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Abstract: In this paper, adaptive proportional derivative (APD) parameter control was proposed to solve the problem of high power 

consumption caused by the unclear mechanism of liquid disturbance during the lifting-up of magnetic bearing in left ventricular assist 

devices. A mathematical model was derived that describes how the rotor operates in liquid filling. The disturbance caused by the liquid in 

the lifting-up process was analyzed, and an adaptive control system was developed to improve dynamic performance and reduce power 

consumption. The experimental results show that APD control requires a shorter rise time without overshoot of rotor displacement compared 

to traditional fixed configurations. When using the APD controller, the peak current dropped by 8%. The duration in which the current is 

greater than 1A was reduced by 10.2 ms, and the average current also dropped by 34%. 
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1. INTRODUCTION 

Due to their good blood compatibility, magnetic bearings 

are commonly used in left ventricular assist devices 

(LVADs). In recent years, hybrid magnetic bearings (HMBs) 

have been used in LVADs, combining permanent magnets 

and electromagnets to reduce bearing dimensions and power 

consumption [1]-[3]. Due to the high remanence and 

coercivity of rare-earth magnetic materials, magnetic 

bearings can be designed as high-stiffness support systems. 

The bias magnetic field generated by a permanent magnet can 

significantly reduce the power consumption of magnetic 

bearings. Fully maglev LVADs are used as long-term 

implantable medical devices. A rotor requires strong support 

to ensure the basic quality of life of the user, which requires 

high robustness and high stiffness of the magnetic bearing 

against vibrations and shocks, as well as low power 

consumption and low heating. 

Magnetic bearings are highly intersecting devices that 

combine machinery, electronics, and control. The 

performance of a magnetic suspension system is directly 

related to the performance of the control system. Magnetic 

bearings are unstable systems that exhibit strong nonlinearity 

and uncertain disturbance. To solve the problems caused by 

these characteristics and improve the performance, many 

scholars have studied advanced nonlinear control. Jeng et al. 

[4] used a nonlinear adaptive inverse control with a 

Chebyshev polynomial-based model for  a magnetic bearing. 

Their architecture provided greater flexibility, robustness to 
disturbances, and a control error within ±0.015 mm. Betschon 
et al. [5] proposed a new method to reduce the current of an 
active magnetic bearing (AMB) at synchronous speeds in a 
wide range of rotational speeds. The matrix calculation was 
optimized using a linearly dependent function to minimize 
the computational power and memory requirements of the 
control system hardware. The simulation results showed that 
the maximum peak-to-peak current was drastically reduced 
by more than 50%. Basaran et al. [6] used a Lyapunov 
function based on composite adaptive output feedback 
control for a flywheel system. The position tracking errors 
obtained with the integral square were compared between the 
composite and the standard adaptive controller. At 30000 and 
45000 rpm, the position tracking error dropped sharply with 
the composite adaptive controller compared with the standard 
adaptive controller. Su et al. [7] assembled proportional 
integral derivative (PID) controllers with two input types and 
a robust sliding mode control method that was used for both 
nonlinear and linear control systems. The newly proposed 
method tracked the sinusoidal input signal with good 
performance, which was significantly better than those of the 
other methods by Su. The average tracking error was 56% of 
the other methods, and the maximum tracking error was 35% 
of the other methods with thrust disk force. Zad et al. [8] 
designed a hybrid magnetic bearing approximated by a radial 
basis function neural network, and used sliding mode control 
to stabilize the magnetic bearing system. The simulations and 
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experimental results showed that superior position tracking of 
the rotor was achieved using their control algorithm under 
different operating conditions. Dhyani et al. [9] studied the 
application of fuzzy PID control based on moth-flame 
optimization for AMBs, and chose ITAE and ITAU to design 
the optimization problem and compare it with the responses 
of others. Carvalho et al. [10] proposed an adaptive neuro-
fuzzy controller with optimally balanced vibration control 
performance and robustness. The experimental results 
showed that the neuro-fuzzy controller outperformed the PID 
controller in terms of energy efficiency and vibration 
attenuation. The optimal adaptive control of the magnetic 
suspension was presented for a rotary impeller of an artificial 
heart pump [11]. Huettner [12] investigated unbalanced rotor 
vibration by using vibration control compensation to 
significantly reduce the power consumption of blood pump 
magnetic bearings for bearingless slice motors. Based on the 
hybrid magnetic bearing blood pump, Ren [13] proposed a 
force balance point suspension method. By identifying the 
output signal of the power amplifier, the force balance point 
of the rotor was estimated and used as the suspension target 
position. This method reduced the power consumption of the 
magnetic bearing to less than 0.5 W. Pai [14] created a 
complete mathematical model of the magnetic bearing of the 
artificial heart and then developed a set of disturbance 
observers with a bandwidth of up to 45 Hz, from which the 
pulsation signals of the original heart could be extracted. 
Silva [15] performed feedback control tests on an axially 
magnetically levitated left ventricular assist device, which 
showed that the rotor vibrates axially at 1200 rpm with 80 μm 
in air and 40 μm in water, and the power consumption of the 
magnetic bearing is 2.8 W.  

