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Abstract: Conical tanks (CTs) play a vital role in the process industry as they can prevent residues in the tank. On the other hand, liquid level
controlling in a CT is a complicated process due to the non-linear cross-sectional area. The complexity in CTs is also increased by the
limitation to manipulated variables, interactions in measurements, and frequent disturbances. The control of liquid levels in CTs is of great
importance in the process industry. In this paper, the model reference adaptive control (MRAC) with the modified proportional integral
derivative (MPID) controller is proposed to maintain the liquid level at the set points. Two proportional integral derivative (PID) controller
blocks are used in the proposed MRAC. The controller parameters are tuned using flamingo search optimization algorithm (FSA) based on
minimum mean square error (MSE). The proposed method is implemented in MATLAB/Simulink platform and the results are considered
with respect to different set points and disturbance conditions. Also, the results are compared with the existing controllers such as
proportional integral (PI), PID, fractional-order proportional integral (FOPI) and MRAC-PID. The results show that the proposed MRAC
provides lower integral square error (ISE) and integral absolute error (IAE) values of 38.25 and 2167, respectively.

Keywords: model reference adaptive controller, flamingo search algorithm, proportional integral derivative, process industry, conical tank,

mean square error, liquid level

1. INTRODUCTION

The definition of a non-linear system is a system whose
performance is not proportional to changes in the input. Due
to its unpredictable changes, controlling a non-linear system
is more challenging than controlling a linear system [1].
A few linear systems operate near the operating point in
actual systems that are primarily non-linear in nature [2]. The
process industry is characterized by non-linearity, which
affects system performance. Due to variations in the tank’s
cross-sectional area, problems have developed in the non-
linear system. Non-linear characteristics such as measu-
rement delays, parameter uncertainties and interaction effects
reduced the accuracy of industrial processes [3]. In practice,
non-linear systems can be found in all process areas, and
tuning such systems is a complicated task. Therefore, several
controllers are developed in the process industry to overcome
non-linearity [4], [5]. For linear tanks, such as cylindrical
tanks, the design of controllers is generally a simple task. In
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contrast, modeling a process control system with minimal
interaction is a challenging task in automatic control
applications. Conversely, designing controllers for non-linear
tanks is a tedious task in process control applications due to
changes in cross-sectional areas [6].

Spherical tanks (STs) and conical tanks (CTs) are the two
variants of the non-linear model where the limit of control
becomes complex due to the shape of the tank. In a CT, the
stored liquid can be completely emptied without leaving any
residue [7]. In a real-time process, the problem arises in
a non-linear system because in the event of an overflow, the
liquid inflow is not proportional to the outflow rate [8]. In the
process industry, maintaining the required liquid level is an
important consideration, especially in CTs due to the non-
linear structure. In such a system, the liquid level is the
control variable performed by the percentage of valve
opening. From an industrial point of view, liquid level control
is a necessary task to make the system suitable for a variety
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of applications. Therefore, several controls have been

developed in the past to cope with system variations. Most

often, the proportional integral derivative (PID) controller is
used in industrial applications because of its simplicity.

However, the PID controller cannot provide better results

when the system is subject to fluctuations and disturbances

[9].

Initially, basic controllers such as proportional integral (PI)
were used in industrial applications for liquid level control.
Later, tuning approaches were introduced into the control
architectures to improve the control behavior. On the other
hand, sliding mode control (SMC) is used in the non-linear
process control [10]. However, the processability of the PID
controller is better in a linear system, but in the case of a non-
linear system, it should be tuned with a minimum error.
Therefore, metaheuristic algorithm based controllers are
developed to provide notable solutions for non-linear
applications. Here, the controlling complexity is added in the
form of different cross-sectional areas [11]-[13]. In recent
decades, fractional order based controllers have gained more
attention in non-linear process control [14], [15]. The fuzzy
logic approaches provide better performance under varying
system conditions [16], [17]. An extensive comparison of
current control approaches was made in [18], which shows
that the existing PID controller leads to severe overshoot.
Therefore, an efficient controller with lower peak overshoot
is required for liquid level control. Several other controllers
were placed in the CT with the goal of minimizing peak
overshoot, but they used numerous optimization methods to
fine-tune the parameters and increase performance.

