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Abstract: Brain-Computer Interfaces (BCIs) facilitate the translation of brain activity into actionable commands and act as a crucial link 
between the human brain and the external environment. Electroencephalography (EEG)-based BCIs, which focus on motor imagery, have 

emerged as an important area of study in this domain. They are used in neurorehabilitation, neuroprosthetics, and gaming, among other 
applications. Optimal Deep Learning-Based Recognition for EEG Signal Motor Imagery (ODLR-EEGSM) is a novel approach presented in 
this article that aims to improve the recognition of motor imagery from EEG signals. The proposed method includes several crucial stages 
to improve the precision and effectiveness of EEG-based motor imagery recognition. The pre-processing phase starts with the Variation 
Mode Decomposition (VMD) technique, which is used to improve EEG signals. The EEG signals are decomposed into different oscillatory 
modes by VMD, laying the groundwork for subsequent feature extraction. Feature extraction is a crucial component of the ODLR-EEGSM 
method. In this study, we use Stacked Sparse Auto Encoder (SSAE) models to identify significant patterns in the pre-processed EEG data. 
Our approach is based on the classification model using Deep Wavelet Neural Network (DWNN) optimized with Chaotic Dragonfly 

Algorithm (CDFA). CDFA optimizes the weight and bias values of the DWNN, significantly improving the classification accuracy of motor 
imagery. To evaluate the efficacy of the ODLR-EEGSM method, we use benchmark datasets to perform rigorous performance validation. 
The results show that our approach outperforms current methods in the classification of EEG motor imagery, confirming its promising 
performance. This study has the potential to make brain-computer interface applications in various fields more accurate and efficient, and 
pave the way for brain-controlled interactions with external systems and devices. 

Keywords: Deep Learning (DL), Brain-Computer Interface (BCI), EEG Motor Imagery (MI), classification, Dragonfly algorithm, feature 
extraction. 

 

1. INTRODUCTION 

Brain-Computer Interface (BCI) is a transmission control 
scheme determined between the brain and external devices 
(computer or other electronic devices) via a signal generated 
during brain activity [1]. The scheme does not depend on 
nerves and muscles, except the brain, and establishes a direct 
transmission between the machine and the brain. It is an 
advanced and higher-end human-computer communication 
technique. The Motor Imagery Brain-Computer Interface (MI 
BCI) based Electroencephalogram (EEG) belongs to the class 
of brain-computer interaction [2]. Nowadays, there are two 
brain-computer interaction techniques: invasive and non-
invasive. Non-invasive BCI is commonly employed due to its 
low cost and convenient operation [3]. Using the non-
invasive BCI, we can obtain various patterns of brain activity 
signals, which are widely investigated and used in pattern 
recognition, signal processing, medicine, rehabilitation, 

cognitive science, etc. [4]. The study of EEG signal scan 
occasionally helps individuals who can no longer function 
independently due to injuries to the nerves or muscles that 
control limb movement, such as strokes, craniocerebral nerve 
injuries, spinal injuries, etc. [5]. The patient is unable to 
control their body independently, and in severe cases, they 
cannot even interact with the patient.  

EEG signals are used to study the patient’s brain activity. 

This helps the patient to interact with the outside world, 

improves the quality of day to day lives, and reduces the 

mental burden [6]. Motor imagery could induce sensorimotor 

concussion, activate the sensorimotor cortex, reflect the 

subject's motor intention, and emit EEG signals [7]. Once the 

subject visualizes some portion of the limb movement instead 

of the real movement, the corresponding reflex area in the 

human brain would show electrical potential change. By 

examining the changes in the electrical potential of the EEG 
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signal and detecting the motion pattern visualized by the 

present subject, an external device is controlled to assist the 

subject in performing the respective movement task. 

Therefore, the study of EEG signals and the detection of 

movement intentions is very important in the fields of 

medical treatment with artificial intelligence [8]-[11]. 

