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Abstract: Online voltage transformer error prediction is an important research direction in the field of smart grids. This article mainly focuses 

on the online error prediction and the parallelization method of voltage transformers. First, an optimized multi-layer perceptron model based 

on the sparrow search algorithm (SSA) is proposed. The weight initialization process is optimized using the SSA to improve the prediction 

accuracy of the multi-layer perceptron. Considering the massive amount of data in real-world scenarios, a distributed sparrow search 

optimization algorithm for the multi-layer perceptron model was then developed, and the acceleration and scalability were tested on different 

data scales. In addition, transformer error prediction experiments were conducted to demonstrate the performance of the proposed algorithm.  
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1. INTRODUCTION 

Transformers play a crucial role in power systems by 
measuring current and voltage signals within the electrical 
grid. These devices, which are essential for the functioning of 
the power infrastructure, consist of measurement windings, 
protection windings, and metering windings. The metering 
windings are responsible for supplying precise current and 
voltage signals to the electricity meters, which in turn use 
these signals for accurate energy trading settlements. The 
accuracy of transformer output signals during operation has a 
direct impact on the economic interests of power supply, 
transmission, and consumption entities. Traditionally, the 
accuracy of transformer output signals is evaluated under 
offline conditions, especially during power outages. 
Transformers with higher accuracy grades are used as 
reference standards, and their signals are compared with those 
of the transformers under evaluation to determine their 
accuracy. However, as China progresses in the development 
of its smart grid, the planned downtime window for 
maintenance is continuously decreasing. The traditional 
operational model, which relies on power outages, is proving 
inadequate to meet the evolving demands of the grid. The 
growing conflict between the reliability of electricity 
consumption and the operational mode of transformer error 

assessment is becoming increasingly apparent to citizens. 
Therefore, there is an urgent need for the development of 
methods to assess transformer errors in a non-power outage 
state [1], [2]. 

The evolution of transformer error assessment 

technologies has been continuously updating and improving. 

In the early days of the power industry, transformers entering 

the grid had to undergo error detection during planned power 

outages. In this traditional method, which is still widely used 

in power grids, transformers with higher accuracy are used as 

reference standards and signals are compared to determine 

the accuracy of the transformers under evaluation. To 

mitigate the negative impact on grid operation during fixed 

intervals, some scientists have introduced the concept of "live 

testing" [3]. In this method, more accurate standard 

transformers are cut in on the high-voltage side of the 

operating grid to detect errors in real-time while the system is 

energized, thus avoiding economic losses due to power 

outages. However, "live testing" poses significant safety 

risks, including potential arc flash incidents and explosions of 

standard transformers during switching operations. In 

addition, standard transformers are not designed for 

prolonged operation in real power grids, making "live testing" 

impractical for widespread use [4]. Therefore, researchers 
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worldwide have begun to explore evaluation techniques for 

running transformers without the need for standard physical 

instruments. Professor A.G. Phadke's team at Virginia Tech 

has proposed a physical modeling technique based on an 

equivalent circuit model. This method involves offline 

detection to identify a small number of accurate transformers 

as reference transformers [10]. A precise circuit equation is 

then established that includes both the reference transformer 

and the transformer under evaluation. The measured values 

of the reference transformer are used as known quantities to 

determine the error of the transformer under evaluation. 

However, the difficulty of determining reference 

transformers in practical scenarios leads to a low accuracy of 

the results. Based on this, Professor Thorp J of Virginia Tech 

has proposed an online estimation method for operating 

errors in transformers at both ends of transmission lines [11]. 

This method uses node current laws to establish linear 

equations that incorporate voltage and current transformer 

measurements, transmission line impedances, and other 

parameters. A set of transformers at both ends of the 

transmission line is called reference transformers. The 

measured values of these reference transformers, along with 

known line impedance parameters from acceptance 

documents, are used to solve for the unknowns in the 

equations. However, the discrepancy between the impedance 

parameters from the documents and the actual values often 

leads to a lower accuracy of the calculated results. The China 

Electric Power Research Institute has proposed an online 

group calibration technique for voltage transformers [5]-[6]. 

