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Abstract: Conical tanks (CTs) play a vital role in the process industry as they can prevent residues in the tank. On the other hand, liquid level 

controlling in a CT is a complicated process due to the non-linear cross-sectional area. The complexity in CTs is also increased by the 

limitation to manipulated variables, interactions in measurements, and frequent disturbances. The control of liquid levels in CTs is of great 

importance in the process industry. In this paper, the model reference adaptive control (MRAC) with the modified proportional integral 

derivative (MPID) controller is proposed to maintain the liquid level at the set points. Two proportional integral derivative (PID) controller 

blocks are used in the proposed MRAC. The controller parameters are tuned using flamingo search optimization algorithm (FSA) based on 

minimum mean square error (MSE). The proposed method is implemented in MATLAB/Simulink platform and the results are considered 

with respect to different set points and disturbance conditions. Also, the results are compared with the existing controllers such as 

proportional integral (PI), PID, fractional-order proportional integral (FOPI) and MRAC-PID. The results show that the proposed MRAC 

provides lower integral square error (ISE) and integral absolute error (IAE) values of 38.25 and 2167, respectively. 

Keywords: model reference adaptive controller, flamingo search algorithm, proportional integral derivative, process industry, conical tank, 

mean square error, liquid level 

 

1. INTRODUCTION 

The definition of a non-linear system is a system whose 

performance is not proportional to changes in the input. Due 

to its unpredictable changes, controlling a non-linear system 

is more challenging than controlling a linear system [1]. 

A few linear systems operate near the operating point in 

actual systems that are primarily non-linear in nature [2]. The 

process industry is characterized by non-linearity, which 

affects system performance. Due to variations in the tank’s 

cross-sectional area, problems have developed in the non-

linear system. Non-linear characteristics such as measu-

rement delays, parameter uncertainties and interaction effects 

reduced the accuracy of industrial processes [3]. In practice, 

non-linear systems can be found in all process areas, and 

tuning such systems is a complicated task. Therefore, several 

controllers are developed in the process industry to overcome 

non-linearity [4], [5]. For linear tanks, such as cylindrical 

tanks, the design of controllers is generally a simple task. In 

contrast, modeling a process control system with minimal 

interaction is a challenging task in automatic control 

applications. Conversely, designing controllers for non-linear 

tanks is a tedious task in process control applications due to 

changes in cross-sectional areas [6].  

Spherical tanks (STs) and conical tanks (CTs) are the two 

variants of the non-linear model where the limit of control 

becomes complex due to the shape of the tank. In a CT, the 

stored liquid can be completely emptied without leaving any 

residue [7]. In a real-time process, the problem arises in 

a non-linear system because in the event of an overflow, the 

liquid inflow is not proportional to the outflow rate [8]. In the 

process industry, maintaining the required liquid level is an 

important consideration, especially in CTs due to the non-

linear structure. In such a system, the liquid level is the 

control variable performed by the percentage of valve 

opening. From an industrial point of view, liquid level control 

is a necessary task to make the system suitable for a variety 
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of applications. Therefore, several controls have been 

developed in the past to cope with system variations. Most 

often, the proportional integral derivative (PID) controller is 

used in industrial applications because of its simplicity. 

However, the PID controller cannot provide better results 

when the system is subject to fluctuations and disturbances 

[9].  

Initially, basic controllers such as proportional integral (PI) 

were used in industrial applications for liquid level control. 

Later, tuning approaches were introduced into the control 

architectures to improve the control behavior. On the other 

hand, sliding mode control (SMC) is used in the non-linear 

process control [10]. However, the processability of the PID 

controller is better in a linear system, but in the case of a non-

linear system, it should be tuned with a minimum error. 

Therefore, metaheuristic algorithm based controllers are 

developed to provide notable solutions for non-linear 

applications. Here, the controlling complexity is added in the 

form of different cross-sectional areas [11]-[13]. In recent 

decades, fractional order based controllers have gained more 

attention in non-linear process control [14], [15]. The fuzzy 

logic approaches provide better performance under varying 

system conditions [16], [17]. An extensive comparison of 

current control approaches was made in [18], which shows 

that the existing PID controller leads to severe overshoot. 

Therefore, an efficient controller with lower peak overshoot 

is required for liquid level control. Several other controllers 

were placed in the CT with the goal of minimizing peak 

overshoot, but they used numerous optimization methods to 

fine-tune the parameters and increase performance.  

From a controller tuning point of view, the model reference 

adaptive controller (MRAC) is the better choice. The MRAC 

provides the desired performance based on the reference 

model in non-linear process control [19], [20]. Therefore, the 

objective of the proposed work was to develop an MRAC-

based controller for maintaining the liquid level in a conical 

water tank (CWT).  