From a controller tuning point of view, the model reference
adaptive controller (MRAC) is the better choice. The MRAC
provides the desired performance based on the reference
model in non-linear process control [19], [20]. Therefore, the
objective of the proposed work was to develop an MRAC-
based controller for maintaining the liquid level in a conical
water tank (CWT).

The contributions to this work are listed below:

1. Design an MRAC with a modified PID named D-PI
controller for liquid level control under varying system
conditions and disturbances.

. Optimize the controller parameters based on the reduced
MSE between the reference point and the liquid level of
the tank.

. Examine the performance of the proposed MRAC by
implementing the existing approaches into the
SIMULINK model of the CT.

The structure of the paper is as follows. Section 2 discusses
related works, while Section 3 explains the methodological
approach, such as the MRAC, the PID controller, and the
flamingo search algorithm (FSA). The proposed method
results are analyzed in Section 4, and the conclusion follows
in Section 5.

2. RELATED WORKS

Recently developed controllers for liquid level control in
the CWT are discussed in this section.

Arun and Sahaya Aarti [21] have developed a model of
predictive control (MPC) for the CT. For linear models,
a process model was adopted to calculate the output in the
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present state and the input in the future. In the gain scheduling
MPC, the scheduler was used to tune the weights at the
sampling moment and the weights were selected based on the
manipulated inputs. Then, the set of weights is fed into to the
plant.

Kumar et al. [22] proposed an internal model controller
(IMC)-based PID controller for the CT to minimize the
overshoot and settling time. This proposed method provided
optimal controller parameters with respect to the variations in
set points. The set point filter in this model was used for
selecting the optimal tuning parameter to minimize
overshoot. In this approach, an optimal tuning parameter was
selected based on maximum sensitivity.

Rajiv Ranjan [23] developed MRAC for liquid level
control in process industry. The proposed approach uses MIT
rules for first and second order bounded disturbances.
Unknown parameters of the plant were tuned using adaptive
laws to produce zero tracking error.

Espitia-Cuchango et al. [24] developed a neuro-fuzzy
adaptive control (NFAC) strategy for CT. In this proposed
method, the parameters of the controller were optimized
based on the identification of the plant in the system
operation. In this approach, the descending gradient
algorithm and back propagation algorithm were used to
minimize the system error.

Aguila-Camacho et al. [25] proposed the fractional order
PI for controlling the liquid level in the CT. In this method,
the controller gains were tuned by the particle swarm
optimization (PSO), which optimized the controller values
based on 13 operating ranges. The results of the proposed
model were verified under varying step changes. It was found
that the PI controller has a higher steady state error than the
proposed controller.

Balaska et al. [29] introduced a fractional-order model
reference adaptive control (FO-MRAC) strategy for liquid
level control in a CT system. The proposed FO-MRAC uses
a fractional-order reference model to define the desired
closed-loop performance characteristics. In addition, the
control approach includes fractional integration in the
parameter update process to improve adaptability. Both
integer-order and fractional-order model reference adaptive
controllers (FO-MRAC) are implemented for the non-linear
system and their performance is compared to evaluate the
effectiveness of the fractional-order approach.

Patil and Agashe [30] introduced a novel deep
reinforcement learning (DRL) based control method to
reduce the structural complexity and non-linear dynamics for
liquid level control in CTs. The DRL controller regulates the
liquid level in a CT by dynamically adjusting the inlet and
outlet flow rates. The DRL agent interacts with the
environment to optimize its control strategy and maximize
cumulative rewards over time.

Ramanathan et al. [31] introduced machine learning-based
controllers for the control of non-linear systems. In particular,
a smart controller utilizing a reinforcement learning
algorithm was proposed and evaluated for controlling the
liquid level in a non-linear CT system. The system was
modeled as a Markov decision process (MDP) and the control
strategy was implemented using a reinforcement learning
technique based on the Q-learning algorithm. The
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performance of the proposed controller was demonstrated by
its ability to effectively regulate the liquid level in the non-
linear tank system.