It proposes to use electromagnetic voltage transformers as 

temporary reference devices and calibrate voltage 

transformers with the same voltage and rating. However, this 

method has several application limitations, making it less 

suitable in many substations. In collaboration with 

researchers from Huazhong University of Science and 

Technology, a method based on principal component analysis 

was introduced to evaluate the measurement performance of 

voltage transformers in operation [7]. This approach uses 

principal component analysis to extract statistical features 

from the measurement data during operation to analyze the 

error of operating voltage transformers. However, this 

method has special requirements on the number and operating 

mode of voltage transformers. Yang Xuedong from 

Chongqing University proposed an online monitoring method 

based on the wavelet fractal theory [8]. In this method, the 

output signals of transformers are transformed, decomposed, 

and reconstructed by utilizing the advantages of wavelet 

transform in denoising and detecting singular values. Fractal 

theory is then used to calculate the box dimension of the 

processed signal, which enables the analysis of transformer 

errors. However, this method faces challenges in capturing 

small, gradual variations typical of error signals [9]. 
In order to achieve an accurate analysis of weak and small 

signal gradients, the project team is researching the online 
error prediction of voltage transformers and its parallelization 
for the assessment of operational transformer errors. The rest 
of the paper is organized as follows. In Section 2, we give an 
overview of the principles of transformer operation and 
online monitoring. Then, we propose a voltage transformer 
error prediction model based on a MLP optimized with the 

sparrow search algorithm (SSA) and design the distributed 
architecture in Section 3. In Section 4, a large number of 
experiments are conducted to demonstrate the effectiveness 
of the proposed algorithm. Finally, we draw conclusions in 
Section 5. 

2. SUBJECT & METHODS 

To measure the voltage or current information in the grid, 
we cannot measure high voltages and high currents directly 
on the grid. Therefore, we need to convert the grid 
information into safe and measurable signals via 
a transformer. The structure of the transformer is mainly 
a sensor between the primary and secondary side of the grid. 
The main difference between the transformer and the 
traditional transformer is the difference in the sensing coil. 
There are many types of transformer classification, based on 
the presence or absence of power requirements, the detection 
of differences in the object, the measurement of different 
roles, can be divided into a variety of different types of 
transformers, different classifications of the transformer may 
have a very different way of measurement, this paper focuses 
on the capacitance of the transformer for research. 

A. Principle of operation of capacitive transformers 

The capacitor voltage transformer (CVT) consists of the 

capacitor voltage divider (CVD) and the electromagnetic 

unit. The high voltage part of the CVT is taken over by the 

CVD, which significantly reduces the insulation requirements 

of the electromagnetic unit. The main components of the 

electromagnetic unit are the intermediate transformer, the 

damper, and the series reactor. The compensating reactor is 

connected in series after the CVD unit to make the CVT 

resonate in series at the rated operating frequency and thus 

improve the accuracy and load carrying capacity of the CVT. 

The fast saturation damper consists of a reactor and 

a damping resistor connected in series, in the event of 

a voltage error exceeding the rated value, the reactor can be 

quickly saturated, the inductance value decreases rapidly, and 

the circuit current loses a large part of the damping power in 

the damping resistor, so that the ferromagnetic resonance can 

be suppressed. The open structure of the CVD part of the 

CVT makes it susceptible to the action of the external electric 

field when it generates a voltage divider, and the Trench 

company provides a typical CVT profile, as shown in Fig. 1. 

According to Fig. 1, the CVT mainly contains a capacitive 

voltage divider (C1, C2) and an electromagnetic unit 

consisting of an intermediate voltage transformer T, 

a compensation reactor L, a damper D, etc., and the carrier 

device can be connected between N and X. The 

electromagnetic unit part of CVT (including intermediate 

transformer, series reactor, damper, etc.) is encapsulated in 

the oil-filled bottom box. The electromagnetic unit of the 

CVT is virtually unaffected by external electromagnetic 

fields due to the electromagnetic shielding effect of the oil-

filled base case. The basic CVT wiring is shown in Fig. 2, 

where C1 is the high-voltage capacitor, C2 is the medium-

voltage capacitor, L is the compensation reactor, T is the 

intermediate transformer, 1a1n, 2a2n, 3a3n are the secondary 

winding terminals, dadn is the residual winding terminal, and 

ZB1 and ZB2 are the dampers. 
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Fig. 1.  Schematic diagram of a CVT profile. 