Currently, research on magnetic bearings for LVADs is 

still scarce and there is no reference index. The magnetic 

levitation closed-loop control used for LVADs is basically 

linear PID, which is simple and easy to debug. However, the 

problem of rotor lifting in liquid has not yet been studied. 

Fixed feedback parameters have the limitation that the rise 

time, overshoot, and adjustment time cannot be considered 

simultaneously, resulting in a significant increase in 

instantaneous power consumption during the lifting-up 

process, especially in the presence of an unknown 

disturbance. Furthermore, inappropriate parameter 

configuration leads to unusable electronic peripheral 

hardware. Although advanced adaptive parameter adjustment 

methods such as neural networks and fuzzy control have long 

been proven to be powerful and effective for solving these 

problems, their complex algorithms and membership function 

computation require extremely high computational power. 

For implantable medical devices, lower power consumption, 

higher reliability, and smaller size are key to achieving good 

performance. Therefore, a microprocessor chip with high 

computing power and high power consumption is unsuitable 

for implantable medical devices. 

In this study, we focused on modeling a rotor operating in 

a liquid-filled environment and derived the stability 

conditions of the feedback parameter. The influence of the 

fluid on the rotor during the transient lifting-up was also 

investigated. Based on the empirical theory and the 

performance of the feedback parameters, adaptive 

proportional derivative (APD) parameter control was 

proposed. A two-stage piecewise linear approximation (PLA) 

was adopted for magnetic bearings in LVADs, which 

comprehensively improves the dynamic regulation 

performance and reduces the input requirements. By using 

integer arithmetic, the required computational power of the 

processing chip is reduced, so that the miniaturized full-

maglev LVADs fit better. 

2. MATHEMATICAL MODEL OF ROTOR IN LIQUID NEAR THE 

CENTER 

Fig. 1(a) illustrates the profile of the magnetic bearing, the 

titanium alloy layers on the stator and rotor surfaces are not 

shown. In Fig. 1, the gap between the stator and rotor is 

magnified to show the details of the structure. Two axially 

magnetized permanent magnet rings were assembled 

independently in the stator and rotor, providing negative 

radial stiffness and positive axial stiffness of the rotor. The 

permanent magnets provided a radially biased flux, while 

electromagnetic coils were used for active control. When the 

rotor deviates from the set position, the displacement sensor 

feeds the rotor information to the controller, which generates 

the control signal required to drive the electromagnetic coils. 

Subsequently, the rotor is pulled back to the preset target 

position. Since the rotors of the LVADs were completely 

immersed in blood, they were also exposed to the force of the 

fluid. 

The magnetic energy can be expressed as 

 𝑊𝑚 = ∬𝐵𝑑𝐻𝑑𝑉, (1) 

where 𝐵 is the magnetic flux density, 𝐻 is the magnetic field 

intensity, and 𝑉 is the volume of the field. According to the 

principle of virtual displacement, the magnetic force is 

 𝐹𝑚 =
𝜕𝑊𝑚

𝜕𝑋
=

𝜕∬𝐵𝑑𝐻𝑑𝑉

𝜕𝑋
, (2) 

where 𝑋 denotes the displacement under generalized degrees 

of freedom. 