In this paper, a FO-MRAC strategy for controlling the
liquid level in a CT system is presented. The proposed FO-
MRAC uses a fractional-order reference model to define the
desired closed-loop performance characteristics. In addition,
the control approach includes fractional integration in the
parameter update process for to improve adaptability. Both
integer-order and fractional-order model reference adaptive
controllers MRAC are implemented for the non-linear system

and their performance is compared to evaluate the
effectiveness of the fractional-order approach. Table 1 lists
different methods for liquid level control in the CT.

CTs are used in a variety of industrial processes for
drainage of slurries, viscous liquids, and solid mixtures. Level
control in a CT is difficult due to its non-linearity and
constantly changing cross-section. The main objective of this
paper is to develop a suitable controller for the CT system to
maintain the desired level. It is clear from the literature that
an efficient controller is required to improve the time domain
and time integral performance measures.

Table 1. Literature review.

Author Method Outcome Advantages Drawbacks

Arun and Sahaya Aarti [21] MPC Rise time is 262 s, Lower peak and settling time Overshoot is higher
overshoot is 9.3 % in the second tank

Kumar et al. [22] IMC-PID ITAE is 0.0661, It can be applied to the Poor robustness
overshoot is 7.611-10* conical transfer function

Rajiv Ranjan [23] MRAC Settling time is 30 s System performance is stable Longer settling time

under unmodelled dynamic

Espitia-Cuchango et al. [24] NFAC Desired response is obtained Suitable for multi-input More settling time
under varying system conditions and multi-output systems

Aguila-Camacho et al. [25] FOPI ITAE is 1.4465-10° Lower variance More time to settle

Balaska et al. [29] FO-MRAC Sampling period is 0.1 s Lowest error cost Increases the noise

Patil and Agashe [30] DRL Desired response is obtained Reduces the complexity Higher rise time

under varying system conditions
Settling time for trial 1 is 452 s

Reinforcement
learning algorithm

Ramanathan et al. [31]

and non-linearity
Reduces the non-linearity
issues and settling time

Learning process slow

3. PROPOSED METHODOLOGY

In liquid level control of a CT, the level of the liquid is kept
within the desired level depending on the application. The
controller used in these applications should minimize the
difference between the liquid level in the tank and the
reference level of the liquid. In addition, the controller
parameters should be set to minimize overshoots. Taking
these considerations into account, the MRAC-based
controller is proposed in this work. The MRAC allows a plant
to follow a reference model regardless of the variations of the
plant parameters; therefore, it minimizes the difference
between the reference and the output of the plant. In contrast,
an adaptive controller without a stable tuning method causes
instability in the system, and the improved PID controller is
used together with the MRAC. First, a suitable model is
developed using the system identification procedures, then
the parameters are tuned using the FSA.

A. Mathematical modelling of CT

Conical shapes are still the strongest structure; they can
withstand the greatest pressure. A low surface-to-volume
ratio reduces the amount of heat entering the tank. High-
pressure liquids are not a problem for the CT. Such tanks are
used to store fuels, cryogenic liquids, and other materials in
various industries. Fig. 1 shows the basic structure of a CT in
which the liquid level is controlled at a steady rate by
controlling the tank F input.

Fin

R1

— [out

Fig. 1. Structure of a CT.

The accumulation rate of the CT Agge. IS analyzed using
the following equation:

M)

where F, is the flow rate of the incoming stream, F, . is the
flow rate of the output stream.

Arate = Fin — Fout

dv

E=Fi — Fou 2
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H,

R, 3)

Foue =

where R, is the radius of the large CT, R, is the radius of the
CT in the steady state, H, is the height of the CT, H, is the
height of the CT in the steady state, and Ry, is the resistance
of the value. The volume of the tank V' is analyzed by the
following equation:

1
V=2m RZ H, 4)
dH, 1 H,
G wHIR (Fu - R_V) ®)
R, R,
===z (6)
H, H,

where A is the ratio of radius to height of the CT [26].

B. Proposed MRAC

The goal of MRAC is to create a responsive control system
that adjusts the controller’s parameters so that the actual
output of the plant matches the output of a reference model.
MRAC techniques are used to control the level of the non-
linear tank by variable manipulation of the tank’s liquid level.
An adjustment or adaptation mechanism and a reference
model are integrated into the MRAC. The MRAC aims to
design a closed loop controller with parameters that can be
varied based on the system response. The system’s output is
then compared with the desired response of the reference
model. The error difference between the plant output and the
reference model output is used to adjust the controller
settings. In addition, the controller input and the measured
output are required for the investigation of the reference
model. Fig. 2 shows the block diagram for the basic MRAC.