 

Fig. 2.  CVT schematic circuit diagram. 

The CVD unit reduces the high voltage at the input to 

a medium-low voltage suitable for the secondary side. Its 

main body is a voltage divider capacitor in series. Each 

section of the capacitor is approximately 10000 pF-25000 pF, 

with the different voltage levels of the CVT representing 

different capacitor capacity. The 110 kV CVT consists of 

a single capacitor section, the total capacitor is approximately 

10000/20000 pF; the 220 kV CVT consists of 2 capacitor 

sections, each section of the capacitor is approximately 

10000/20000 pF, total approximately 5000/10000 pF; 

the 330 kV CVT consists of 3 capacitor sections, each section 

of the capacitor is approximately 15000 pF, totaling 5000 pF; 

the 500 kV CVT consists of 3 or 4 capacitor sections, each 

section of the capacitor is approximately 15000/20000 pF, 

totaling 5000 pF; the 750 kV CVT consists of 4 sections of 

the capacitor, each section of the capacitor is approximately 

20000 pF, totaling 5000 pF; the 1000 kV CVT has 

5 capacitor sections, each consisting of about 25000 pF each, 

totaling 5000 pF. 

The CVT unit can be considered as a two-port network, 

with a high voltage and ground at the input and a medium 

voltage and ground at the output. When the voltage at the 

input is U1, the open circuit voltage UC (intermediate voltage) 

at the output is the equivalent electromotive force and UC can 

be expressed as follows: 

 𝑈𝐶 = 𝑈1𝐶1 ∕ (𝐶1 + 𝐶2) = 𝑈1 ∕ 𝐾𝐶  (1) 

where KC = (C1+C2)/C1 is the voltage division ratio of the 

CVD part. The output impedance obtained by short-circuiting 

the input is equivalent to the internal impedance, i.e., the 

high-voltage capacitor C1 and the medium-voltage capacitor 

C2 are connected in parallel. Since there is a dielectric loss in 

actual operation, the internal impedance ZC at the rated 

frequency fN can be expressed as follows: 

 𝑍𝐶 = 𝑅𝐶 + 𝑗𝑋𝐶 (2) 

where XC = 1/ωN (C1+C2). Since ZC is large, the CVT does 

not have a high load carrying capacity. Consider connecting 

the equivalent capacitive reactance XL in series with the 

output circuit so that it resonates with the equivalent 

capacitance (C1+C2) at the rated frequency to improve the 

load capacity of the CVT. 
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The CVT error consists of the ratio difference (%) and the 

phase difference δ(ˊ). The ratio difference results from the 

deviation between the actual ratio and the rated ratio, the 

expression of which is shown in (3): 

 𝑓𝑈 = (𝑘𝑁𝑈2 − 𝑈1) ∕ 𝑈1  (3) 

where kN is the rated ratio of the CVT, U1 is CVT primary 

side voltage, and U2 is CVT secondary side voltage. The 

reason for the phase difference is that the phase angle between 

the output voltage and the input voltage does not match. The 

phase difference is expressed by subtracting the phase angle 

of the primary voltage from the phase angle of the secondary 

voltage. If the value is positive, this means that the secondary 

voltage is ahead of the primary voltage and, conversely, that 

it is behind the primary voltage. The expression for the 

calculation is shown in (4): 

 𝛿𝑈 = 𝜑𝑈2 − 𝜑𝑈1 (4) 

where 𝜑𝑈1 is the primary voltage phase; 𝜑𝑈2 is the secondary 

voltage phase, respectively. 

B. Online monitoring of transformers 

The online monitoring of transformers is to detect the 

secondary output signals of the metering windings of several 

groups of operating transformers in the station, realize the 

construction of a "virtual standard" by establishing the 

electrical relationship between the group of transformers, and 

finally calculate the error value of the operating transformers 

according to the error calculation formula. 