2. RELATED WORKS  

Huang et al. [12] presented a Deep Learning (DL) 

technique based on EEG signal to improve MI classification 

efficiency by introducing the Local Reparameterization Trick 

into Convolution Neural Network (LRT-CNN). 109 subjects 

from the PhysioNet Data set were used to test the presented 

approach. First, a global classification was estimated by four 

groups. Next, individual variability was investigated by 
testing with individual subjects. The researchers in [13] 

developed a feature extraction approach that results in a 

potential MI classification efficiency. The connection matrix 

indicates the correlation between distinct channel temporal 

blocks. They form the dynamic connectivity pattern, which 

consists of three-dimensional tensors. Then, the kernel 

Principal Component Analysis (PCA) or a nonlinear 

convolution autoencoder is applied to this tensor to learn a 

discriminative representation. Musallam et al. [14] designed 

TCNet-Fusion, a fixed hyperparameter based CNN method 

that uses different approaches, namely the layer fusion, 
Temporal Convolution Network (TCN), distinguishable 

convolution, and depth-wise convolution. The method 

outperformed other fixed hyperparameter-based CNN 

approaches when left analogous to a variable hyperparameter 

network. 

Zhang et al. [15] developed a CNN framework for robust 

and accurate EEG-based MI classification. The presented 

approach, which includes EEG-inception, is based on the 

mainstream of the inception-time network, which has been 

shown to be extremely accurate and effective for time-

sequence classification. Moreover, the presented method is an 

end-to-end classification since it uses the raw EEG signal as 
input and does not require complicated EEG signal-pre-

processing. The researchers in [16] used different data pre-

processing methods and investigated their influence on the 

classification efficiency of a Feed Forward Neural Network 

(FFNN). Since the results with the FFNN were not 

acceptable, the data developed with the optimal pre-

processing approach were used for CNN training. The 

Harmony search approach is used for feature selection. 

Finally, the Long Short Term Memory - Deep Neural 

Network (LSTM-DNN) method is used to classify EEG data. 

The alpha and beta waves are taken into account. For feature 
extraction and pre-processing of EEG data, the LSTM-DNN 

method is used to prove its effectiveness. 

3. PROPOSED MODEL 

In this article, a new Optimal Deep Learning-Based 
Recognition for EEG Signal Motor Imagery (ODLR-

EEGSM) technique approach for the classification of EEG 

motor imagery for BCI systems was developed. The 

presented ODLR-EEGSM technique approach includes 

VMD-based pre-processing, Stacked Sparse Auto Encoder 

(SSAE)-based feature extraction, Deep Wavelet Neural 

Network (DWNN)-based classifier, and CDFA-based 

parameter optimization. The application of the Chaotic 

Dragonfly Algorithm (CDFA) for parameter tuning of the 

DWNN model (i.e., tuning the weight and bias values of the 

DWNN model) helps to improve the classification results. 

Fig. 1 shows the general block diagram of the ODLR-

EEGSM technique. 

 

Fig. 1.  General block diagram of ODLR-EEGSM technique. 

A. Pre-processing using the VMD aproach 

Variation Mode Decomposition (VMD) includes a non-

recursive technique for simultaneous mode extraction in a 

signal. This technique forms a group of techniques in which 

the input signal is recreated using the least squares principle. 

This technique is also very robust to noise. Wiener Filtering 

(WF) and Hilbert transform were used in the VMD approach. 

This approach addresses the occurrence of noise in the input 

signals. It is distributed by using WF. Using the Hilbert 

transform rule, a unilateral spectrum was created from the 

VMD approach. The center frequency is unique for the sub-

bands calculated using this approach. When the modes in the 

input signals were removed, the center frequency of the 

modes was removed by multiplying by an exponential value 

tuned to the respective center frequency. The resulting 

constrained variational issue is formulated as: 

  min{𝑢𝑘} , {𝜔𝑘} {∑ ‖𝛿𝑡 [(𝛿(𝑡) +
𝑗

𝜋𝑡
) ∗𝑛

𝑘

                                      𝑢𝑘(𝑡)] 𝑒−𝑗𝜔𝑡‖
2

2

} (1) 

subjected to ∑ 𝑢𝑘
𝑛
𝑘 = 𝑓, where 𝑓 refers to the input signals. 

