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Abstract: Speech is one of the most serious manifestations of Parkinson's disease (PD). Sophisticated language/speech models have already 

demonstrated impressive performance on a variety of tasks, including classification. By analysing large amounts of data from a given setting, 

these models can identify patterns that would be difficult for clinicians to detect. We focus on evaluating the performance of a large self-

supervised speech representation model, wav2vec, for PD classification. Based on the computed wav2vec embedding for each available 

speech signal, we calculated two sets of 512 derived features, wav2vec-sum and wav2vec-mean. Unlike traditional signal processing 

methods, this approach can learn a suitable representation of the signal directly from the data without requiring manual or hand-crafted 

feature extraction. Using an ensemble random forest classifier, we evaluated the embedding-based features on three different healthy vs. PD 

datasets (participants rhythmically repeat syllables /pa/, Italian dataset and English dataset). The obtained results showed that the wav2vec 

signal representation was accurate, with a minimum area under the receiver operating characteristic curve (AUROC) of 0.77 for the /pa/ task 

and the best AUROC of 0.98 for the Italian speech classification. The findings highlight the potential of the generalisability of the wav2vec 

features and the performance of these features in the cross-database scenarios. 

Keywords: Classification, deep learning, features embedding, Parkinson's disease, wav2vec.

1. INTRODUCTION 

Age is the greatest risk factor for the development and 

progression of neurodegenerative disorders, such as 

Parkinson's disease (PD) [1]. Neurodegenerative disorders 

usually occur because of neuronal death in the brain [2]. In 

the case of PD, this is the death of neurons in the basal 

ganglia, specifically in the substantia nigra area, which 

produces a dopamine neurotransmitter [3]. The lack of this 

chemical substance leads to a wide range of problems typical 

of PD, e.g. tremor, stiffness, slowing, gait disorders and 

speech disorders. The onset of PD occurs most frequently in 

people over the age of 60 [4]. As human life lengthens, the 

number of people affected by PD also increases. 

The new generation of large language models is 

experiencing rapid development in medicine [5]. Pre-trained 

models can be tested in a wide variety of areas. One of the 

promising areas is audio processing. Speech, including 

articulation, is an important cue for motor function and is 

extremely sensitive to impairments in neurological diseases 

[6]. In PD, individuals often exhibit a range of speech 

disorders that significantly impair communication. These 

include distinctive patterns such as monoloudness, 

monopitch, reduced stress, imprecise articulation, variability 

in speech rate, a breathy and raspy voice, disfluency, voice 

tremor and other manifestations that can lead to an overall 

reduced intelligibility of speech [7]. Therefore, a speech 

disorder is also considered one of the most serious 

manifestations of PD [8]. Advances in speech assessment and 

an objective description of the changes that voice and speech 

undergo during neurodegenerative disease development may 

reveal future impairments. The importance of automatic 

speech analysis in PD is reflected in the extensive research on 

machine learning applications, with two essential tasks of 

interest − classification and regression. The fundamental and 

general role, not only in original research publications but 

also in international competitions and hackathons, is to 

classify a healthy control group (HC) vs. PD group. For 

clinical practise, an equally important task is to estimate the 

degree of disability by developing a regression model, usually 

indicated by the unified Parkinson's disease rating scale 

(UPDRS) [9], articulation rate [10], pronunciation 

intelligibility [11] or other socio-demographic descriptors 

such as age and gender [12]-[13]. 

There are studies based on a large sample of prodromal and 

early-stage participants that have demonstrated the 

effectiveness of automated speech analysis in identifying 
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early-stage PD and its prodromal stages, such as idiopathic 

rapid eye movement sleep behaviour disorder (iRBD). For 

example, Jeancolas et al. [14] presented accurate detection of 

early-stage PD and iRBD through a high-level feature 

extraction process involving aspects such as prosody, 

phonation, speech fluency and rhythm using specialised 

software called Praat [15]. The study by Rusz et al. [16] 

focused on early, untreated PD and used a comprehensive 

acoustic voice assessment across ten distinct speech 

dimensions, including phonation, articulation, prosody, and 

speech timing. Furthermore, progress was made in addressing 

challenges across multiple languages [17] and in categorising 

speech subtypes within de novo PD [18]. The latter involved 

the development of a fully automated acoustic quantitative 

assessment approach for the 7 distinctive patterns of 

hypokinetic dysarthria. While these studies have been very 

successful in detecting the progression of disease early, it is 

important to note that the specific features calculated may 

vary between studies and are often tailored to a specific PD 

detection task. 