Using the x-axis as an example and considering that the 

rotor is near the center point, the magnetic flux leakage 

without an iron core and the curvature of the rotor and stator 

were ignored. The effect of the differential magnetic radial 

force on the rotor through each of the magnetic poles can be 

written as 

𝐹𝑚𝑎𝑔 =
(𝐵0+𝐵𝑥−𝐵𝑐)

2−(𝐵0−𝐵𝑥+𝐵𝑐)
2

𝜇0
𝑆 =

4𝑆

𝜇0
(𝐵0𝐵𝑥 − 𝐵0𝐵𝑐), (3) 

where 𝐵0 is the radial bias magnetic flux density provided by 

the permanent magnets, 𝐵𝑥 is the magnetic flux density of the 

permanent magnet caused by the rotor displacement, 𝐵𝑐 is the 

electromagnetic flux density generated by the coils 

(electromagnets), 𝜇0 is the vacuum permeability, and 𝑆 is the 

surface area of the magnetic poles. The permanent magnet 

flux caused by the rotor displacement can be calculated 

approximately as 

 𝐵𝑥 ≈ 𝑘𝑚𝑥 , (4) 

where 𝑘𝑚 refers to the permanent-displacement gain 

coefficient and 𝑥 corresponds to the rotor displacement in the 

x-direction. 
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According to Maxwell's loop theorem, 

 ∮𝐻𝑥𝑑𝑙 = 𝑁𝑖𝑥, (5) 

where 𝑙 contains the length of the entire loop. If the reluctance 

of the magnetic permeability material is ignored, the 

electromagnetic flux generated by the coils in the gap can be 

expressed as 

 𝐵𝑐 =
𝜇0𝑁𝑖𝑥

2𝑥𝑐
, (6) 

where 𝑁 is the number of turns in the electromagnetic coils, 

𝑖𝑥 is the current of the electromagnetic coils in the x-direction, 

and 𝑥𝑐 corresponds to the gap. 

 
 

(a) 

 
(b) 

Fig. 1.  (a) Radial and axial diagrams of the magnetic bearing, 

(b) Schematic of the rotor in a liquid-filled environment. 

After substituting (4) and (6) into (3), the magnetic force 

near the center point (𝑥 = 0, 𝑖𝑥 = 0) can be expressed using 

a Taylor series expansion as follows: 

 𝐹𝑚𝑎𝑔 = 𝑘𝑥𝑥 − 𝑘𝑖𝑖𝑥, (7) 

where 

 𝑘𝑥 =
4𝐵0𝑆𝑘𝑚

𝜇0
, (8) 

 𝑘𝑖 =
2𝐵0𝑆𝑁

𝑥𝑐
. (9) 

𝑘𝑥 is the force-displacement coefficient in the x-direction, 

and 𝑘𝑖 is the force-current coefficient. In the case of partial 

nonlinearity in the iron core, these two coefficients change 

partially, and the system exhibits strong nonlinear 

characteristics with parameter perturbations. 

Fig. 1(b) shows a schematic of the rotor in a liquid-filled 

environment. When the rotor rotates at a constant angular 

frequency, the rotor whirls within a small range, and the entire 

system is in a steady state. The point 𝑜𝑟 corresponds to the 

center of the rotor, the point 𝑜𝑠 is the center of the stator, and 

𝑒𝑜 indicates the eccentricity. The angle 𝜃𝑜 between the two 

center points and the y-axis of the stator coordinate system is 

the eccentricity angle. The radius of the rotor is 𝑅𝑟𝑜, and the 

axial height of the rotor is 𝐻𝑟 . Moreover, 𝑝𝑜 denotes the 

pressure distribution, which is a function of position. 

Accordingly, the fluid force acting on the rotor can be 

expressed as 

 {
𝐹𝑙𝑥 = ∫ ∫ −𝑝𝑜 sin 𝜃𝑜 𝑅𝑟𝑜𝑑𝜃𝑜𝑑𝑧

2𝜋

0

𝐻𝑟/2

−𝐻𝑟/2

𝐹𝑙𝑦 = ∫ ∫ −𝑝𝑜 cos 𝜃𝑜 𝑅𝑟𝑜𝑑𝜃𝑜𝑑𝑧
2𝜋

0

𝐻𝑟/2

−𝐻𝑟/2

. (10) 

Equation (10) can be expanded as eight parameters near the 

center point: 

𝑘𝑙𝑥𝑥 =
𝜕𝐹𝑙𝑥
𝜕𝑥

|
𝑥=𝑥𝑒,   𝑦=𝑦𝑒

,  𝑘𝑙𝑥𝑦 =
𝜕𝐹𝑙𝑥
𝜕𝑦

|
𝑥=𝑥𝑒,   𝑦=𝑦𝑒

 