The contributions to this work are listed below:  

1. Design an MRAC with a modified PID named D-PI 

controller for liquid level control under varying system 

conditions and disturbances.  

2. Optimize the controller parameters based on the reduced 

MSE between the reference point and the liquid level of 

the tank.  

3. Examine the performance of the proposed MRAC by 

implementing the existing approaches into the 

SIMULINK model of the CT.  

The structure of the paper is as follows. Section 2 discusses 

related works, while Section 3 explains the methodological 

approach, such as the MRAC, the PID controller, and the 

flamingo search algorithm (FSA). The proposed method 

results are analyzed in Section 4, and the conclusion follows 

in Section 5. 

2. RELATED WORKS  

Recently developed controllers for liquid level control in 

the CWT are discussed in this section. 

Arun and Sahaya Aarti [21] have developed a model of 

predictive control (MPC) for the CT. For linear models, 

a process model was adopted to calculate the output in the 

present state and the input in the future. In the gain scheduling 

MPC, the scheduler was used to tune the weights at the 

sampling moment and the weights were selected based on the 

manipulated inputs. Then, the set of weights is fed into to the 

plant.  

Kumar et al. [22] proposed an internal model controller 

(IMC)-based PID controller for the CT to minimize the 

overshoot and settling time. This proposed method provided 

optimal controller parameters with respect to the variations in 

set points. The set point filter in this model was used for 

selecting the optimal tuning parameter to minimize 

overshoot. In this approach, an optimal tuning parameter was 

selected based on maximum sensitivity.  

Rajiv Ranjan [23] developed MRAC for liquid level 

control in process industry. The proposed approach uses MIT 

rules for first and second order bounded disturbances. 

Unknown parameters of the plant were tuned using adaptive 

laws to produce zero tracking error.  

Espitia-Cuchango et al. [24] developed a neuro-fuzzy 

adaptive control (NFAC) strategy for CT. In this proposed 

method, the parameters of the controller were optimized 

based on the identification of the plant in the system 

operation. In this approach, the descending gradient 

algorithm and back propagation algorithm were used to 

minimize the system error.  

Aguila-Camacho et al. [25] proposed the fractional order 

PI for controlling the liquid level in the CT. In this method, 

the controller gains were tuned by the particle swarm 

optimization (PSO), which optimized the controller values 

based on 13 operating ranges. The results of the proposed 

model were verified under varying step changes. It was found 

that the PI controller has a higher steady state error than the 

proposed controller.  

Balaska et al. [29] introduced a fractional-order model 

reference adaptive control (FO-MRAC) strategy for liquid 

level control in a CT system. The proposed FO-MRAC uses 

a fractional-order reference model to define the desired 

closed-loop performance characteristics. In addition, the 

control approach includes fractional integration in the 

parameter update process to improve adaptability. Both 

integer-order and fractional-order model reference adaptive 

controllers (FO-MRAC) are implemented for the non-linear 

system and their performance is compared to evaluate the 

effectiveness of the fractional-order approach. 

Patil and Agashe [30] introduced a novel deep 

reinforcement learning (DRL) based control method to 

reduce the structural complexity and non-linear dynamics for 

liquid level control in CTs. The DRL controller regulates the 

liquid level in a CT by dynamically adjusting the inlet and 

outlet flow rates. The DRL agent interacts with the 

environment to optimize its control strategy and maximize 

cumulative rewards over time. 

Ramanathan et al. [31] introduced machine learning-based 

controllers for the control of non-linear systems. In particular, 

a smart controller utilizing a reinforcement learning 

algorithm was proposed and evaluated for controlling the 

liquid level in a non-linear CT system. The system was 

modeled as a Markov decision process (MDP) and the control 

strategy was implemented using a reinforcement learning 

technique based on the Q-learning algorithm. The 
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performance of the proposed controller was demonstrated by 

its ability to effectively regulate the liquid level in the non-

linear tank system.  

In this paper, a FO-MRAC strategy for controlling the 

liquid level in a CT system is presented. The proposed FO-

MRAC uses a fractional-order reference model to define the 

desired closed-loop performance characteristics. In addition, 

the control approach includes fractional integration in the 

parameter update process for to improve adaptability. Both 

integer-order and fractional-order model reference adaptive 

controllers MRAC are implemented for the non-linear system 

and their performance is compared to evaluate the 

effectiveness of the fractional-order approach. Table 1 lists 

different methods for liquid level control in the CT. 