Machine learning for speech processing has seen many 

improvements in recent years. To highlight a relevant 

example [19]: Speech emotion recognition with deep 

convolutional neural networks (CNN) is an article by Issa et 

al. This work provides a framework for speech emotion 

recognition using CNN when fed a set of mel-frequency 

cepstral coefficients (MFCC). As for specialised pipelines for 

machine learning of speech in PD, many authors have tested 

the performance of a variety of models and pre-processing 

phases. Tuncer et al. proposed a minimum-average-

maximum tree and singular value decomposition to extract a 

novel feature signal, subsequently processed by the k-nearest 

neighbour classifier [20]. Another novel feature introduced in 

the article by Karan et al. is an intrinsic mode function 

cepstral coefficient, which should lead to higher classification 

accuracy compared to standard MFCCs [21]. A non-linear 

dynamic complexity measure, a discrete wavelet transform, 

measures of fundamental frequency variation (jitter) and 

measures of amplitude variation (shimmer) are common 

baseline features that describe input speech recordings. When 

combined with other advanced features, such as tunable Q-

factor wavelet transform features, and appropriate subsequent 

feature subset selection, high values for accuracy (94.7%), 

sensitivity (98.4%), specificity (92.7%) and precision 

(97.2%) were observed [22]. Neural networks must certainly 

not be missing from the examples of machine learning models 

for PD voice recordings classification [23]. 

As documented in the previous sections, computer-aided 

methods used in recent years to determine speech parameters 

in PD are very accurate. However, the processing pipelines, 

including feature extraction, contain many specific steps and 

these approaches are not general enough to describe PD 

speech and different types of tasks. For these reasons, it 

would be promising to find an automatic feature extraction 

approach that has generalised applicability to different types 

of PD speech classification tasks and could simplify highly 

specialised automated speech recognition (ASR) systems 

with a comparable degree of accuracy. 

Innovative approaches to deep learning (DL) for 

representing numerical audio vectors are increasingly coming 

into the limelight. One of the most recent is Facebook’s 

wav2vec embedding AI. wav2vec (including version 2.0 with 

transformer encoder) is a very promising approach, showing 

powerful speech recognition in languages for which there are 

no large datasets to train [24]. wav2vec is trained on a corpus 

with large amounts of unlabelled audio data. Unlike the 

traditional signal processing methods, this method can learn 

a suitable representation of the audio signal directly from the 

data without requiring manual feature extraction. According 

to the latest findings, wav2vec can be used across languages 

[25]. The principle of the method is similar to common types 

of embedding in numeric vectors, such as word2vec in natural 

language processing [26] or pfam2vec in bioinformatics [27]. 

The effectiveness of self-supervised pre-training for ASR has 

already been demonstrated for non-medical applications [28]. 

Recently, Bayerl et al. compared x-vectors, ECAPA-TDNN, 

and wav2vec 2.0 embeddings in a corpus of academic spoken 

English to detect vocal fatigue [29]. 

In the biomedical field, wav2vec 2.0 is a speech 

recognition system that has been used to evaluate cognitive 

disorders [30]. ASR systems have also been used in the field 

of dysarthric speech recognition [31]. In both cases, the focus 

of the evaluation was on the word error rate (WER), which is 

a common measure of the accuracy of speech recognition 

systems. Recently, the wav2vec 2.0 representations of speech 

were found more effective in distinguishing between PD and 

HC subjects compared to language representations including 

word-embedding models [32]. 

The aim of this article is to evaluate wav2vec on three 

different PD datasets and demonstrate its applicability in 

achieving high performance for supervised classification 

tasks without requiring manual or hand-crafted feature 

extraction. We aim to study the generalisability of wav2vec 

features and the performance of these features in cross-

database scenarios. 

2. SPEECH DATABASES & METHODS 

A. Dataset-1: Participants rhythmically repeat syllables 

/pa/ 

As a first dataset, we used the data analysed in our previous 

study [33], in which the training signals of 30 male PD and 

30 male age-matched HC underwent an extraction of 

relatively well-discriminating features in terms of energy and 

spectral speech properties. The data consisted of audio signals 

in wav format with a sampling frequency of 48 kHz. We 

focus here primarily on the evaluation of the “pa” recordings, 

which are considered as a standardised speech examination in 

PD, regardless of the speaker's language. For each participant 

2 recordings were available, in this analysis we trained the 

model primarily with the first of them. In this setup, we 

wanted to test whether it was sufficient to record only one 30-

second recording of the “pa” task. 