{𝑢𝑘} = {𝑢1, 𝑢2, … , 𝑢𝐾} indicates the group of modes and 

{𝜔𝑘 = 𝜔1 , 𝜔2, … . . 𝜔𝐾 } demonstrates the group of all center 

frequencies. 

All modes are changed to process analytical signals using 

the Hilbert transform, which is used to extract the unilateral 

frequency spectrum. All modes are multiplied by an 

exponential value tuned to the value of the center frequencies. 

The bandwidth constraints are calculated by performing the 

squared 𝐿2 norm of the achieved gradients. The center 

frequency was calculated for the sub-bands of a11300 EEG 

signal and the result was examined. 
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B. SSAE based feature extraction 

During the feature extraction process, the pre-processed 

EEG motor imagery is fed into the SSAE model to derive 

feature vectors. Auto Encoder (AE) is frequently used for 

non-linear dimensionality reduction, in particular AE [19] 

consists of an encoder layer and a decoder layer, which is 

FFNN. Similar to PCA, AE is mostly used for dimensionality 

reduction of data. In the encoder layer, AE receives 𝑥 ∈ 𝑅𝑝 

as input and encodes 𝑥 in the hidden layer h to reduce the 

input dimension; in the decoder layer, the decreased 

dimension data is decoded as output. An input vector was 

encoded as the formula: 

 ℎ = 𝜎(𝑊𝑥 + 𝑏) (2) 

where 𝜎 denoted the activation function, e.g., sigmoid, tanh, 

𝑊 ∈ 𝑅𝑛×𝑝 denotes the weighted matrix and 𝑏 ∈ 𝑅𝑛 denotes 

the bias vector. Then, the hidden expression was decoded to 

obtain the data close to an input 𝑥 utilizing by using the 

decoder formula:  

 𝑥 = 𝜎(𝑊 ′ℎ + 𝑏′) (3) 

where 𝑊 ′ ∈ 𝑅𝑝×𝑛 refers to the weighted matrix and 𝑏′ ∈ 𝑅𝑝 

denotes the bias vectors. The disparity between the input 𝑥 

and the resulting 𝑥 is called the reconstruction error. To 

optimize the parameters 𝑊, 𝑊 ′, 𝑏, 𝑏′, the reconstruction error 

is used as a cost function. For a single trained instance, the 

cost function was demonstrated as the formula: 

 𝐽𝐴𝐸 =
1

2
||𝑥 − 𝑥‖2 (4) 

To obtain multiple trained instances, the entire cost 

function was demonstrated as the formula:  

 𝐽𝐴𝐸 =
1

𝑁
∑ ‖𝑁

𝑖=1 𝑥(𝑖)̂ − 𝑋(𝑖)‖2 (5) 

The over-fitting issue is a challenge for training the 

network of AE. Finally, the weighted penalty cost functions 

were executed, which are an effective method to solve over‐

fitting. The penalty cost function was determined as: 

 𝐽𝐴𝐸 =
1

𝑁
∑

1

2

𝑁
𝑖=1 ‖𝑥(𝑖)̂ − 𝑥(𝑖)‖2 +

𝜆

2
(‖𝑊‖2 + ‖𝑊 ′‖2) (6) 

When the input dimensions are usually very large or the 

number of hidden units is enormous, sparsity was run against 

the hidden unit under the trained one to discover the particular 

input infrastructure. The neuron is assumed active if its 

resulting value is closer to 1, but inactive if its resulting value 

is closer to 0. The average activation of the hidden units  𝑗 can 

be determined as: 

 𝜌�̂� =
1

𝑁
∑ ℎ𝑗

𝑁
𝑖=1 (𝑥(𝑖)) (7) 