The device for voltage transformer online monitoring is 

installed in the main control room of the substation screen 

cabinet, and the parallel connection with the energy meter, 

the collection of voltage transformer metering winding output 

voltage signals, only through the collection of data to 

complete the internal monitoring of the voltage transformer 

error calculation. The installation structure of the device for 

voltage transformer online monitoring is shown in Fig. 3.  

 

Fig. 3.  Installation structure of voltage transformer online 

monitoring device. 

Voltage transformer metering winding is generally 0.2 

level, that is, the normal state of operation of the voltage 

transformer error should meet the following range: ratio 

difference ≤ ± 0.2 %, phase difference ≤ ± 10´. Reference 

transformer blackout offline error detection, with the 

accuracy level of the physical standard should be 

theoretically higher than the inspected transformer 2 accuracy 

level, that is, the standard should meet the 0.05 level, that is, 

to meet the standard error: ratio difference ≤ ± 0.05 %, phase 

difference ≤ ± 2´. As a voltage transformer online monitoring 

device, the overall sampling accuracy also refers to the 0.05 

level requirements. 

In addition, there are usually several sets of voltage 

transformers in the substation, so the device for voltage 

transformer online monitoring should be able to collect at 

least 4 sets of 12 voltage transformer signals simultaneously. 

Considering the requirements of data analysis and 

calculation, the synchronization of all signals must reach the 

level of 1 μs. The structure principle of the device for voltage 

transformer online monitoring is shown in Fig. 4. 
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Fig. 4.  Voltage transformer online monitoring device structure principle.
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The appearance of the device for voltage transformer 

online monitoring is shown in Fig. 5. 

 

Fig. 5.  Exterior photo of the voltage transformer online monitoring 

device. 

3. METHODS 

A. Model design of the multilayer perceptron machine 

optimized by the sparrow search algorithm 

Structure of the multilayer perceptron machine 

A multilayer perceptron (MLP) is a feed-forward neural 

network consisting of two layers of neurons that receive input 

signals from the input layer and pass them to the output layer 

to obtain the result. Fig. 6 shows a simple model of 

a functional neural structure. Each neuron obtains the 

cumulative value by accumulating one or more weighted 

input values, and then uses an activation function to perform 

a nonlinear transformation before passing the value to the 

next neuron. 

 

Fig. 6.  Structural diagram of functional neurons. 

1. Inputs: 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛 are the inputs to the neuron with 

vector expressions: 

 𝑋 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛]𝑇 (5) 

2. Weighted summation: 𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛 are the 

weights of the neurons and their vector expressions are: 

 𝑊 = [𝑤1, 𝑤2, 𝑤3, … , 𝑤𝑛] (6) 

b is the offset of the neuron node. The neuron node first 

performs a weighted summation of the input vectors to obtain 

the implicit representation value: 

 𝑧 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1 + 𝑏 (7) 

3. Output: a function is applied to the weighted summed 

values to improve the representation of the neuron nodes. 

 𝑜 = 𝜎(𝑧) = 𝜎(𝑊𝑋 + 𝑏) (8) 

Since the perceptron model has only one layer of functional 

neurons, a better performance can only be achieved for simple 

problems. In order to make the model handle the problem in 

nonlinear situations, the method of increasing the number of 

hidden layers in the perceptron model is applied, which also 

increases the model's ability to strengthen the model's fitting 

ability, and finally a MLP model is obtained. It consists of an 

input layer, several hidden layers and an output layer with 

a characteristic multilayer structure. The layers are fully 

interconnected, and the model plane is shown in Fig. 7. Its 

main features are (1) full connection of neuron nodes between 

neighboring layers, (2) no connection of neuron nodes within 

the same layer, and (3) each connection has a weight. 

 

Fig. 7.  Multilayer perceptual machine model. 