CTs are used in a variety of industrial processes for 

drainage of slurries, viscous liquids, and solid mixtures. Level 

control in a CT is difficult due to its non-linearity and 

constantly changing cross-section. The main objective of this 

paper is to develop a suitable controller for the CT system to 

maintain the desired level. It is clear from the literature that 

an efficient controller is required to improve the time domain 

and time integral performance measures.  

Table 1.  Literature review. 

Author  Method  Outcome  Advantages  Drawbacks  

Arun and Sahaya Aarti [21] MPC  Rise time is 262 s,  

overshoot is 9.3 % 

Lower peak and settling time  Overshoot is higher  

in the second tank  

Kumar et al. [22] IMC-PID  ITAE is 0.0661,  

overshoot is 7.611·10-4  

It can be applied to the 

conical transfer function  

Poor robustness  

Rajiv Ranjan [23] MRAC  Settling time is 30 s System performance is stable 

under unmodelled dynamic  

Longer settling time  

Espitia-Cuchango et al. [24] NFAC  Desired response is obtained 

under varying system conditions  

Suitable for multi-input  

and multi-output systems  

More settling time  

Aguila-Camacho et al. [25] FOPI ITAE is 1.4465·106 Lower variance  More time to settle  

Balaska et al. [29] FO-MRAC Sampling period is 0.1 s Lowest error cost Increases the noise  

Patil and Agashe [30] DRL Desired response is obtained 

under varying system conditions  

Reduces the complexity  

and non-linearity  

Higher rise time 

Ramanathan et al. [31] Reinforcement 

learning algorithm 

Settling time for trial 1 is 452 s Reduces the non-linearity 

issues and settling time 

Learning process slow 

 

3. PROPOSED METHODOLOGY  

In liquid level control of a CT, the level of the liquid is kept 

within the desired level depending on the application. The 

controller used in these applications should minimize the 

difference between the liquid level in the tank and the 

reference level of the liquid. In addition, the controller 

parameters should be set to minimize overshoots. Taking 

these considerations into account, the MRAC-based 

controller is proposed in this work. The MRAC allows a plant 

to follow a reference model regardless of the variations of the 

plant parameters; therefore, it minimizes the difference 

between the reference and the output of the plant. In contrast, 

an adaptive controller without a stable tuning method causes 

instability in the system, and the improved PID controller is 

used together with the MRAC. First, a suitable model is 

developed using the system identification procedures, then 

the parameters are tuned using the FSA.  

A. Mathematical modelling of CT 

Conical shapes are still the strongest structure; they can 

withstand the greatest pressure. A low surface-to-volume 

ratio reduces the amount of heat entering the tank. High-

pressure liquids are not a problem for the CT. Such tanks are 

used to store fuels, cryogenic liquids, and other materials in 

various industries. Fig. 1 shows the basic structure of a CT in 

which the liquid level is controlled at a steady rate by 

controlling the tank F input. 

Fin

Fout

R1

R2H1

H2

 

Fig. 1.  Structure of a CT. 

The accumulation rate of the CT 𝐴𝑅𝑎𝑡𝑒 is analyzed using 

the following equation:  

 

𝐴Rate = 𝐹in − 𝐹out (1) 

 

where 𝐹in is the flow rate of the incoming stream, 𝐹out is the 

flow rate of the output stream. 

 
d𝑉

d𝑡
= 𝐹in − 𝐹out (2) 
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𝐹out =
𝐻2

𝑅𝑉

 (3) 

 

where 𝑅1 is the radius of the large CT, 𝑅2 is the radius of the 

CT in the steady state, 𝐻1 is the height of the CT, 𝐻2 is the 

height of the CT in the steady state, and 𝑅𝑉 is the resistance 

of the value. The volume of the tank 𝑉 is analyzed by the 

following equation:  

 

𝑉 =
1

3
π 𝑅2

2 𝐻2 (4) 

 

d𝐻2

d𝑡
=

1

π 𝐻2
2𝜆2

(𝐹in −
𝐻2

𝑅𝑉

) (5) 

 

𝜆 =
𝑅1

𝐻1

=
𝑅2

𝐻2

 (6) 

 

where 𝜆 is the ratio of radius to height of the CT [26]. 

B. Proposed MRAC  

The goal of MRAC is to create a responsive control system 

that adjusts the controller’s parameters so that the actual 

output of the plant matches the output of a reference model. 

MRAC techniques are used to control the level of the non-

linear tank by variable manipulation of the tank’s liquid level. 

An adjustment or adaptation mechanism and a reference 

model are integrated into the MRAC. The MRAC aims to 

design a closed loop controller with parameters that can be 

varied based on the system response. The system’s output is 

then compared with the desired response of the reference 

model. The error difference between the plant output and the 

reference model output is used to adjust the controller 

settings. In addition, the controller input and the measured 

output are required for the investigation of the reference 

model. Fig. 2 shows the block diagram for the basic MRAC. 