To enforce sparsity, it can be limited  𝜌�̂� = 𝜌, where 𝜌 

refers to the sparsity target and often has a smaller positive 

number near 0. Thus, an attempt is made to minimize the 

Kullback-Leibler (KL) divergence between 𝜌�̂� and ρ as 

follows: 

 𝐽𝐾𝐿(𝜌‖𝜌�̂�) = ∑ 𝜌𝑆
𝑗=1 𝑙𝑜𝑔

𝜌

𝜌�̂�
+ (1 − 𝜌)𝑙𝑜𝑔

1−𝜌

1−𝜌�̂�
 (8) 

where 𝑆 is the number of hidden layer nodes. Thus, the entire 

cost function of sparse AE is: 

𝐽𝑆𝐴𝐸 =
1

𝑁
∑

1

2

𝑁

𝑖=1

‖𝑥(𝑖)̂ − 𝑥(𝑖)‖2 +
𝜆

2
(‖𝑊‖2 + ‖𝑊 ′‖2) 

 +𝛽𝐽𝐾𝐿(𝜌||𝜌�̂�) (9) 

where β denotes the sparsity penalty. With minimized cost 

functions, an optimal parameter 𝑊 ′, band b’ is achieved. AE 

is more stacked to learn more informative features. The SSAE 

has been presented by using several AEs. As shown in the 

encoded layer, an input layer was connected to the following 
SAE to extract an optimal feature and so on. 

C. Optimal DWNN based classification 

In feature extraction, the pre-processed EEG motor 

imagery is fed into the SSAE model to derive feature vectors. 
The DWNN model is used in the extraction process. It is a 

4-layer model that includes an input layer, a Wavelon layer, 

a product layer, and an output layer. First, pre-processing is 

performed in the input layer, while the Wavelon layer 

processes the data using the wavelet activation function [20]. 

Deep feature extraction is performed by the translated and 

dilated version of the wavelet function. The product is 

validated in the product layer and the decision is offered in 

the output layer. The 𝑛 dimension biased network with 𝑚 

nodes produces the result as given below: 

 𝜁 = 𝜔𝑇𝜑(𝑥, 𝜏, 𝜎) + 𝜇𝑇𝜙(x, 𝜏, 𝜎) (10) 

where 𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛]𝑇 ∈ 𝑅𝑛 denotes the input vector, 

𝜏 = [𝜏1, 𝜏2, … , 𝜏𝑚]𝑇 ∈ 𝑅𝑚𝑥𝑛 and 𝜎 = [𝜎1, 𝜎2, ⋯ , 𝜎𝑚]𝑇 ∈
𝑅𝑚𝑥𝑛 implies translation and dilation variables, 𝜙 =
[𝜑1, 𝜑2 , ⋯ , 𝜑𝑚 . ]𝑇 ∈ ℜ𝑚 denotes a wavelet function and 

[∅1, ∅2, ⋯ , ∅𝑚 . ]𝑇 ∈ ℜ𝑚 denotes the corresponding bias 

function. The weights and the bias function can be denoted 

as: 𝜔 = [𝜔1 , … 𝜔𝑚]𝑇 ∈ 𝑅𝑚 and  𝜇 = [𝜇1, . . , 𝜇𝑚]𝑇 ∈ 𝑅𝑚, 

respectively. The estimation function can be mathematically 

formatted as follows: 

 ζ̂(x(n)) = ω̂T∅(x(n)) + μ̂Tφ(x(n)) (11) 

where �̂�, �̂� denote the estimate of the optimal value of the 

network variable, 𝜔∗, 𝜇∗ correspondingly. The optimization 

problem is formulated in terms of the estimation error, as 

given below: 

 𝜁(𝑥(𝑛)) = 𝜁(𝑥(𝑛)) − 𝜁(𝑥(𝑛))  = 

 �̃�(𝑛)∅(𝑥(𝑛)) + 𝜇(𝑛)𝜑(𝑥(𝑛)) + 𝜀(𝑥(𝑛)) (12) 

4. RESULT ANALYSIS 

Performance validation of the Search and Rescue with a 

Continuous Butterfly Optimization Algorithm for Multihop 
Secure Routing (IV) model is tested using the EEG data of 

motor imagery from the BCI competition IV 2a dataset. It 
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contains data from 9 distinct subjects performing four 

processes, namely: 

• left hand (class 1), 

• right hand (class 2), 

• feet (class 3), and 

• tongue (class 4). 

