𝐹𝑛𝑒𝑔 denote false negatives and false positives of the 

ECG signals. In this experimental study, the proposed SID-

NASNet model was evaluated using the MIT-BIH database, 

which is divided into 25% for testing and 75% for training. 

SID-NASNet model performance scrutiny 

The performance of the proposed SID-NASNet model was 

measured in terms of the AC, SP, RE, PR, and F1 score. 

These metrics were used to evaluate its competence. The 

analysis included true positives and true negatives as well as 

false positives and false negatives derived from sample data 

and signals. Performance evaluation was performed on eight 

sample images using these parameters. The proposed SID-

NASNet model showed high efficiency in detecting various 

arrhythmias and distinguished irregular beats from normal 

ones (N). The representation in Table 2 confirms its 

efficiency with an accuracy of 98.22% for the dataset. It also 

achieved an overall SP, F1, PR, and RE of 96.92%, 96.97%, 

97.07%, and 96.95%, respectively. 

Table 2.  Efficiency evaluation of the proposed method. 

Classes AC SP F1 PR RE 

0 99.05 97.02 97.87 98.25 98.26 

1 98.28 98.25 98.26 98.03 97.02 

2 98.04 97.24 98.25 96.21 97.84 

3 98.25 96.21 97.84 98.26 97.14 

4 99.04 98.35 96.03 98.36 97.04 

5 98.23 95.05 96.04 96.16 96.02 

6 97.25 97.02 95.48 96.11 95.23 

7 97.62 96.22 96.04 95.21 97.12 

Average 98.22 96.92 96.97 97.07 96.95 

Fig. 5 illustrates the efficiency metrics of the proposed 

SID-NASNet for each arrhythmia type. The results show that 

the proposed SID-NASNet achieved an accuracy of 98.22%, 

a precision of 97.07%, and a recall of 96.95% in classifying 

the five different types of arrhythmias. It is noteworthy that 

the recall is comparatively lower, which may be due to the 

limited dataset for AP compared to other arrhythmia types. 

Furthermore, AP provides beat-to-beat features in addition to 

morphologic features. The SID-NASNet model detects 10 s 

ECG segments in just 0.02 s, enabling real-time application 

for effective identification of ECG abnormalities. 

 

Fig. 5.  Performance assessment of the proposed SID-NASNet. 

Accuracy and loss evaluation 

In this sub-section, the performance of the proposed SID-

NASNet is evaluated using metrics such as accuracy, which 

captures the predictive ability of the model, and loss functions 

to quantify the discrepancy between predicted and actual 

values. 

Fig. 6 shows the accuracy graph, with the number of 

epochs on the x-axis and the accuracy values on the y-axis. 

Fig. 6 shows that the loss of the proposed SID-NASNet 

model decreases as the number of epochs increases. This 

shows that the SID-NASNet achieves high classification 

accuracy for arrhythmias. 

 

Fig. 6.  Accuracy and loss graph of the proposed SID-NASNet. 
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Classification ROC analysis 

The performance of the proposed ECG arrhythmia 

classification model is evaluated with Receiver Operating 

Characteristic (ROC) analysis by plotting the true positive 

rate against the false positive rate. 

Fig. 7 shows the ROC curve of the proposed SID-NASNet 

classification model for eight different classes (Class 0 to 

Class 7). The ROC curves for each class with their respective 

Area Under ROC Curve (AUC) values range from 0.963 to 

0.985. Fig. 7 shows that Class 6 has the highest AUC value 

(0.985), while Class 7 has the lowest AUC value (0.963). 

Moreover, the proposed SID-NASNet uses fewer parameters, 

which keeps the efficiency high while reducing the 

complexity. The proposed SID-NASNet uses a limited 

number of GFLOPs to demonstrate its efficiency. 

Furthermore, the classification procedure for an ECG signal 

with 7.2 GFLOPS takes 102 ms. In the proposed SID-

NASNet, fewer parameters are used to achieve higher 

accuracy, which reduces the complexity based on GFLOPS 

and CPU/GPU runtime. 

 

Fig. 7.  ROC curve of the proposed SID-NASNet. 

C. Comparison scrutiny 

The efficiency of conventional networks was measured to 

validate the performance gains achieved by the proposed 

NASNet in reaching high accuracy. In this evaluation, 

NASNet was compared with established models such as 

AlexNet, DenseNet, and LeNet. 

Table 3 shows a comparison of various conventional DL 

networks based on their maximum classification accuracy. In 

contrast to NASNet, the conventional DL networks did not 

show better results. Using the provided network metrics, this 

comparative evaluation was performed, revealing the 

superior performance of NASNet compared to other detection 

networks. Specifically, compared to AlexNet, DenseNet, and 

LeNet, NASNet improves the overall accuracy by 3.11%, 

2.11%, and 1.19%, respectively. 

Table 3.  Comparison of various traditional networks. 

Networks SP PR RE AC F1 

AlexNet  89.27 87.11 85.51 95.16 94.02 

DenseNet 90.15 88.62 89.25 96.14 95.24 

LeNet 88.05 86.13 85.54 97.05 96.12 

NASNet 96.92 97.07 96.95 98.22 96.97 

 

Table 4 compares different techniques for detecting 

abnormalities in ECG signals and their respective accuracies. 