B. Dataset-2: Italian Parkinson's speech 

The second dataset analysed in this study was related to the 

paper by Dimauro et al. (2017) [11]. This report included data 

from the Università degli Studi di Bari, Dipartimento di 

Informatica, Italy. The original study assessed speech 

intelligibility in PD using a proprietary Speech-to-Text API 
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powered by Google. For our experiments and model 

validation, we used a dataset of 50 available subjects 

(HC = 22, PD = 28). For HC, persons aged 60-77 years were 

included, 10 men and 12 women. None of the persons 

reported specific speech or language disorders. For PD, 

patients aged 40-80 years were included, 19 men and 9 

women. None of the patients reported speech or language 

disorders unrelated to their PD symptoms. All patients were 

receiving antiparkinsonian treatment. As PD mainly affects 

older people, a young HC group was not considered for our 

wav2vec model training. The data consisted of audio signals 

in wav format with a sampling frequency of 44.1 kHz. The 

content of the recordings were 2 copies of reading a 

phonemically balanced text as well as recordings of a 

repeated execution of syllables. We focused primarily on the 

reading part of speech. The measurements of the text readings 

are available for each individual with the corresponding class 

information. 

C. Dataset-3: HC and PD voice recordings at King’s 

College London (KCL) 

We chose this English dataset [34] for validation and to 

demonstrate the suitability of the presented methods across 

the languages of the subjects (HC = 21, PD = 16), and to 

project these data onto the Italian data source (Dataset-2). To 

our knowledge, no information is available on gender and age 

balance. They asked participants to read aloud "The North 

Wind and the Sun". The measurements (with a sampling 

frequency of 44.1 kHz) of the text readings are available for 

each individual with the corresponding class information. 

D. Signal processing using wav2vec embedding 

wav2vec generates its own features it has learned with a 

large data set. It uses a multi-layer CNN architecture to 

encode past context. Representations are learned by 

predicting the future in latent space under a contrastive binary 

binary classification task [24]. It implements a model 

consisting of a DL hierarchy built on multiple layers of 

CNNs. Our implementation was mainly based on the python 

libraries pytorch and fairseq (fairseq.models.wav2vec) [35]. 

We downloaded a publicly available wav2vec-large model 

trained with the LibriSpeech training corpus, which contains 

960 hours of 16 kHz English speech [36]. A collection of 

wav2vec models has recently been extended with a Czech 

corpus [37]. 

The full high-level pipeline of the proposed method is 

shown in Fig. 1. Inspired by wav2vec success in language 

modelling, we build on its architecture to train the models and 

use these models in various classification tasks. The pipeline 

can be applied directly to recordings in raw wav format. To 

facilitate wav2vec feature computation, we have prepared 

and tested an executable command-line tool that connects 

python wav2vec to a Windows version of MATLAB 2018b. 

This solution might be of interest to non-python 

users/scientists and for using the method in a production 

environment. We used PyInstaller to package the python 

solution and include all necessary dependencies [38]. The 

main solution is included in the Makefile. 

In this project, the audio data was pre-processed using the 

wav2vec-large model, which required resampling all signals 

to 16 kHz. We calculated the mean and sum of the wav2vec 

embedding to create a 512-dimensional feature vector for 

each audio signal. To be more specific, we used the wav2vec-

mean or wav2vec-sum technique to extract an audio 

representation from a matrix representation, resulting in a 

form of 512 features per signal. This method is insensitive to 

the duration of the audio signal. All calculations were 

performed on CPU to ensure functionality outside of the 

hardware we used. 

 

Fig. 1.  High level overview of the proposed wav2vec methodology 

and the corresponding experiments. 

 

Fig. 2.  (A) Two-dimensional clustermap of a full wav2vec 

embedding for one audio signal from the Dataset-1. Computed 

wav2vec waveform (B) and its correspondence with a raw signal 

(C). 

A full wav2vec embedding (512 channels x receptive field 

of the context network-proportional to signal length) for one 

audio signal from the Dataset-1 is shown in Fig. 2. The x-axis 

corresponds to the resampled waveform. Aggregation of this 

matrix (sum or mean) across the x-axis will result in the 

computation of 512 features. In Fig. 2(A), hierarchical 

clustering of 512 wav2vec channels was applied to a given 
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audio signal (using cosine similarity). Individual time-

dependent channels clustered according to the similarity of 

their waveforms are shown on the y-axis. To enable aligning 

wav2vec embedding with the raw waveform (Fig. 2(C)), the 

mean operation was computed over the y-axis of the wav2vec 

embedding (Fig. 2(B)). 