𝑐𝑙𝑥𝑥 =
𝜕𝐹𝑙𝑥
𝜕�̇�

|
𝑥=𝑥𝑒,𝑦=𝑦𝑒

, 𝑐𝑙𝑥𝑦 =
𝜕𝐹𝑙𝑥
𝜕�̇�

|
𝑥=𝑥𝑒,   𝑦=𝑦𝑒

 

𝑘𝑙𝑦𝑦 =
𝜕𝐹𝑙𝑦

𝜕𝑦
|
𝑥=𝑥𝑒,𝑦=𝑦𝑒

, 𝑘𝑙𝑦𝑥 =
𝜕𝐹𝑙𝑦

𝜕𝑥
|
𝑥=𝑥𝑒,   𝑦=𝑦𝑒

 

𝑐𝑙𝑦𝑦 =
𝜕𝐹𝑙𝑦

𝜕�̇�
|
𝑥=𝑥𝑒,𝑦=𝑦𝑒

, 𝑐𝑙𝑦𝑥 =
𝜕𝐹𝑙𝑦

𝜕�̇�
|
𝑥=𝑥𝑒,   𝑦=𝑦𝑒

, 

where 𝑥 = 𝑥𝑒 , 𝑦 = 𝑦𝑒 is the static operating point of the rotor 

(center point) and �̇� and �̇� are the derivatives of the rotor 

displacement with respect to time (rotor radial velocity). 

These eight parameters represent the stiffness and damping 

coefficients in their respective directions and cross directions 

and they are closely related to the rotational speed of the rotor. 

The stiffness coefficients of the active magnetic bearing are 

much higher than those caused by the fluid, and the fluid 

stiffness coefficient matrix can be completely ignored. 

However, the magnetic bearing itself is an undamped system, 

and the damping force of the fluid cannot be ignored (unless 

the feedback damping is much larger than the liquid damping, 

but this is often difficult to achieve). 
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Thus, the impact of the liquid force on the rotor in the x-

direction can be written as 

 𝐹𝑙𝑥 = −𝑐𝑙𝑥�̇�. (11) 

To unify the symbols of the parameters of the dynamic 

system, 𝑐𝑙𝑥 = |𝑐𝑙𝑥𝑥 + 𝑐𝑙𝑦𝑥| stands for the damping coefficient 

of the liquid force in the x-direction. In general, the damping 

force of the fluid dissipates excess rotor energy and the cross-

damping coefficient has little effect. These two parameters 

are strongly related to the liquid and the rotational speed of 

the rotor are difficult to calculate and measure. 

Then, the mechanical equilibrium equations in the x- and 

y-directions can be calculated as 

 {
�̂��̈� = 𝑘𝑥𝑥 − 𝑘𝑖𝑖𝑥 − 𝑐𝑙𝑥�̇�
�̂��̈� = 𝑘𝑦𝑦 − 𝑘𝑖𝑖𝑦 − 𝑐𝑙𝑦�̇�

 , (12) 

where �̈� 𝑎𝑛𝑑 �̈� are the rotor acceleration in the x- and y-

directions, respectively, 𝑘𝑦 is the force-displacement 

coefficient in the y-direction, 𝑖𝑦 is the current of the 

electromagnetic coils in the y-direction, 𝑐𝑙𝑦  is the damping 

coefficient of the liquid force in the y-direction, 𝑚 is the rotor 

mass, and �̂� is the equivalent mass of the rotor (which 

contains the mass of the liquid attached to the rotor surface). 

The equivalent mass of the rotor is difficult to estimate and 

measure. 

3. STABILITY OF MAGNETIC BEARING 

A voltage-controlled power amplifier was used to control 

the electromagnetic coils, which increased the efficiency of 

the power devices. A voltage-controlled magnetic bearing has 

a higher order than a current-controlled bearing. Third-order 

voltage control is more robust than second-order current 

control; however, it requires consideration of the inductance 

and resistance in the magnetic bearing system as well as the 

systematic stability and properties. 