Reference 

model

 Controller Plant

Adjustment 

mechanism

Reference 

input
Y(t)

Ym(t)

u(t)

 

Fig. 2.  Block diagram of MRAC. 

The adaptive gain 𝜃 is multiplied by the controller’s output 

to achieve the system’s adaptability to changes. 

 

𝑈(𝑡) = 𝜃 ∗ 𝑈𝑞(𝑡) (7) 

 

where 𝜃 represents the adaptive gain in the MRAC structure, 

which adjust dynamically based on the system error to ensure 

the plant output follows the reference model. The term 𝑈𝑞(𝑡) 

represents the control signal generated by the adaptive 

MRAC with the D-PI structure. It is applied to the system to 

minimize the error between the reference model output and 

the plant output. 

The D-PI controller is proposed in the MRAC to improve 

the control mechanism. The proposed D-PI controller is the 

improved version of the PID controller. The D-PI consists of 

two PID blocks in the first block, the proportional and integral 

gains are kept at zero. In the second block, the derivative gain 

is kept at zero.  

 

𝑈PI(𝑡) = 𝐾p𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)d𝑡 (8) 

 

𝑈PID(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾i ∫ 𝑒(𝑡)d𝑡 + 𝐾d

d𝑒(𝑡)

d𝑡
 (9) 

 

Here 𝐾p, 𝐾i, and 𝐾d  are proportional, integral, and 

derivative gains. The error between the reference model and 

the actual output is measured using the following equation:  

 

𝑒 (𝑡) = 𝑌(𝑡) − 𝑌𝑚(𝑡) (10) 

 

where 𝑌(𝑡) is the actual plant output and 𝑌𝑚(𝑡) is the 

reference model output. 

In the proposed MRAC, the controller parameters are 

modified by the FSA based on the minimum error. The 

adaptation algorithm modifies the controller parameters when 

the reference parameters are varied. The basic flow of the 

proposed MRAC is shown in Fig. 3. 

Reference 

model

Proposed D-PI 

controller

Conical 

tank 

Flamingo 

optimization 

algorithm

Reference 

input Y(t)

Ym(t)

u(t)

Error 

System output 

 

Fig. 3.  Proposed MRAC with D-PI. 

In this proposed work, the error generated from the 

reference model of the CT and the set points is passed to the 

FSA to tune the optimal controller parameters. The reference 

model of the CT is designed as the expected response of the 

plant model. The reference model requires a lot of experience 

with the dynamic system. In the case of liquid level control, 

an overshoot of 2 % and a settling time of 180 s are 

considered for the reference modeling [27], which is given 

by:  

𝛾 =
ln( 𝑃/100)

−π √

1

1 + (
ln( 𝑃/100)

−π
)

2 
(11) 

 

Here 𝛾 is the damping ratio, the natural frequency  𝜔 =
4

𝛾𝑡𝑠
. 

The transfer function for the reference model is given as 

follows:  
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𝐺(𝑠) =
3.55

𝑠2 + 2.66 𝑠 + 3.55
 (12) 

FSA for parameter tuning 

The FSA is a recently developed metaheuristic 

optimization method inspired by the foraging behavior and 

group dynamics of flamingos. This algorithm mimics their 

collaborative strategies for finding food-rich regions while 

balancing exploration and exploitation during optimization. 

[28]. A population of potential solutions (flamingos) is 

randomly initialized in the search space. Each flamingo 

represents a candidate set of controller parameters. Each 

flamingo evaluates its fitness based on an objective function. 

In this study, the mean square error (MSE) between the 

reference model and the actual liquid level of the CT is used 

as the fitness function. Based on this consideration, the fitness 

function of the FSA is formulated and expressed in the 

following equation:  
 

Fitness = 

=  (𝑤1 ∙ 𝑀𝑆𝐸) + (𝑤2 ∙ 𝑃) + (𝑤3 ∙ 𝑇settling) + (𝑤4 ∙ 𝑇rise)  

(13) 

Here MSE is represented as mean square error, 𝑃  is 

represented as peak overshoot, 𝑇settling is represented as 

settling time, 𝑇rise is represented as rise time, 𝑤 is the weight 

of the objective function and varies between 0 and 20. The 

moving distance of  𝑛th flamingo in the 𝑚th dimension of the 

population at iteration t during foraging can be expressed as: 

 