E. Modelling and validation 

In this study, a series of analytical methods, starting with 

principal component analysis (PCA), were used to explore 

either wav2vec-sum or wav2vec-mean embedding in a 

reduced feature space. The modelling phase then consisted of 

binary classification using an ensemble random forest 

classifier (imported from python scikit-learn). We used 

supervised classification to classify speech signals into two 

categories based on wav2vec features. The length of the 

recordings and the design of the individual studies used 

varied. The language (English vs. Italian) of the participants 

also varied. For this reason, and to verify the validity of the 

models, judge the model’s applicability domain, and, most 

importantly, avoid overfitting, we performed 5-fold cross-

validation with 5 repeated fits to evaluate the performance of 

our classification model. The cross-validation process 

ensured that our model did not overfit to the training data and 

that the results could be generalised to new data. Standard 

metrics such as area under the receiver operating 

characteristic curve (AUROC), precision-recall or accuracy 

were calculated to demonstrate the obtained results. We 

implemented a custom python library for plotting all results, 

including scatter plots or the confusion matrix, to get scores 

for the true positive rate (TPR) or false positive rate (FPR). 

3. RESULTS 

A. Dataset-1: Participants rhythmically repeat syllables 
/pa/ 

Table 1 summarises the unweighted fold average results of 

our experiments. We also plotted the average AUROC curve 

and the average precision-recall curve for wav2vec-sum in 

Fig. 3(A) and Fig. 3(B), respectively. The classification 

results showed that the random forest algorithm achieved a 

higher average AUROC score of 0.77 for wav2vec-sum 

compared with wav2vec-mean (AUROC = 0.66). In addition, 

the wav2vec-sum model achieved an AUROC of 0.81, an 

accuracy of 0.71, a precision of 0.73 and a recall of 0.73 in an 

unweighted fold average case. We also calculated the 

cumulative confusion matrix to further analyse the 

performance of our method. Fig. 3(C) shows the confusion 

matrix for Dataset-1. The plot shows cumulative wav2vec-

sum results for individual folds and repeats. 

Table 1.  Dataset-1: Unweighted fold average AUROC, accuracy, 

precision, and recall for wav2vec-sum and wav2vec-mean. 

Metric wav2vec-sum wav2vec-mean 

AUROC 0.81 0.69 

Accuracy 0.71 0.61 

Precision 0.73 0.62 

Recall 0.73 0.68 

 

Fig. 3.  Test wav2vec-sum AUROC curve (A) and test wav2vec-

sum precision-recall curve (B) for Dataset-1. (C) Confusion matrix 

for Dataset-1. 

B. Italian Parkinson's speech 

The reported results have a similar structure to Dataset-1. 

Table 2 summarises the unweighted fold average results of 

our experiments. Both the wav2vec-mean and wav2vec-sum 

models performed extremely well. For the wav2vec-mean 

with an AUROC of 0.98, precision was 0.94, recall was 0.87 

and accuracy was 0.95. The average wav2vec-mean AUROC 

curve for Dataset-2 is shown in Fig. 4(A), and the precision-

recall curve is shown in Fig. 4(B). The confusion matrix for 

Dataset-2 is shown in Fig. 4(C). The plot shows cumulative 

wav2vec-mean results for individual folds and repeats. 

Table 2.  Dataset-2: Unweighted fold average AUROC, accuracy, 

precision and recall for wav2vec-sum and wav2vec-mean. 

Metric wav2vec-sum wav2vec-mean 

AUROC 0.97 0.98 

Accuracy 0.93 0.95 

Precision 0.92 0.94 

Recall 0.95 0.97 

 

Fig. 4.  Test wav2vec-mean AUROC curve (A) and test wav2vec-

mean precision-recall curve (B) for Dataset-2. (C) Confusion matrix 

for Dataset-2. 
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C. Binary classification leave-group-out on combined 

Dataset-2 and Dataset-3 

In this section, we elaborate on the leave-group-out 

classification, where each group-class (Italian vs. English) 

was used as a test set, while the rest was used as a training set. 