The model can be updated using the error back propagation 

(BP) algorithm  to update the weights and thresholds of all 

the individual neurons, and the final trained neural networks 

can be made to produce outputs that are closer to the true 

values. The training dataset is represented as {(𝑥1, 𝑦1),
(𝑥2, 𝑦2), . . . , (𝑥𝑛 , 𝑦𝑛)} , then for one of the training samples  
(𝑥𝑘 , 𝑦𝑘) the output of the MLP is (�̂�1 … �̂�𝑛), and the error 

function of the dataset is defined as follows: 

 𝐸 =
1

𝑛
∑ (𝑦𝑘 − �̂�𝑘)2𝑛

𝑘=1
 (9) 

Then the weights W and the bias B in the MLP are updated 

iteratively according to the update law. 

 𝑊(𝑙) = 𝑊(𝑙) − 𝛼
𝜕𝐸

 𝜕𝑊(𝑙) (10) 

 𝐵(𝑙) = 𝐵(𝑙) − 𝛼
𝜕𝐸

  𝜕𝐵(𝑙) (11) 

Steps of the SSA to optimize the initial weights of a 

multilayer perceptual machine 

The MLP model is a model that simulates the neural 

connections in the human brain and can establish a kind of 

non-linear mapping connection between the input variables 

and the target variables through training and learning. At 

present, people often rely on experience to set the initial 

weight threshold of the multilayer perceptual machine or 
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choose a randomly generated initial weight threshold, but 

such setting of the initial weight threshold often affects the 

final convergence speed of the neural network training, takes 

more time and the training results may fall into the local 

optimum. Therefore, this paper introduces the SSA, which is 

used for global optimization of initial weight thresholds in 

multilayer perceptual machines and can improve the accuracy 

and convergence speed of multilayer perceptual machine 

training. 

The steps of the SSA to optimize a MLP are as follows: 

1. Determine the four-layer neural network. 

2. Search the space using the SSA by encoding the initial 

weight threshold of the multilayer perceptron. 

3. Evaluate the weights by using the absolute error of the 

MLP network training as the adaptation value weights, and 

finally use the optimal solution of the bird population as the 

initial weight threshold for neural network training. 

4. Calculate the MLP training error and update the weights 

and thresholds according to the fitness function. 

5. If the end condition is satisfied, output the optimal 

initial weight threshold, otherwise return to (2). 
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Fig. 8.  SSA optimized MLP algorithm diagram. 

The flowchart of the SSA-optimized multilayer perceptron 

is shown in Fig. 8. After optimizing the sparrow search 

algorithm, the sparrow individual with the optimal fitness is 

output to the built multilayer perceptron model as the initial 

weight threshold of the multilayer perceptron, i.e., the 

multilayer perceptron is given the optimal initial weight 

threshold, then the model is trained, and after the model 

continuously iterates to update the weight threshold, the 

trained multilayer perceptron model with the optimal weight 

threshold is finally obtained. 

B. Distributed sparrow search optimization algorithm for 

MLP machines 

SSA is an evolutionary algorithm. In the SSA execution 

process, the need to calculate a large number of individual 

sparrows, and after experiments found that, with the sparrow 

population settings becoming larger, the number of iterative 

search increases, thus, the greater the time complexity of 

implementing the SSA will be. When using the SSA to solve 

certain problems, one pass will not get the optimum results 

one expects. In general, it is necessary to find the optimal 

solution in several experiments, which increases the 

computational cost of the experiment. As people's data 

requirements increase, the data model becomes larger to 

a certain extent, the time complexity of the algorithm 

increases exponentially. The SSA in the stand-alone version 

of the implementation of the shortcomings of the algorithm is 

exposed. At present it is necessary to study how to solve this 

problem.  
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Fig. 9.  Architecture of the distributed improved sparrow search 

optimized MLP algorithm. 
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Therefore, according to the advantages of the parallel 
computing framework MapReduce, this section combines the 
SSA and the parallel computing framework MapReduce to 
solve the shortcomings of the SSA with a large amount of 
time with a large amount of data and a large number of 
iterations, so that more experimental results can be obtained 
simultaneously. 