Since the main magnetic flux of the permanent magnet 

does not flow through the electromagnetic coils and the 

position change of the rotor does not cause variable 

inductance of the electromagnets, the back electromotive 

force can be completely ignored. If the voltage of the coils is 

considered as input, the voltage can be written as 

 𝑢 = 𝑖𝑅 + 𝐿
𝑑𝑖

𝑑𝑡
, (13) 

where 𝑅 is the resistance of the electromagnet, 𝐿 is the 

inductance of the electromagnet, and 𝑢 is the voltage of the 

electromagnet (input). With respect to the critical mechanical 

frequency bands of the rotor considered in this study, the 

inductance and resistance of the electromagnetic coils can be 

considered constant. 

Table 1 lists the mechanical and electrical parameters of 

the magnetic bearing system. The force-displacement 

coefficient and the force-current coefficient were measured 

based on the stiffness test platform (not discussed in this 

paper). The inductance and resistance of the electromagnets 

were measured using an impedance analyzer. In the critical 

mechanical frequency range of 500 Hz, the inductance and 

resistance of the electromagnetic coils varied slightly and 

were considered constant. 

Table 1.  Magnetic bearing parameters. 

Parameter Unit Numerical value 

kx and ky N/m 66000 

ki N/A 6.8 

R Ω 4.5 

L mH 2.2 

 

Since the two axes are symmetrical, the x-axis is analyzed 

as an example. After differentiating (12) gain with respect to 

time, the derivative of the current with respect to time can be 

expressed as 

 
𝑑𝑖𝑥

𝑑𝑡
=

𝑘𝑥�̇�−𝑐𝑙𝑥�̈�−�̂�𝑥

𝑘𝑖
 . (14) 

Substituting (12) and (14) into (13), the mathematical 

model of the voltage-controlled magnetic bearing can be 

written as 

 −
𝐿�̂�

𝑘𝑖
𝑥 −

𝐿𝑐𝑙𝑥+𝑅�̂�

𝑘𝑖
�̈� +

𝐿𝑘𝑥−𝑅𝑐𝑙𝑥

𝑘𝑖
�̇� +

𝑘𝑥𝑅

𝑘𝑖
𝑥 = 𝑢 . (15) 

Equation (15) shows that the voltage-controlled magnetic 

bearing is a third-order dynamic system that cannot be 

reduced. The above quantitative model-based differential 

equation operation can be used to obtain the standard state-

space model of the system directly without using the Lie 

derivative. 

Based on (15), the state-space model can be calculated 

simultaneously as 

{
 
 

 
 �̇�1 = 𝑥2                                                                     
�̇�2 = 𝑥3                                                                     

�̇�3 =
𝑘𝑥𝑅

𝐿�̂�
𝑥1 + (

𝑘𝑥

�̂�
−

𝑐𝑙𝑥𝑅

𝐿�̂�
) 𝑥2 − (

𝑅

𝐿
+

𝑐𝑙𝑥

�̂�
) 𝑥3 −

𝑘𝑖

𝐿�̂�
𝑢

𝑥𝑜𝑢𝑡 = 𝑥1                                                                  

 , (16) 

where 𝑥1, 𝑥2, and 𝑥3 denote the displacement, velocity, and 

acceleration of the rotor, respectively. Its matrix form can be 

expressed as 

 �̇� = 𝑨𝒍𝑿 + 𝑩𝑢 , (17) 

where 

𝑨𝒍 = [

0 1 0
0 0 1
𝑘𝑥𝑅

𝐿�̂�

𝐿𝑘𝑥−𝑐𝑙𝑥𝑅

𝐿�̂�
−(

𝑅

𝐿
+

𝑐𝑙𝑥

�̂�
)
],       𝑩 = [

0
0
−𝑘𝑖

𝐿�̂�

]. 

The system input can then be configured as 

𝑢 = 𝑲𝑿 = [𝐾𝑃 𝐾𝐷 0][𝑥1 𝑥2 𝑥3]T = 𝐾𝑃𝑥1 + 𝐾𝐷𝑥2 , 

 (18) 

where 𝐾𝑃 and 𝐾𝐷 denote the feedback stiffness and damping 

after amplification by the power amplifier and 𝑘𝑃 and 𝑘𝐷 

denote the feedback stiffness and damping of the controller 

configuration. The relationship between these two sets of 

parameters can be considered as direct amplification. Note 

that the speed signal of the rotor is obtained by differentiating 

the collected displacement sensor signals, followed by a 

digital low-pass filter to filter the noise of the displacement 

sensors. Therefore, the radial velocity signal of the rotor can 

be considered as a measurement signal. 