ECG-NET technique [18] has an accuracy of 98.0%, DL-

based GAN [19] achieving 95.5% accuracy, and 1D-CNN 

[22] an accuracy of 97.38%. The proposed SID-NASNet 

method outperforms all the listed techniques with a highest 

accuracy of 98.22%. The proposed SID-NASNet increases 

the overall accuracy by 0.22%, 2.76%, and 0.85% better than 

ECG-NET [18], DL-based GAN [19], and 1D-CNN [22], 

respectively. However, the previous networks did not 

perform better than the projected SID-NASNet. Table 4 

shows that the SID-NASNet model outperforms the other 

approaches. 

Table 4.  Accuracy analysis of the proposed method with prior 

techniques. 

Authors Methods Accuracy 

[%] 

Roy et al. [18] (2023) ECG-NET 98.00 

Qin et al. [19] (2023) DL-based GAN 95.50 

Ullah et al. [22] (2021) 1D-CNN 97.38 

Proposed SID-NASNet  98.22 

 

Table 5 compares the efficiency of the proposed SID-

NASNet with different ECG signal datasets with precision, 

recall and accuracy for arrhythmia classification. The PTB 

Diagnostic ECG Database [34] achieved 96.13% accuracy, 

but suffers from the limited diversity of its patient population. 

The PhysioNet Database [35] reported 97.05% accuracy, 

which may be affected by noise in the real-world data. The 

Long-Term AF Database [36] has an accuracy of 97.32%, 

although its long-term records could lead to variability. The 

proposed SID-NASNet achieves an accuracy of 98.22% with 

the MIT-BIH Arrhythmia dataset, which is comparatively 

higher than the existing [34], [35], and [36] datasets. From 

this analysis, the proposed SID-NASNet has a high accuracy 

on the MIT-BIH arrhythmia database, but does not perform 

better on the other datasets. 

Table 5.  Efficiency of the proposed SID-NASNet for various 

datasets. 

Datasets Precision 

[%] 

Recall 

[%] 

Accuracy 

[%] 

PTB Diagnostic ECG DB 95.22 95.54 96.13 

PhysioNet DB 94.13 96.21 97.05 

Long-Term AF DB 95.19 96.08 97.32 

MIT-BIH Arrhythmia DB 97.07 96.95 98.22 

 



MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 4, 118-128 

126 

 

Fig. 8.  Comparison of different detection networks for ECG signals. 

Fig.8 displays a comparison of the proposed NASNet with 

the various conventional DL networks such as AlexNet, 

DenseNet, and LeNet respectively for the Arrhythmia 

classification based on ECG signals. An example of an ECG 

input signal is shown in line 1, while the results of multiple 

detection methods are shown in the following lines. This 

comparison shows that AlexNet performs less accurately than 

the other networks in terms of classification accuracy. 

Furthermore, DenseNet and LeNet achieve almost identical 

results in ECG classification. However, these detection 

networks did not match the performance of NASNet in 

identifying ECG arrhythmias. 

D. Clinical integration 

In sensitive areas such as healthcare, deep learning 

algorithms represent a significant obstacle to adoption. This 

makes it difficult for anyone to understand them and to come 

to a specific conclusion. The complexity of intricate models 

such as deep neural networks makes them harder to 

understand. It is more difficult to determine which important 

features of ECG signals have the greatest influence on the 

predictions made by intricate models. By learning the 

underlying features of the algorithms, clinicians can ask 

pertinent questions about the model's predictions. 

The clinical integration of the proposed SID-NASNet is 

shown in Fig. 9. During training, the network aimed to reduce 

the discrepancy between the projected and actual outcomes 

by determining the ideal weights and biases. The weight value 

in the network was updated according to the age of the 

patients to provide an accurate prediction. This technique 

utilizes the ECG signal features that complement clinical 

workflows and make them more accessible to real-world 

healthcare. 

 

Fig. 9.  Clinical integration of the proposed model. 
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5. CONCLUSION 

This research introduces a novel SID-NASNet for the 
classification of ECG arrhythmia abnormalities using 
wearable monitoring devices. ECG signals were first 
acquired in real-time using 12-lead electrodes and denoised 
using DWT to remove repetitions and improve robustness. 
These denoised signals were then fed into the NASNet 
network, which was enhanced with Stripped convolutional 
layers to detect arrhythmia abnormalities. The SID-NASNet 
uses the DO algorithm to normalize the parameters, which 
reduces network complexity and improves model 
competence. The classification results show that the 
integration of ECG data from the MIT-BIH dataset improves 
the performance of the SID-NASNet model. According to the 
results of the conducted experiments, the proposed model 
adeptly distinguishes arrhythmia ECG signals and achieves 
an impressive overall accuracy of 99.24%. The proposed 
NASNet achieves 4.11%, 3.12%, and 2.20% better overall 
accuracy than AlexNet, DenseNet, and LeNet, respectively. 
Moreover, the proposed SID-NASNet improves the accuracy 
by 0.22%, 2.76%, and 0.85% better than ECG-NET, DL-
based GAN, and 1D-CNN, respectively. The proposed SID-
NASNet is extremely reliable and utilizes advanced GPUs to 
efficiently process large amounts of ECG data and classify 
arrhythmias in real time. It enables fast monitoring of cardiac 
activity. The future implementation includes an FPGA setup 
for efficient heartbeat abnormality detection. 
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