𝑓𝑛𝑚
𝑡 =∈1∙ 𝑋𝑓𝑚

𝑡 + 𝐶2 ∙ | 𝐶1 ∙ 𝑋𝑓𝑚
𝑡 + ∈2∙ 𝑋𝑛𝑚

𝑡  | (14) 

 

where 𝑓𝑛𝑚
𝑡  represents the position of the 𝑛th flamingo in the 

𝑚th dimension of the population, 𝑋𝑛𝑚
𝑡  represents the position 

of the 𝑛th flamingo in the 𝑚th dimension of the population at 

iteration 𝑡,  𝐶1 and  𝐶2 are random numbers and ∈1, ∈2 are 

standard normal distributions. The position of the food-rich 

region in the 𝑚th dimension is 𝑋𝑓𝑚. 

The equation for modifying the position of the flamingo 

during foraging at iteration (1 + 𝑡) is: 

 

𝑋𝑛𝑚
1+𝑡  =  

(𝑋𝑛𝑚
𝑡  + ∈1∙ 𝑋𝑓𝑚

𝑡 + 𝐶2 ∙ | 𝐶1 ∙ 𝑋𝑓𝑚
𝑡 +∈2∙ 𝑋𝑛𝑚

𝑡  |)

𝐺
 (15) 

 

where 𝐺 denotes the diffusion factor and the equation for the 

movement of the flamingo population is:  

 

𝑋𝑛𝑚
1+𝑡 = 𝛽 ∙ (𝑋𝑓𝑚

𝑡 − 𝑋𝑛𝑚
𝑡 ) + 𝑋𝑛𝑚

𝑡  (16) 

 

The location of the 𝑛th flamingo in the 𝑚th dimension of 

the population at iteration (1 + 𝑡)  is represented by 𝑋𝑛𝑚
1+𝑡 and 

𝛽 is a Gaussian random number. At iteration  𝑡, 𝑋𝑓𝑚
𝑡   denotes 

the 𝑚th dimension location of the flamingo with the best 

fitness in the population.  

The FSA procedure is given below:  

➢ Step 1: Set the total flamingo population 𝑃, the 

maximum number of iterations 𝐼max and the migration 

proportion 𝑃𝑀𝑎. 

➢ Step 2: In the 𝑛th iteration of the flamingo population 

update, the population is divided into three groups based 
on the proportion parameter 𝑃𝑀𝑎. The number of 

foraging flamingos is calculated as 𝑃𝑅𝑀 = 𝑅[0,1] ∙
(1 − 𝑃𝑀𝑎) ∙ 𝑃, where 𝑅[0,1] is a random number 

between 0 and 1, and 𝑃 is the total population size. The 

number of flamingos in the first section is 𝑃𝐶𝑀 = 𝑃𝑀𝑎 ∙
𝑃. The number of flamingos migrating in the second 

section is 𝑃𝑆𝑀 = 𝑃 − 𝑃𝑅𝑀 − 𝑃𝐶𝑀. Individual flamingo 
fitness values are determined and the population of 
flamingos is organized according to individual flamingo 
fitness values. The flamingos in the first section 𝑃𝐶𝑀 

with low fitness and flamingos in the second section 𝑃𝑆𝑀  
with high fitness are considered as migratory flamingos, 
while the remaining flamingos are considered as 
foraging flamingos. 

➢ Step 3: Foraging flamingos update their position using 
(15) and migratory flamingos update their position using 
(16).  

➢ Step 4: Ensure that each updated flamingo position 
remains within predefined bounds of the controller 
parameter space. If a flamingo exceeds these bounds, it 
is corrected either by limiting it to the nearest boundary 
value or by reinitializing it randomly within the valid 
range.   

➢ Step 5: If the iteration count reaches 𝐼max, terminate and 
return the flamingo with the best fitness (optimal 
controller parameters). Otherwise, return to step 2 for 
the next iteration.  

The FSA-tuned controller reduces the rise time and settling 

time compared to other optimization methods, resulting in 

faster system responses. FSA uses fewer parameters 

compared to techniques such as differential evolution (DE) or 

artificial bee colony (ABC), making it easier to implement 

while maintaining computational efficiency. Since FSA 

strikes a balance between exploration and exploitation, it 

converges to optimal solutions faster than traditional methods 

such as PSO, where more iterations may be required to fine-

tune the solutions. 

4. RESULTS AND DISCUSSION 

The proposed work is carried out in MATLAB/ 

SIMULINK platform and the results are measured in 

different operational domains. The Simulink model of the 

proposed work is shown in Fig. 4. 

 

Fig. 4.  Simulink model of MRAC with CT. 
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The time domain analysis of the different controllers is 

shown in Table 2. The results obtained with the proposed 

model are compared with the existing PI, PID, FOPI, and 

MRAC with PID controllers using the implemented models. 