Once the parameters have been introduced in (17), the 

matrix can be calculated as 
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𝑨𝒍 +𝑩𝑲 = [

0 1 0
0 0 1

𝑘𝑥𝑅−𝐾𝑃𝑘𝑖

𝐿�̂�

𝐿𝑘𝑥−𝑐𝑙𝑥𝑅−𝐾𝐷𝑘𝑖

𝐿�̂�
−(

𝑅

𝐿
+

𝑐𝑙𝑥

�̂�
)
]. (19) 

Then the system can be expressed as 

�̇� = (𝑨𝒍 +𝑩𝑲)𝑿. 

The real part of the eigenvalues 𝜆𝑖 in the matrix 𝑨𝒍 + 𝑩𝑲 

must be less than 0, which ensures the convergence of the 

system. The feedback parameters must then be guaranteed as 

 {
𝐾𝑃 > 𝑘𝑥𝑅/𝑘𝑖               
𝐾𝐷 > (𝐿𝑘𝑥 − 𝑐𝑙𝑥𝑅)/𝑘𝑖

. (20) 

The damping coefficient of the liquid improves the 

stability margin of the system when the rotor is at the center. 

The liquid attached to the surface of the rotor increases the 

rotor mass, and the bandwidth of the system decreases 

significantly, which loosens the requirements on the 

measurement and control system. Consequently, the 

performance requirements for the processing chip and the 

bandwidth of the displacement sensor are reduced. 

The closed-loop system of the magnetic bearing is usually 

designed with a mathematical model near the center point of 

the rotor, but the entire transient lifting-up process must be 

refined when the rotor is filled with liquid. At this stage, the 

fluid force can be considered as an unknown disturbance. The 

mathematical modeling in this part is difficult, but the entire 

physical process can be easily described. 

Fig. 2 briefly shows the physical process of lifting. In the 

initial phase, the rotor must overcome the radial force exerted 

by the liquid to accelerate, and the rise time is longer than in 

the air. However, when the rotor slows down near the center 

point, the liquid moves faster than the rotor, and the liquid 

force is reversed to the rotor, which is manifested as an 

increase in overshoot. 

Due to the physical process mentioned above, it is 

impossible to achieve favorable motion performance with 

linear, fixed feedback parameters. 

 

Fig. 2.  Transient process of lifting. 

4. APD CONTROL FOR MAGNETIC BEARING IN LVADS 

The use of fixed feedback parameters has the limitation 
that the rise time, the overshoot, and the adjustment time 
cannot be considered simultaneously. Moreover, this 
approach is ineffective against unknown perturbations. 

The adaptive rates of the parameters are based on the 
analysis of the above physical process. When the rotor is in 
the lifting-up process in the water, a large feedback stiffness 
and a small feedback damping away from the center point 
should be set to reduce the rise time. When the rotor is near 
the center point, the feedback stiffness should be reduced and 
the feedback damping increased to reduce overshoot and 
adjustment time. 

Fig. 3 shows a block diagram of the entire control system. 

 

Fig. 3.  APD control block. 

Fig. 4 shows the adaptive parameter function of PLA and 
the corresponding parabola. Under ideal conditions, the 
system must satisfy the sufficiently smooth Lipschitz 
conditions. Accordingly, the parameter adjustment can be 
designed in the parabolic form shown in Fig. 4. The upper and 
lower bounds of the parameters are identified in the figure. 
The boundaries of the parameters in Fig. 4 must satisfy the 
stability condition. A sufficiently smooth parabolic arithmetic 
parameter implies that floating-point arithmetic should be 
used in the processing chip, which increases the 
computational power requirements (double precision must be 
used to ensure accuracy near the vertex of a parabola). 
Implantable medical devices have high requirements on 
product size, power consumption, and heating. In this study, 
we used a piecewise linear approximation method to obtain 
an approach that requires only integer operations. 

Fig. 4.  Adaptive parameter function of PLA and parabola. 

The error can be ignored if multiple line segments are used 

to approximate a parabola. Considering the bandwidth and 

control accuracy requirements of the magnetic-bearing 

system, we adopted the two-stage piecewise linear 

approximation shown in Fig. 4. The nearby vertex of the 

parabola was replaced by a constant, thus avoiding high-

precision operations. 
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The mathematical expression of the parabola for the 

feedback stiffness and the feedback damping can be written 

as 

{
𝑘𝑃
𝑃𝑎𝑟(𝑥) = 𝛼𝑥2 + 𝛼0   

𝑘𝐷
𝑃𝑎𝑟(𝑥) = −𝛽𝑥2 + 𝛽0

, 

where 𝛼, 𝛼0, 𝛽, and  𝛽0 are the parabolic coefficients. 