Ym(t)
Reference
model
Reference
input
P u(t) Y()
Controller »  Plant
Adjustment [
mechanism -t

Fig. 2. Block diagram of MRAC.

The adaptive gain 6 is multiplied by the controller’s output
to achieve the system’s adaptability to changes.

U(t) = 0 % Uy(t) )

where 6 represents the adaptive gain in the MRAC structure,
which adjust dynamically based on the system error to ensure
the plant output follows the reference model. The term U, (t)
represents the control signal generated by the adaptive

MRAC with the D-PI structure. It is applied to the system to
minimize the error between the reference model output and
the plant output.

The D-PI controller is proposed in the MRAC to improve
the control mechanism. The proposed D-PI controller is the
improved version of the PID controller. The D-PI consists of
two PID blocks in the first block, the proportional and integral
gains are kept at zero. In the second block, the derivative gain
is kept at zero.

Upi(t) = Kpe(t) + K; f e(t)dt (8)

de(t)
dt

Upip(t) = Kye(t) + K; f e(t)dt + Ky 9)

Here K,, Kjand Kg are proportional, integral, and
derivative gains. The error between the reference model and
the actual output is measured using the following equation:

e(t) =Y(t) = Yn() (10)
where Y(t) is the actual plant output and Y,,(t) is the
reference model output.

In the proposed MRAC, the controller parameters are
modified by the FSA based on the minimum error. The
adaptation algorithm modifies the controller parameters when

the reference parameters are varied. The basic flow of the
proposed MRAC is shown in Fig. 3.

| Reference Y'm(t)
. model
Reference
input Proposed D-PI u( Conical | Y(®
controller T tank
System output
Flamingo » 4 P
optimization

algorithm -

Error

Fig. 3. Proposed MRAC with D-PI.

In this proposed work, the error generated from the
reference model of the CT and the set points is passed to the
FSA to tune the optimal controller parameters. The reference
model of the CT is designed as the expected response of the
plant model. The reference model requires a lot of experience
with the dynamic system. In the case of liquid level control,
an overshoot of 2% and a settling time of 180s are
considered for the reference modeling [27], which is given

by:

_ In(P/100) 1
—1 - (1n(1>_/100))2

(11
i

Here y is the damping ratio, the natural frequency w = yit
S

The transfer function for the reference model is given as
follows:
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3.55
s2+4+2.66s + 3.55

G(s) = (12)

FSA for parameter tuning

The FSA is a recently developed metaheuristic
optimization method inspired by the foraging behavior and
group dynamics of flamingos. This algorithm mimics their
collaborative strategies for finding food-rich regions while
balancing exploration and exploitation during optimization.
[28]. A population of potential solutions (flamingos) is
randomly initialized in the search space. Each flamingo
represents a candidate set of controller parameters. Each
flamingo evaluates its fitness based on an objective function.
In this study, the mean square error (MSE) between the
reference model and the actual liquid level of the CT is used
as the fitness function. Based on this consideration, the fitness
function of the FSA is formulated and expressed in the
following equation:

Fitness =
= (w;-MSE) + (w, - P) + (w5 - Tsettling) + (Wy " Trise)
(13)

Here MSE is represented as mean square error, P is
represented as peak overshoot, Tgeening IS represented as
settling time, T IS represented as rise time, w is the weight
of the objective function and varies between 0 and 20. The
moving distance of n'" flamingo in the m*" dimension of the
population at iteration t during foraging can be expressed as:

fom =€1" Xfm + Co- | Co - Xfo + €5 Xy | (14)
where £%, represents the position of the nt™® flamingo in the
m™ dimension of the population, X%, represents the position
of the n*® flamingo in the m™ dimension of the population at
iteration t, C, and C, are random numbers and €,, €, are
standard normal distributions. The position of the food-rich
region in the m*™ dimension is Xf,,.