First, the set point for the liquid level is set to 25 cm. The 

results are shown in Fig. 5. The model reference adaptive 

control-modified proportional integral derivative (MRAC-

MPID) controller shows better performance in terms of lower 

overshoot, faster settling time, and faster rise time than the 

existing controllers. Specifically, the MRAC-MPID achieves 

an overshoot of 0.8 %, which is significantly lower than other 

controllers (e.g., FOPID: 2.8 %, MRAC: 1.6 %). This lower 

overshoot can be attributed to the precise tuning of the 

controller gains with the FSA, which optimizes the balance 

between stability and responsiveness. The settling time for 

MRAC-MPID (200 s) is also shorter compared to MRAC 

(245 s) and FOPID (273 s), demonstrating the improved 

adaptability and transient response provided by the MPID 

structure within the MRAC framework. The FSA ensures that 

the controller gains are tuned to minimize error metrics such 

as integral square error (ISE) and integral absolute error 

(IAE), resulting in improved steady-state accuracy and 

transient performance. For example, MRAC-MPID achieves 

an ISE of 38.25 and an IAE of 2167, both of which are lower 

than other controllers. Furthermore, in scenarios with varying 

set points or disturbances, MRAC-MPID shows faster 

recovery and lower deviation compared to MRAC alone. This 

is evident in the smooth transition curves and minimal 

oscillations shown in Fig. 5. 

 

Fig. 5.  Controller output under constant set point.  

Table 2.  Comparative analysis of different controllers. 

Controllers  Peak 

overshoot 

[%] 

Settling 

time  

[s] 

Rise 

time 

[s] 

ISE  IAE  

PI 18.17 402 109 47.73 2681 

PID 21.32 421 114 51.03 2968 

FOPI 12.74 408 157 43.09 2902 

MRAC-PID  7.19 391 174 41.35 2863 

MRAC (Proposed) 0.8 200 103 38.25 2167 

 

The performance analysis of controllers in response to 

random disturbances in the input flow is shown in Fig. 6. 

Here, the disturbance is applied at 500 s in the input flow and 

the results are measured for all controllers. The results are 

measured to evaluate the controllers’ ability to reject 

disturbances and maintain the liquid level at the desired set 

point. The PID controller exhibits noticeable oscillations and 

delayed recovery after the disturbance. This is primarily due 

to its fixed gain parameters, which limit its ability to handle 

the non-linear dynamics and unpredictable changes in the 

system. The FOPID controller performs better than the 

traditional PID, but lags behind the MRAC-MPID in terms of 

disturbance rejection. The fractional-order terms provide 

some degree of adaptability, but are not sufficient to 

efficiently handle the randomness and magnitude of the 

disturbances. The standard MRAC with a PID controller 

shows better adaptability compared to PID and FOPID, but 

lacks the fine-tuned response of the MRAC-MPID. The lack 

of MPID leads to increased oscillation amplitudes and 

prolonged stability, which emphasizes the significance of the 

MPID enhancement. The MRAC-MPID demonstrates 

superior performance by tracking the set point with minimal 

oscillations after the disturbance is introduced. The adaptive 

nature of the MRAC ensures that the controller dynamically 

adjusts to the non-linear characteristics of the CT, while the 

MPID component improves damping, reducing the amplitude 

of the oscillations. 

 
(a) 

 
(b) 

Fig. 6.  Performance analysis under random disturbance in constant 

setpoint. 
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Controller performance under sudden disturbance in the 

load is shown in Fig. 7. In this case, the disturbance in the 

liquid level occurs between 300 s to 700 s. The PID controller 

struggles to cope with the abrupt load changes, resulting in 

significant deviations from the reference level. The FOPID 

controller performs better than the PID due to its fractional-

order terms, which allow for some flexibility in response. 

However, it still cannot match the precision and adaptability 

of MRAC-MPID, as evidenced by the larger oscillations and 

slower recovery times. While the standard MRAC-PID 

controller has better adaptability than PID and FOPID, it 

lacks the fine-tuned control offered by the MPID 

enhancement. The MRAC-MPID controller handles sudden 

changes in load with minimal impact on the liquid level, 

ensuring process stability. The combined benefits of 

MRAC’s adaptability and MPID’s improved control 

precision minimize the effect of load disturbances, resulting 

in negligible overshoot and rapid stabilization. 

 

Fig. 7.  Performance analysis under load variations.  

 

Fig. 8.  Controller output under variation in reference from 30 cm to 

46 cm.  