However, if the coefficients of the parabola are not integers, 

the operation near the top of the parabola must be a floating 

point number to ensure accuracy. 

The mathematical expression of the two-stage PLA for the 

feedback stiffness and the feedback damping can be written 

as 

𝑘𝑃
𝑡𝑃(𝑥) = {

−𝜎𝑃𝑥 + 𝜎𝑃0,          𝑥 < −𝑥𝑙𝑏
𝛾𝑃 ,              𝑥𝑙𝑏 ≤ 𝑥 ≤ −𝑥𝑙𝑏
𝜎𝑃𝑥 + 𝜎𝑃0,                 𝑥 > 𝑥𝑙𝑏

 

𝑘𝐷
𝑡𝑃(𝑥) = {

𝜎𝐷𝑥 + 𝜎𝐷0,          𝑥 < −𝑥𝑙𝑏
𝛾𝐷 ,              𝑥𝑙𝑏 ≤ 𝑥 ≤ −𝑥𝑙𝑏
−𝜎𝐷𝑥 + 𝜎𝐷0,           𝑥 > 𝑥𝑙𝑏

, 

where 𝜎𝑃, 𝜎𝑃0, 𝛾𝑃, 𝜎𝐷, 𝜎𝐷0, and 𝛾𝐷 are the PLA coefficients. 

Except for the region near 𝑥𝑙𝑏 , all regions can be derived. In 

the lifting-up process, this point can be quickly crossed, and 

the rotor subsequently vibrates near the center point. The 

pitch of the curve can be set to an integer, ensuring that all 

operations are integers within the permissible accuracy. The 

𝑘𝑃𝐿  cannot fall below 80 for stability. The selection range of 

𝑘𝐷𝑆 is usually large but it should not exceed 45 considering 

the impact of sensor noise. 

5. EXPERIMENT 

The center point of the displacement sensor was at 

1.475 V, and the sensors adopted a differential output signal. 

The rotor was fixed to start in the same position by adjusting 

different parameters, and the signals of the displacement 

sensor and the output current signal of the power supply were 

observed. The rotor was located on one side near the 

displacement sensor and 45° on both sides of the x and y 

magnetic poles. The measured output current of the power 

supply included all magnetic poles. Based on the mechanical 

bandwidth of the magnetic bearing, the sampling rate of the 

displacement sensor signal was set to 5 kHz to reduce the 

acquisition of ineffective noise signals. The current sampling 

rate was set to 10 MHz to collect as much of the actual peak 

current as possible. The rotor was immersed in water in the 

test environment. The normal working gap of the rotor was 

0.25 mm, and the lower boundary in Fig. 4 was set to 

±0.05 mm. The corresponding feedback parameters were 

𝑘𝑃𝑆 = 120, 𝑘𝑃𝐿 = 110, 𝑘𝐷𝑆 = 33, and 𝑘𝐷𝐿 = 5. Fig. 5 

shows an image of the test setup. The oscilloscope model is 

Tektronix MDO3034. 

Fig. 6 shows the curve of the rotor movement in air under 

different feedback parameters, and Fig. 7 shows the curve of 

the rotor movement in water under different feedback 

parameters. 

Regardless of whether the rotor is in water or in air, with 

fixed feedback stiffness, the overshoot gradually decreases 

with increasing feedback damping, while the rise time 

increases only slightly. The feedback damping evidently 

influences the rise time to a lesser extent but correlates 

strongly with the overshoot and adjustment time. With fixed 

feedback damping, the overshoot increases with increasing 

feedback stiffness. 

 

Fig. 5.  Test setup. 

 
(a) 

 
(b) 

Fig. 6  (a) Displacement of rotor in air at lifting-up under constant 

stiffness with variable damping, (b) Displacement of rotor in air at 

lifting-up under constant damping with variable stiffness. 

Fig. 8 shows a comparison of the performance of the rotor 

in air and water with the same feedback parameters. The rotor 

lifting in water has a longer rise time and greater overshoot 

than in air. The reasons for the slow response speed of the 

rotor in water are consistent with the analysis shown in Fig. 2. 