The equation for modifying the position of the flamingo
during foraging at iteration (1 + t) is:

(XTth + EIIXfTYtl +C0 | Cy antl +€2'Xrtlm D

- (15)

1+t _—
Xnm -

where G denotes the diffusion factor and the equation for the
movement of the flamingo population is:
Xom' =B (Xfm — Xam) + Xam (16)
The location of the n™" flamingo in the m™ dimension of
the population at iteration (1 + t) is represented by X1+t and
B is a Gaussian random number. At iteration t, Xf,f, denotes
the m™ dimension location of the flamingo with the best
fitness in the population.
The FSA procedure is given below:
> Step 1: Set the total flamingo population P, the
maximum number of iterations I,,, and the migration
proportion PM,,.
> Step 2: In the n'" iteration of the flamingo population

update, the population is divided into three groups based
on the proportion parameter PM,. The number of
foraging flamingos is calculated as PxM = R[0,1] -
(1 -PM,)-P, where R[0,1] is a random number
between 0 and 1, and P is the total population size. The
number of flamingos in the first section is P¢y = PM,, -
P. The number of flamingos migrating in the second
section is Pgy = P — Pry — Pcy. Individual flamingo
fitness values are determined and the population of
flamingos is organized according to individual flamingo
fitness values. The flamingos in the first section Py,
with low fitness and flamingos in the second section Pg,,
with high fitness are considered as migratory flamingos,
while the remaining flamingos are considered as
foraging flamingos.

» Step 3: Foraging flamingos update their position using
(15) and migratory flamingos update their position using
(16).

» Step 4: Ensure that each updated flamingo position
remains within predefined bounds of the controller
parameter space. If a flamingo exceeds these bounds, it
is corrected either by limiting it to the nearest boundary
value or by reinitializing it randomly within the valid
range.

> Step 5: If the iteration count reaches I,,, terminate and
return the flamingo with the best fitness (optimal
controller parameters). Otherwise, return to step 2 for
the next iteration.

The FSA-tuned controller reduces the rise time and settling
time compared to other optimization methods, resulting in
faster system responses. FSA uses fewer parameters
compared to techniques such as differential evolution (DE) or
artificial bee colony (ABC), making it easier to implement
while maintaining computational efficiency. Since FSA
strikes a balance between exploration and exploitation, it
converges to optimal solutions faster than traditional methods
such as PSO, where more iterations may be required to fine-
tune the solutions.

4, RESULTS AND DISCUSSION

The proposed work is carried out in MATLAB/
SIMULINK platform and the results are measured in
different operational domains. The Simulink model of the
proposed work is shown in Fig. 4.

Discrete
Se-05s.

o Interpreted

MATLAB Fen ’ @

Reference
model

Ref 4‘—. In Inport ——*
L—»

u ¥ Conical tank

D-PI controller

- So
K P o s ‘
I fen LG—‘
amingo

optimization algorithm

Fig. 4. Simulink model of MRAC with CT.
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The time domain analysis of the different controllers is
shown in Table 2. The results obtained with the proposed
model are compared with the existing PI, PID, FOPI, and
MRAC with PID controllers using the implemented models.
First, the set point for the liquid level is set to 25 cm. The
results are shown in Fig. 5. The model reference adaptive
control-modified proportional integral derivative (MRAC-
MPID) controller shows better performance in terms of lower
overshoot, faster settling time, and faster rise time than the
existing controllers. Specifically, the MRAC-MPID achieves
an overshoot of 0.8 %, which is significantly lower than other
controllers (e.g., FOPID: 2.8 %, MRAC: 1.6 %). This lower
overshoot can be attributed to the precise tuning of the
controller gains with the FSA, which optimizes the balance
between stability and responsiveness. The settling time for
MRAC-MPID (200 s) is also shorter compared to MRAC
(245s) and FOPID (273s), demonstrating the improved
adaptability and transient response provided by the MPID
structure within the MRAC framework. The FSA ensures that
the controller gains are tuned to minimize error metrics such
as integral square error (ISE) and integral absolute error
(IAE), resulting in improved steady-state accuracy and
transient performance. For example, MRAC-MPID achieves
an ISE of 38.25 and an IAE of 2167, both of which are lower
than other controllers. Furthermore, in scenarios with varying
set points or disturbances, MRAC-MPID shows faster
recovery and lower deviation compared to MRAC alone. This
is evident in the smooth transition curves and minimal
oscillations shown in Fig. 5.