First, we used 2D PCA to visualise the distribution of 

individual recordings in a lower-dimensional space 

(Fig. 5(A)). This allowed us to more clearly identify 

individual clusters in the data. As for the obtained 

classification leave-group-out results, the AUROC curve is 

shown in Fig. 5(B) and the precision-recall curve is shown in 

Fig. 5(C). Table 3 summarises the unweighted fold average 

results of the leave-group-out experiments. The wav2vec-

mean method achieved an average AUROC of 0.78 and a 

precision-recall of 0.77. The ability to differentiate between 

the healthy and control groups for individual languages in a 

leave-group-out scenario is also shown in Fig. 5(B). The 

confusion matrix is shown in Fig. 5(D). The plot shows 

cumulative wav2vec-mean results for individual folds and 

repeats. 

Table 3.  Leave-group-out on combined Dataset-2 and Dataset-3: 

Unweighted fold average AUROC, accuracy, precision and recall 

for wav2vec-sum and wav2vec-mean. 

Metric wav2vec-sum wav2vec-mean 

AUROC 0.67 0.81 

Accuracy 0.49 0.68 

Precision 0.49 0.63 

Recall 0.98 0.93 

 

Fig. 5.  (A) Principal component analysis for combined Dataset-2 

and Dataset-3 using wav2vec-mean features. Test wav2vec-mean 

AUROC curve (B) and test wav2vec-mean precision-recall curve 

(C) for combined Dataset-2 and Dataset-3. (D) Confusion matrix for 

combined Dataset-2 and Dataset-3. 

4. DISCUSSION 

Based on experiments and obtained classification metrics 

(e.g. average AUROC > 0.77 in all cases), the results showed 

that wav2vec embedding was effective in detecting the target 

class in both individual datasets and the leave-group-out 

classification scenario. Interestingly, although the leave-

group-out model had a relatively high FPR and tended to label 

HC as diseased more often, it outperformed the random 

baseline for the leave-group-out scenario, further indicating 

the robustness of the presented methods in different 

evaluation settings and languages. To this extent, the 

multicentre study [17], conducted in different languages 

including Czech, English, German, French and Italian, found 

no evidence that language-related variations affect clinical 

parkinsonian phenotypes. This further supports the notion 

that the observed speech impairments in PD are consistent 

across diverse linguistic contexts.  

It turned out that it was not possible to clearly determine 

whether the wav2vec-mean or the wav2vec-sum was better 

for the representation of 512 features. For Dataset-1, we 

observed better results using wav2vec-sum; for Dataset-2 and 

Dataset-3, wav2vec-mean worked better. Our explanation is 

that the measurement character of the signal is related to 

different behaviour. The Dataset-1 protocol follows a 

deterministic speech task, while for Dataset-2 and Dataset-3 

it was free speech and read text. In addition to reporting the 

performance of the models, we presented a full pipeline that 

is easy to use and could help in creating speech recognition 

models for different languages and using them in a production 

environment. 

The presented methods and the full pipeline were 

originally implemented for the purposes of the Biosignal 

Challenge 2020 and were awarded first place. The Biosignal 

Challenge 2020 was an international competition for students 

from the European Union and the United States of America, 

organised jointly by the Faculty of Electrical Engineering of 

the Czech Technical University in Prague and Humusoft 

(MathWorks). The aim of the Biosignal Challenge 2020 was 

to use the MATLAB computing environment to develop an 

algorithm for articulation rate estimation in human speech 

signals by detecting the number of syllables and measuring 

the duration of fluent speech, excluding all types of pauses in 

each utterance. 100 utterances from children were used as the 

training dataset. The best performing LASSO regression 

model tested with unseen data achieved a Pearson correlation 

coefficient = 0.95, mean absolute error = 3.8 and r2 = 0.91. 

Regression is yet another promising application area where 

we observed high accuracy of wav2vec. 

One of the biggest advantages of wav2vec is that it is 

already pre-trained and can be applied directly to a small 

group of patients without any need to manually handcraft and 

engineer features. On the other hand, despite its high 

generalisability across speech recognition tasks and given 

that its corpus is not related to PD, wav2vec has been shown 

to be successfully applied to specific tasks – classification of 

HC vs. PD. The obtained results recommend further testing 

in clinical practise, e.g. wav2vec feature mapping and 

UPDRS. As can be seen from the clustering method in Fig. 2, 

wav2vec embedding can also be represented as an image, 

which can lead to an evaluation of its informative content and 

can be compared with other signal-image representations, 

such as the wavelet transform [39]. 
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In quantitatively comparing the results presented with a 