The results of the controllers when the liquid level varies 

between 30 cm and 46 cm are shown in Fig. 8. The PID 

controller has difficulty dealing with the non-linear 

characteristics of the CT system, resulting in greater 

overshoot and prolonged settling time. The FOPID controller 

offers better adaptability compared to the PID controller due 

to its fractional-order terms. As a result, the FOPID controller 

has a higher overshoot and a slower response time during 

input range transitions. The MRAC-MPID controller 

achieves better liquid level regulation during input range 

variations, with minimal overshoot and smooth transitions 

compared to the existing techniques. The controller quickly 

stabilizes the liquid level after a change in input, ensuring 

efficient and reliable operation of the system. By combining 

MRAC’s self-tuning capability with MPID’s precise control, 

the proposed approach effectively manages the non-

linearities inherent in the CT system.  

Controlling liquid levels in multiple variations of reference 

points is shown in Fig. 9. In this figure, the liquid level is 

varied from 32 cm to 62 cm and the response of all controllers 

is measured. The proposed MRAC-MPID controller shows 

better adaptability and allows more precise tracking of 

varying reference points than the existing controllers. The 

PID controller shows significant overshoot and longer 

settling times as it cannot adapt to the system’s non-linear 

dynamics. The FOPID controller performs better than the PID 

controller due to its fractional-order terms, which offer 

a certain degree of adaptability. However, it still lags behind 

the MRAC-MPID in terms of overshoot and response speed 

because it cannot dynamically tune itself to changing 

reference points like the MRAC-MPID. 

 

Fig. 9.  Controller response under varying liquid levels. 

 

Fig. 10.  Convergence plot for optimization algorithms. 
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As observed, the proposed MRAC outperforms the 

existing controllers under different operating conditions. The 

convergence plot of FSA with GA and PSO is shown in 

Fig. 10. The FSA achieves a more accurate solution with 

minimal error metrics and ensures that the MRAC-MPID 

controller is fine-tuned to respond better in non-linear 

systems such as the CT. From the results, it is verified that the 

FSA has a better convergence speed than GA and PSO.  

Table 3 shows a comparative analysis of the PID controller 

performance using different optimization techniques, 

including genetic algorithm (GA), PSO, and FSA as applied 

in the proposed MRAC-MPID framework. Key performance 

metrics such as peak overshoot (%), settling time (s), rise 

time (s), ISE, and IAE are evaluated to highlight the 

effectiveness of each optimization approach. The manually 

tuned PID controller exhibits the highest peak overshoot 

(21.32 %) and the longest settling time (421 s), together with 

the largest ISE (51.03) and IAE (2968). This shows the 

limitations of manual tuning in handling the non-linearities 

and dynamic variations of the CT system. The PID controller 

optimized with the GA shows significant improvement over 

manual tuning, with a lower overshoot (10.52 %) and 

a shorter settling time (376 s). However, the ISE (44.17) and 

IAE (2888) are still relatively high, indicating room for 

further improvement in the system’s transient and steady-

state performance. The use of PSO further improves the 

controller’s performance, reducing overshoot to 5.44 % and 

shortening the settling time to 305 s. The ISE and IAE also 

improve to 40.93 and 2657, respectively, showing the 

effectiveness of PSO in optimizing PID parameters but still 

leaving some performance gaps. The proposed MRAC-MPID 

controller optimized with the FSA outperforms all other 

configurations and achieves the lowest peak overshoot 

(0.8 %) and settling time (200 s). In addition, the ISE (38.25) 

and IAE (2167) are significantly lower compared to GA- and 

PSO-optimized PID controllers. These results highlight the 

superior ability of the FSA to explore the parameter space and 

converge to optimal values, resulting in a robust and precise 

control response. The results emphasize that the FSA 

effectively minimizes both transient and steady-state errors, 

resulting in improved system stability and reduced energy 

consumption. Since the FSA-optimized MRAC-MPID 

controller accounts for the non-linear dynamics of the CT 

system more effectively than GA or PSO, it ensures better 

performance under varying operating conditions and 

disturbances. 

Table 3.  Comparative analysis of PID controller with different 

optimization techniques. 

Controllers  Peak 

overshoot 

[%] 

Settling 

time  

[s] 

Rise 

time 

[s] 

ISE  IAE  

PID 21.32 421 114 51.03 2968 

PID with GA 10.52 376 131 44.17 2888 

PID with PSO  5.44 305 122 40.93 2652 

MRAC (Proposed) 0.8 200 103 38.25 2167 

Fig. 11 shows the comparison of the control signals for 

different controllers such as PI, PID, FOPI, MRAC-PID, and 

the proposed method. Table 4 shows the results in terms of 

control energy and peak values based on the simulation 

control signals. The control energy values show that the 

proposed MRAC requires less control energy compared to 

traditional controllers such as PI, PID, FOPI, and MRAC-

PID. This indicates that the proposed MRAC controller is 

more efficient in terms of energy required to maintain system 

stability and performance. The peak values show that MRAC 

controllers have the lowest peak values, indicating that the 

control signals are smoother and less aggressive compared to 

the traditional controllers. 