35
30
PR 25
£
E 15/ Set point
3 ——MRAC-PID
10 —PI
—PID
—FOPI .
——MRAC (Proposed)
0 L L T T
0 200 400 600 800 1000
Time (s)

Fig. 5. Controller output under constant set point.

Table 2. Comparative analysis of different controllers.

Controllers Peak Settling Rise  ISE IAE
overshoot time time
[%] [s] [s]
Pl 18.17 402 109 4773 2681
PID 21.32 421 114 51.03 2968
FOPI 12.74 408 157 43.09 2902
MRAC-PID 7.19 391 174 41.35 2863
MRAC (Proposed) 0.8 200 103 38.25 2167

The performance analysis of controllers in response to
random disturbances in the input flow is shown in Fig. 6.
Here, the disturbance is applied at 500 s in the input flow and
the results are measured for all controllers. The results are
measured to evaluate the controllers’ ability to reject
disturbances and maintain the liquid level at the desired set
point. The PID controller exhibits noticeable oscillations and
delayed recovery after the disturbance. This is primarily due
to its fixed gain parameters, which limit its ability to handle
the non-linear dynamics and unpredictable changes in the
system. The FOPID controller performs better than the
traditional PID, but lags behind the MRAC-MPID in terms of
disturbance rejection. The fractional-order terms provide
some degree of adaptability, but are not sufficient to
efficiently handle the randomness and magnitude of the
disturbances. The standard MRAC with a PID controller
shows better adaptability compared to PID and FOPID, but
lacks the fine-tuned response of the MRAC-MPID. The lack
of MPID leads to increased oscillation amplitudes and
prolonged stability, which emphasizes the significance of the
MPID enhancement. The MRAC-MPID demonstrates
superior performance by tracking the set point with minimal
oscillations after the disturbance is introduced. The adaptive
nature of the MRAC ensures that the controller dynamically
adjusts to the non-linear characteristics of the CT, while the
MPID component improves damping, reducing the amplitude
of the oscillations.

40 |

[
=]

Disturbance (cm3/s)
(=]

-20
0l
0 200 400 600 800 1000
Time (s)
(@)
52
51+
PR 50+
= |
2 48 1 ——MRAC (Proposed) | |
- 47 ——MRAC-PID
—PI
46 —PID
—FOPI
45 : : ‘ ‘
0 200 400 600 800 1000
Time (s)

(b)

Fig. 6. Performance analysis under random disturbance in constant
setpoint.
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Controller performance under sudden disturbance in the
load is shown in Fig. 7. In this case, the disturbance in the
liquid level occurs between 300 s to 700 s. The PID controller
struggles to cope with the abrupt load changes, resulting in
significant deviations from the reference level. The FOPID
controller performs better than the PID due to its fractional-
order terms, which allow for some flexibility in response.
However, it still cannot match the precision and adaptability
of MRAC-MPID, as evidenced by the larger oscillations and
slower recovery times. While the standard MRAC-PID
controller has better adaptability than PID and FOPID, it
lacks the fine-tuned control offered by the MPID
enhancement. The MRAC-MPID controller handles sudden
changes in load with minimal impact on the liquid level,
ensuring process stability. The combined benefits of
MRAC’s adaptability and MPID’s improved control
precision minimize the effect of load disturbances, resulting
in negligible overshoot and rapid stabilization.

54 ¢ Ref level 1
——MRAC (Proposed)

52 - |—MRAC-PID ]
~ —PI
E50r —pm
= ——FOPI
4 48 - 1
5
= 46

44 ;

42 : : : :

0 200 400 600 800 1000
Time (s)

Fig. 7. Performance analysis under load variations.
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Fig. 8. Controller output under variation in reference from 30 cm to
46 cm.

The results of the controllers when the liquid level varies
between 30 cm and 46 cm are shown in Fig. 8. The PID
controller has difficulty dealing with the non-linear
characteristics of the CT system, resulting in greater

overshoot and prolonged settling time. The FOPID controller
offers better adaptability compared to the PID controller due
to its fractional-order terms. As a result, the FOPID controller
has a higher overshoot and a slower response time during
input range transitions. The MRAC-MPID controller
achieves better liquid level regulation during input range
variations, with minimal overshoot and smooth transitions
compared to the existing techniques. The controller quickly
stabilizes the liquid level after a change in input, ensuring
efficient and reliable operation of the system. By combining
MRAC’s self-tuning capability with MPID’s precise control,
the proposed approach effectively manages the non-
linearities inherent in the CT system.