relevant, previously published comparative study of speech 

analysis methods for predicting PD [40], Toye and Kompalli 

used the same datasets (Dataset-2 and Dataset-3). They 

computed MFCC and other acoustic feature sets and trained 

seven classification models (k-nearest neighbour, decision 

trees, support vector machines, naive Bayes, logistic 

regression, gradient boosting, random forests). The highest 

obtained results achieved an accuracy of 98% for the Italian 

Parkinson's Voice and Speech Database (Dataset-2) and > 

80% accuracy for the KCL database (Dataset-3). In general, 

we can say that the current methods of speech recognition are 

very accurate, and we have shown that wav2vec achieves 

comparable accuracy (accuracy = 0.95 for Dataset-2 and 0.72 

AUROC for Dataset-3 in the leave-group-out scenario). In 

addition, wav2vec has the presented unique benefits that 

make wav2vec stand out - i.e. seamless integration and 

generalisability. In comparing Dataset-1 with our previously 

published study [33], our main focus in this article has been 

on whether it is sufficient to use only one recording from the 

set of two recordings for each participant. Although we 

obtained slightly worse results (AUROC = 0.77 vs. avg 

AUROC = 0.88), we performed a more robust validation. 

Using the same validation method as in [33] and using two 

recordings, we achieved an average AUROC = 0.90, which is 

comparable to the best model presented there 

(AUROC = 0.92 for weighted k-NN and manually crafted 

features). 

To address the influence of gender and age on speech 

performance in PD, it is important to consider the 

demographic composition of the datasets used in our study. 

Two recent phenotypic studies clearly showed a significant 

influence of gender [16] and age [41] on speech performance 

in PD. In addition, a finding from the article [14] revealed that 

speech impairments in early-stage PD were more pronounced 

in men than in women. In our study, Dataset-1 includes only 

data from male individuals with PD and age-matched male 

controls. For Dataset-2, it should be noted that the PD group 

shows an imbalance in terms of gender representation, 

consisting of 19 men and only 9 women. For Dataset-3, there 

is limited information available on gender and age 

demographics. Despite these considerations, we have made 

an effort to incorporate multiple datasets to ensure the 

generalisability of our findings. 

The project has some limitations. We are aware that the 

quality of the recordings plays an essential role for studies 

with wav2vec and speech classification. In this case, the 

audio files used for training our models were free of noise. 

The significantly different results observed for the Italian 

dataset (Dataset-2) compared to the others can be attributed 

to a combination of factors. Firstly, variations in recording 

equipment, environmental settings and conditions across 

datasets can introduce variability in the acoustic signals 

measured. Secondly, differences in disease progression and 

severity among individuals in Dataset-2 compared to the 

other datasets may lead to distinct speech patterns more easily 

recognised by the classification algorithm. It is worth noting 

that, as mentioned earlier, the observed results are consistent 

with the results of a separate published study [40]. To 

increase the robustness of the models, it would be worth 

trying to augment the recordings with audio-specific 

augmentation techniques such as noise addition or volume 

control to perturb the models with more data and to test 

wav2vec, including its version 2.0, more thoroughly. 

Although the presented methods can significantly simplify 

speech classification pipelines for PD detection, a certain 

disadvantage is that the wav2vec features are not easy to 

interpret. It is also important to note that we did not perform 

any hyperparameter optimisation or other fine-tuning on our 

models. It should also be acknowledged that access to 

additional clinical data, such as UPDRS scores (available 

only for Dataset-2 and Dataset-3), The Montreal Cognitive 

Assessment (MoCA) assessments, disease duration and 

detailed medication status data were largely unavailable for 

the reported datasets, which is another limitation of this study. 

5. CONCLUSION 

In clinical medicine, a very common problem is the limited 

amount of annotated data. In this article, we implemented a 

wav2vec-based pipeline to obtain embeddings from raw 

waveforms and evaluate them on a classification task. The 

main advantage of the presented method thus confirmed its 

ability to use a large language corpus (English audio 

recordings) for application to a related problem in a specific 

domain, i.e. the analysis of speech signals in the biomedical 

domain for the detection of Parkinson's disease. The high 

AUROC scores and other performance metrics show that our 

models were able to accurately classify speech signals into 

the two categories (healthy vs. diseased). In this paper, we 

have shown the generalisability of the wav2vec features and 

the performance of these features in a cross-database 

scenario. We believe that our results can easily be extended 

to a wider range of neurological applications and other 

machine learning speech applications in biomedicine. 
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