 

Fig. 11.  Comparison of control signals for different controllers. 

Table 4.  Control energy and peaks for different controllers. 

Controller Control energy [J] Peak value 

PI 41.178 1.6136   

PID 50 1.5405   

FOPI 28.954 1.2464   

MRAC-PID 27.678 1.231   

MRAC (Proposed) 20.832 1.002   

5. DISCUSSION  

The proposed MRAC-MPID controller tuned using the 
FSA, was evaluated under different scenarios including 
random disturbances, load variations, and reference point 
changes. The proposed MRAC-MPID controller shows lower 
oscillations and faster recovery when subjected to random 
disturbances in the input flow compared to other controllers. 
This proves its robustness under dynamic and unpredictable 
conditions, which is crucial for real-world industrial systems. 
During load variation scenarios, the MRAC-MPID controller 
maintains stable operation with minimal impact on liquid 
levels and exhibits excellent disturbance rejection. This 
ability to handle varying loads efficiently makes it highly 
relevant for industries dealing with fluctuating operational 
demands. The MRAC-MPID controller effectively tracks 
changing reference points with minimal overshoot and 
reduced settling times. This proves its adaptability and 
precise control in dynamic systems that require frequent set 
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point adjustments. The results consistently show that the 
proposed controller outperforms conventional approaches, 
such as PI, PID, and FOPI controllers as well as MRAC-PID. 
Key performance metrics such as lower overshoot, shorter 
settling time, and better disturbance rejection highlight the 
controller’s ability to effectively handle non-linearities in CT 
systems. The work focuses on liquid level control in a CT 
system, although the proposed MRAC-MPID controller is 
potentially applicable to many non-linear systems and 
industrial processes. Renewable energy systems, such as 
wind turbines and solar power plants, are often subject to non-
linear dynamics due to environmental fluctuations. The 
proposed controller could optimize power generation and 
stabilize system performance with changing wind speeds or 
solar irradiance levels. Moreover, in the chemical industry, 
non-linear systems such as Continuous Stirred Tank Reactors 
and distillation columns show complex dynamic behavior. 
The proposed MRAC-MPID controller can effectively 
control parameters such as temperature, concentration, and 
pressure to ensure the process stability and efficiency. The 
proposed MRAC-MPID controller is particularly effective in 
handling system non-linearities, disturbances, and varying 
operating conditions. However, its performance depends on 
accurate modeling and proper tuning of the controller. Future 
research can address these limitations by integrating the 
method with real-time machine learning models for adaptive 
tuning in highly uncertain environments. 

6. CONCLUSION  

Liquid level control is an important aspect in the process 
industry with CTs. To improve the liquid level control, an 
MRAC based controller is proposed in this work. In the 
proposed MRAC, the MPID is used to improve the level of 
control under varying inputs and disturbances. The controller 
gains of MPID are tuned by the FSA based on the MSE. The 
proposed method is implemented in MATLAB/SIMULINK 
and the results are compared with existing approaches. The 
results are verified under constant set point, varying set point, 
and disturbance conditions. It is found that the proposed 
MRAC has a 0.8 % overshoot and requires 200 s and 103 s 
for settling time and rising time, respectively. Moreover, the 
proposed MRAC offers lower ISE and IAE values of 38.25 
and 2167, respectively. In addition, the fitness estimation has 
proved the operating efficiency of FSA compared to existing 
methods. However, MRAC-MPID outperforms other 
controllers in handling non-linearities and disturbances and 
has limitations in terms of its dependence on an accurate 
reference model. If the reference model does not adequately 
represent the system dynamics, the controller’s performance 
may deteriorate. While the computational complexity of FSA 
is lower than that of some optimization methods, it still 
requires a significant amount of time for parameter tuning in 
large-scale systems or real-time applications. This could limit 
the applicability of MRAC-MPID to systems with strict real-
time constraints. The proposed method could also face 
challenges in highly stochastic environments where 
disturbances are unpredictable and vary significantly over 
time. These scenarios may require further improvements such 
as the incorporation of machine learning techniques for 
adaptive parameter tuning. Future work will develop artificial 
intelligence-based controllers for two interacting tank 
systems.  
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