Controlling liquid levels in multiple variations of reference
points is shown in Fig. 9. In this figure, the liquid level is
varied from 32 cm to 62 cm and the response of all controllers
is measured. The proposed MRAC-MPID controller shows
better adaptability and allows more precise tracking of
varying reference points than the existing controllers. The
PID controller shows significant overshoot and longer
Settling times as it cannot adapt to the system’s non-linear
dynamics. The FOPID controller performs better than the PID
controller due to its fractional-order terms, which offer
a certain degree of adaptability. However, it still lags behind
the MRAC-MPID in terms of overshoot and response speed
because it cannot dynamically tune itself to changing
reference points like the MRAC-MPID.

70
60 r
Eso
)
> Ref level ]
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Fig. 9. Controller response under varying liquid levels.
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Fig. 10. Convergence plot for optimization algorithms.
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As observed, the proposed MRAC outperforms the
existing controllers under different operating conditions. The
convergence plot of FSA with GA and PSO is shown in
Fig. 10. The FSA achieves a more accurate solution with
minimal error metrics and ensures that the MRAC-MPID
controller is fine-tuned to respond better in non-linear
systems such as the CT. From the results, it is verified that the
FSA has a better convergence speed than GA and PSO.

Table 3 shows a comparative analysis of the PID controller
performance using different optimization techniques,
including genetic algorithm (GA), PSO, and FSA as applied
in the proposed MRAC-MPID framework. Key performance
metrics such as peak overshoot (%), settling time (s), rise
time (s), ISE, and IAE are evaluated to highlight the
effectiveness of each optimization approach. The manually
tuned PID controller exhibits the highest peak overshoot
(21.32 %) and the longest settling time (421 s), together with
the largest ISE (51.03) and IAE (2968). This shows the
limitations of manual tuning in handling the non-linearities
and dynamic variations of the CT system. The PID controller
optimized with the GA shows significant improvement over
manual tuning, with a lower overshoot (10.52 %) and
a shorter settling time (376 s). However, the ISE (44.17) and
IAE (2888) are still relatively high, indicating room for
further improvement in the system’s transient and steady-
state performance. The use of PSO further improves the
controller’s performance, reducing overshoot to 5.44 % and
shortening the settling time to 305 s. The ISE and IAE also
improve to 40.93 and 2657, respectively, showing the
effectiveness of PSO in optimizing PID parameters but still
leaving some performance gaps. The proposed MRAC-MPID
controller optimized with the FSA outperforms all other
configurations and achieves the lowest peak overshoot
(0.8 %) and settling time (200 s). In addition, the ISE (38.25)
and IAE (2167) are significantly lower compared to GA- and
PSO-optimized PID controllers. These results highlight the
superior ability of the FSA to explore the parameter space and
converge to optimal values, resulting in a robust and precise
control response. The results emphasize that the FSA
effectively minimizes both transient and steady-state errors,
resulting in improved system stability and reduced energy
consumption. Since the FSA-optimized MRAC-MPID
controller accounts for the non-linear dynamics of the CT
system more effectively than GA or PSO, it ensures better
performance under varying operating conditions and
disturbances.

Table 3. Comparative analysis of PID controller with different
optimization techniques.

Controllers Peak Settling Rise ISE IAE
overshoot time time
[%] [s] [s]
PID 21.32 421 114  51.03 2968
PID with GA 10.52 376 131 4417 2888
PID with PSO 5.44 305 122 4093 2652
MRAC (Proposed) 0.8 200 103 3825 2167
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Fig. 11 shows the comparison of the control signals for
different controllers such as PI, PID, FOPl, MRAC-PID, and
the proposed method. Table 4 shows the results in terms of
control energy and peak values based on the simulation
control signals. The control energy values show that the
proposed MRAC requires less control energy compared to
traditional controllers such as Pl, PID, FOPI, and MRAC-
PID. This indicates that the proposed MRAC controller is
more efficient in terms of energy required to maintain system
stability and performance. The peak values show that MRAC
controllers have the lowest peak values, indicating that the
control signals are smoother and less aggressive compared to
the traditional controllers.