Furthermore, the rotor receives an additional force from the 

fluid. 

Fig. 8 clearly shows that the lifting-up process cannot be 

explained by a center point mathematical model. The 

damping effect of the liquid should reduce the amount of 

overshoot, but this could not be achieved due to the relative 

motion of the liquid and the rotor. 
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(a) 

 
(b) 

Fig. 7  (a) Ddisplacement of rotor in water at lifting-up under 

constant stiffness with variable damping, (b) Displacement of rotor 

in water at lifting-up under constant damping with variable stiffness. 

 

Fig. 8.  Displacement of rotor at lifting-up between in air and water 

under the same parameters. 

Fig. 9 compares the APD with the traditional fixed 

parameters. The APD parameters have a shorter rise time 

without any overshoot. Due to the flexible adjustment of the 

feedback parameters, the APD results show strong 

performance in terms of rotor movement. 

 

Fig. 9.  Comparison of APD and fixed parameters. 

Fig. 10 compares the output currents of the three sets of 

feedback parameters. The output current of the external 

power supply was measured with the current probe of an 

oscilloscope. 

 

Fig. 10.  Comparison of the output current of the three control 

methods. 

Both the peak output current and the high-current-duration 

APD control showed large improvements compared to the 

other two configurations of the feedback parameters. 

The output current signals for each group are shown in 

Table 2. The peak current of the APD is 92.8% of that of the 

combination of large feedback stiffness and small feedback 

damping. Also, the time required to reach an output current 

of more than 1 A is reduced by 10.2 ms compared to the 

combination of large feedback damping and small feedback 

stiffness, and the average current of 50 ms is only 66% of the 

maximum. 

Table 2.  Comparison of current with each group. 

Parameter Peak 

current  

[A] 

Less than 

1 A moment 

[ms] 

50 ms average 

current  

[A] 

Adaptive PD 4.40 17.1 1.19 

kP =120, kD =20 4.74 19.5 1.44 

kP =110, kD =35 4.38 27.3 1.81 

 

From the current waveform in Fig. 10, it can be inferred 

that a larger feedback damping leads to a larger current 

envelope, which can be attributed to the influence of 

displacement sensor noise. As the rotor approaches the center 

point, its speed decreases and the current envelope becomes 

smaller. 

With a large feedback damping, a digital low-pass filter 

with a lower cut-off frequency must be configured to reduce 

the influence of the displacement sensor; however, this 

approach generally leads to a strong hysteresis of the current. 

In the laboratory environment, an STM32F1 chip 

(72 MHz) was selected to compare the code running times 

required by the integer PLA and the floating-point adaptive, 

and the results are shown in Table 3. If a chip that supports 

hardware floating-point arithmetic is selected, the running 

time of floating-point arithmetic can be significantly reduced; 

however, such chips may not be suitable for use in 

implantable medical devices. This is because floating-point 

arithmetic offers only a negligible improvement in control 

performance. The two-stage integer PLA is sufficient based 

on the output current and rotor displacement signal. 
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Table 3.  Comparison of running time between integer and floating-

point methods. 

 Integer PLA 

adaptive 

Floating-point 

adaptive 

Running time [μs]  7.63  39.92 

6. CONCLUSION 

In this study, a mathematical model was created for the 

magnetic bearing system of a fully magnetic levitation LVAD 

in a liquid-filled environment. In addition, the stability 

condition was analyzed and derived, and the feedback 

parameters were adaptively designed for the lifting-up 

process. The adaptive PD control showed superior 

performance for magnetic bearings in LVADs than the fixed-

parameter PD control. The magnetic bearings had less 

dependence on peripheral power components, especially in 

the power management section. Furthermore, the reduction in 

output current resulted in decreased heat loss. The two-stage 

integer PLA adaptive control effectively reduced 

computational complexity, making it more suitable for 

implantable medical devices that have strict requirements for 

volume, power, heat loss, and reliability. Finally, the average 

current of 50 ms dropped by 34% and the peak current 

dropped by 8%. 

A limitation of this work is that the range selection of the 

adaptive parameters is not yet sufficiently intelligent, which 

will be the focus of further research. In the future, the problem 

of slow response at lifting-up, which is caused by the fluid 

forces, needs to be solved. 
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