Fig. 2 shows a comprehensive accuracy examination of the 

SRCBO-MHSR model on different runs (Run) and subjects 

(Sub). The table values show that the SRCBO-MHSR model 

resulted in higher accuracy values for all Runs and Subs. For 

example, for Sub-1, the SRCBO-MHSR model achieved 

92.56%, 93.86%, 93.84%, 94.25%, and 94.91% accuracy in 

Runs 1-5. For Sub-3, the SRCBO-MHSR model achieved 

92.58%, 92.76%, 93.62%, 94.23%, and 94.56% accuracy in 

Runs 1-5, respectively. For Sub-4, the SRCBO-MHSR model 

achieved 92.56%, 92.60%, 92.60%, 92.61%, and 93.70% 

accuracy in Runs 1-5, respectively. 

 

Fig. 2.  Result analysis of the SRCBO-MHSR technique in terms of 
accuracy. 

Fig. 3 shows the average accuracy analysis of the SRCBO-

MHSR model in the classification of EEG motor imagery. 

From the figure, it can be seen that the SRCBO-MHSR model 

achieved a maximum average accuracy of 93.88% in Sub-1, 

92.79% in Sub-2, 93.55% in Sub-3, 92.81% in Sub-4, 94.04% 

in Sub-5, 92.20% in Sub-6, and 91.87% in Sub-9. 

 

Fig. 3.  Average accuracy analysis of the SRCBO-MHSR technique. 

Fig.4 shows kappa investigation of the SRCBO-MHSR 

method under various Runs and Subs. For example, for Sub-

1, the SRCBO-MHSR model achieved a kappa value of 

91.47%, 91.55%, 91.84%, 92.14%, and 94.33% for Runs 1-

5, respectively. Similarly, for Sub-3, the SRCBO-MHSR 

technique achieved a kappa of 91.36%, 91.85%, 92.95%, 

93.64%, and 94.11% for Runs 1-5. Finally, for Sub-4, the 

SRCBO-MHSR method achieved a kappa of 92.61%, 

92.92%, 94.44%, 94.44%, and 93.82% for Runs 1-5, 

respectively. 

 

Fig. 4.  Result analysis of the SRCBO-MHSR technique in terms of 
kappa. 

Fig. 5 illustrates the average kappa analysis of the SRCBO-

MHSR technique in the classification of EEG motor imagery. 

It can be seen from the figure that the SRCBO-MHSR 

approach resulted in a maximum average kappa of 93.88% 

for Sub-1, 92.27% for Sub-2, 92.93% for Sub-3, 92.78% for 

Sub-4, 93.65% for Sub-5, 93.31% for Sub-6, and 94.29% for 

Sub-9. 

 

Fig. 5.  Average kappa analysis of the SRCBO-MHSR technique. 

The accuracy outcome analysis of the SRCBO-MHSR 

approach using the test data is shown in Fig. 6. The results 

show that the SRCBO-MHSR technique has achieved 

improved validation accuracy compared to the training 

accuracy. It is also observed that the accuracy values get 

saturated with the number of epochs.  
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Fig. 6.  Accuracy analysis of the SRCBO-MHSR technique. 

The loss outcome analysis of the SRCBO-MHSR system 
on the test data is shown in Fig. 7. The figure shows that the 
SRCBO-MHSR technique has reduced the validation loss 
compared to the training loss. It can also be seen that the loss 
values get saturated with the number of epochs. 