Control Signal

MRAC (Proposed) |

0 20 40 60 80 100
Time (s)

2

Fig. 11. Comparison of control signals for different controllers.

Table 4. Control energy and peaks for different controllers.

Controller Control energy [J] Peak value
Pl 41.178 1.6136
PID 50 1.5405
FOPI 28.954 1.2464
MRAC-PID 27.678 1.231
MRAC (Proposed) 20.832 1.002

5. DISCUSSION

The proposed MRAC-MPID controller tuned using the
FSA, was evaluated under different scenarios including
random disturbances, load variations, and reference point
changes. The proposed MRAC-MPID controller shows lower
oscillations and faster recovery when subjected to random
disturbances in the input flow compared to other controllers.
This proves its robustness under dynamic and unpredictable
conditions, which is crucial for real-world industrial systems.
During load variation scenarios, the MRAC-MPID controller
maintains stable operation with minimal impact on liquid
levels and exhibits excellent disturbance rejection. This
ability to handle varying loads efficiently makes it highly
relevant for industries dealing with fluctuating operational
demands. The MRAC-MPID controller effectively tracks
changing reference points with minimal overshoot and
reduced settling times. This proves its adaptability and
precise control in dynamic systems that require frequent set
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point adjustments. The results consistently show that the
proposed controller outperforms conventional approaches,
such as PI, PID, and FOPI controllers as well as MRAC-PID.
Key performance metrics such as lower overshoot, shorter
settling time, and better disturbance rejection highlight the
controller’s ability to effectively handle non-linearities in CT
systems. The work focuses on liquid level control in a CT
system, although the proposed MRAC-MPID controller is
potentially applicable to many non-linear systems and
industrial processes. Renewable energy systems, such as
wind turbines and solar power plants, are often subject to non-
linear dynamics due to environmental fluctuations. The
proposed controller could optimize power generation and
stabilize system performance with changing wind speeds or
solar irradiance levels. Moreover, in the chemical industry,
non-linear systems such as Continuous Stirred Tank Reactors
and distillation columns show complex dynamic behavior.
The proposed MRAC-MPID controller can effectively
control parameters such as temperature, concentration, and
pressure to ensure the process stability and efficiency. The
proposed MRAC-MPID controller is particularly effective in
handling system non-linearities, disturbances, and varying
operating conditions. However, its performance depends on
accurate modeling and proper tuning of the controller. Future
research can address these limitations by integrating the
method with real-time machine learning models for adaptive
tuning in highly uncertain environments.

6. CONCLUSION

Liquid level control is an important aspect in the process
industry with CTs. To improve the liquid level control, an
MRAC based controller is proposed in this work. In the
proposed MRAC, the MPID is used to improve the level of
control under varying inputs and disturbances. The controller
gains of MPID are tuned by the FSA based on the MSE. The
proposed method is implemented in MATLAB/SIMULINK
and the results are compared with existing approaches. The
results are verified under constant set point, varying set point,
and disturbance conditions. It is found that the proposed
MRAC has a 0.8 % overshoot and requires 200 s and 103 s
for settling time and rising time, respectively. Moreover, the
proposed MRAC offers lower ISE and IAE values of 38.25
and 2167, respectively. In addition, the fitness estimation has
proved the operating efficiency of FSA compared to existing
methods. However, MRAC-MPID outperforms other
controllers in handling non-linearities and disturbances and
has limitations in terms of its dependence on an accurate
reference model. If the reference model does not adequately
represent the system dynamics, the controller’s performance
may deteriorate. While the computational complexity of FSA
is lower than that of some optimization methods, it still
requires a significant amount of time for parameter tuning in
large-scale systems or real-time applications. This could limit
the applicability of MRAC-MPID to systems with strict real-
time constraints. The proposed method could also face
challenges in highly stochastic environments where
disturbances are unpredictable and vary significantly over
time. These scenarios may require further improvements such
as the incorporation of machine learning techniques for
adaptive parameter tuning. Future work will develop artificial
intelligence-based controllers for two interacting tank
systems.
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