 

Fig. 7.  Loss analysis of the SRCBO-MHSR technique. 

Experimental results demonstrated that the SRCBO-
MHSR model performed better than the other methods with 
maximum accuracy values in all subjects. For example, for 
Sub-1, the SRCBO-MHSR model achieved a higher accuracy 
of 93.88%, while the Channel Wise - Convolutional Neural 
Network (CW-CNN), Separable Common Spatial-Spectral 
Patterns (SCSSP), Densly Feature Fusion Convolutional 
Neural Network (DFFN), and Electroencephalography – 
Deep Machine Vision (EEG-DMV) models achieved a lower 
accuracy of 87.15%, 68.90%, 85.19%, and 87.70%, 
respectively. Simultaneously, for Sub-5, the SRCBO-MHSR 
model achieved a higher accuracy of 94.04%, while the CW-
CNN, SCSSP, DFFN, and EEG-DMV models provided a 
lower accuracy of 64.11%, 51.78%, 62.72%, and 65.78%, 
respectively. 

To demonstrate the improved performance analysis of the 
SRCBO-MHSR technique, a comparison study was 
conducted with respect to kappa. The experimental results 
show that the SRCBO-MHSR algorithm achieved better 
performance than the other methods with maximum kappa 
values for all subjects. For example, for Sub-1, the SRCBO-
MHSR technique has achieved a superior kappa of 92.27%, 
while the CW-CNN, SCSSP, DFFN, and EEG-DMV 
techniques have achieved lower kappa of 83.15%, 75.13%, 

71.26%, and 83.98%, respectively. At the same time, for Sub-
5, the SRCBO-MHSR method achieved a maximum kappa of 
93.31%, while the CW-CNN, SCSSP, DFFN, and EEG-
DMV models had a reduced kappa of 52%, 30.15%, 33.08%, 
and 51.67%, respectively. 

 

Fig. 8.  Comparative analysis of the SRCBO-MHSR technique with 
Traditional Method Accuracy 

Fig. 8 shows an improved performance analysis of the 
SRCBO-MHSR technique, with comparison study [23] in 
terms of accuracy. The experimental results show that the 
SRCBO-MHSR methodology achieved optimal performance 
over the other methods with maximum accuracy values in all 
subjects. For example, for Sub-1, the SRCBO-MHSR model 
has achieved a maximum accuracy of 93.88%, while the 
Decision Tree (DT), Linear Discriminant Analysis (LDA), K-
Nearest Neighbor (KNN), and Naïve Bayes (NB) techniques 
have achieved minimum accuracy of 74.66%, 85.48%, 
75.48%, and 82.75%, respectively. At the same time, for Sub-
5, the SRCBO-MHSR algorithm has achieved a higher 
accuracy of 94.04%, while the DT, LDA, KNN, and NB 
techniques had lower accuracy of 52.15%, 59.67%, 55.38%, 
and 57.61%, respectively. 

From the above results and discussion, it can be seen that 
the SRCBO-MHSR model is an effective tool for classifying 
EEG motor imagery. 

CONCLUSION 

In this article, a new ODLR-EEGSM technique approach 

for EEG motor imagery classification for BCI systems was 
developed. The presented ODLR-EEGSM technique 

approach includes VMD-based pre-processing, SSAE-based 
feature extraction, DWNN-based classifier, and CDFA-based 

parameter optimization. The application of CDFA for 
parameter tuning of the DWNN model (i.e., tuning the weight 

and bias values of the DWNN model) helps to improve the 
classification results. Experimental evaluation of the ODLR-

EEGSM technique is performed on a benchmark dataset and 
the results are evaluated from various aspects. Extensive 

comparative results indicated the promising performance of 
the ODLR-EEGSM technique over the recent approaches. In 

the future, the classification performance of the ODLR-
EEGSM technique can be boosted by the hybrid DL based 

feature extractors. 
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