The distributed improved sparrow search optimized MLP 
algorithm architecture diagram is shown in Fig. 9. The input 
for the Map function consists of two parts: the dataset stored 
in the HDFS and the location of the initialized population. 
First, this dataset is partitioned and each partition is stored in 
rows and entered as key-value pairs. In each Map operation, 
different features are selected according to the individuals 
and the accuracy obtained after K-fold cross-training of the 
samples is calculated as the fitness value of ESSA, iteratively 
until all samples in the partition have been processed. The 
update calculates the position of the finder and the position of 
the follower. To improve the efficiency of the reducer 
operation, the intermediate results can be sorted and 
partitioned according to the keys on the mapper, and then the 
interval number and updated position are sent to Reduce. The 
pseudo-code of the Map function is shown below: 

Function Map (key: PopID, value: Pop_Sparrow) 

Initialization: 

Tfid=2 

1:while t<max_iter do 

2:     fitness←Fvalue(Pop_Sparrow，train_d,train_l) 
3:     number←trainfloat.getNumPartitions() 

4:     c1=2*math.exp(-(4*t/max_iter)**2) 

5:     //updata finder sparrrow and follower sparrow 

6:     poplist←trnasferFun(Pop_Sparrow,Tfid) 

7:     new_key ← (partitionIndex,poplist) 

8：    new_value ← fitness 

9:     Emit（new_key,new_value） 

10:end while 

In the Reduce phase, the populations of each partition are 
merged and individuals that exceed the boundary values are 
checked. The change in the optimal value and the change in 
the mean value of the fitness values are recorded for each 
generation. The results are written to HDFS in the form of 

interval numbers and fitness values, ready for the next round 
of MapReduce jobs. The pseudocode of the Reduce function 
is shown below: 

Function Reduce (key: partitionIndex, poplist, value: fitness) 

Initialization: 

Poptemp=poplist[0][1] 

1:for i<len(poplist) do 

2:     pop_temp=np.vstack(poplist,pop_temp) 

3:     // Individuals beyond boundaries become boundary 

values  

4:     popfitness← cal_obj_value(pop_temp) 

5:end for 

6:     //update Fit_food and Fit_best 

7:     Fit_best=max(fitness ) 

8:     key ← (partitionIndex,poplist) 

9:     new_value ← Fit_best 

10:emit(key,new_value) 

4. RESULTS 

A. Dataset 

We conducted experiments with simulated monitoring data 

from transformers at a power plant. We extracted the 

"amplitude" according to 15 test points: "Main transformer 

group I phase A", "Main transformer group I phase B", "Main 

transformer group I phase C": "Main transformer group II 

phase A", "Main transformer group II phase B", "Main 

transformer group II phase C", "Main transformer group III 

phase A", "Main transformer group III phase B", "Main 

transformer group III phase C", "Line I phase A", "Line I 

phase B", "Line I phase C", "Line II phase A", "Line II phase 

B", "Line II phase C", and based on the "frequency", the 

"magnitude" was extracted from 15 test points: "line II phase 

B", "line II phase C". B phase", "line II C phase" 15 test points 

to extract the "amplitude", based on the "frequency" 

consistent, so a total of 16 feature dimensions, and then 

according to the 15 labeled data, a total of 350000 records. 

Then the resulting data is disorganized and divided into 

training and testing sets according to the ratio of 7:3. 

Examples of transformer monitoring data are shown in 

Table 1.

Table 1.  Example of transformer monitoring data. 

 

500 kV MTG I 500 kV MTG II 500 kV Line I 

Measured 

value  

[V] / [°] 

Ratio difference [%] 

/ Phase difference ['] 

Measured 

value  

[V] / [°] 

Ratio difference [%] 

/ Phase difference ['] 

Measured 

value  

[V] / [°] 

Ratio difference [%] 

/ Phase difference ['] 

A Amplitude 59.8644 -0.00367488 59.859 -0.00902039 59.866 0.00267271 

A Phase 177.752 -0.36 177.747 -0.3 177.739 -0.78 

B Amplitude 59.8714 0.00100222 59.8435 -0.04659988 59.881 0.01603437 

B Phase 57.767 0.06 57.778 0.66 57.76 -0.42 

C Amplitude 59.992 -0.01383705 59.9864 -0.00933458 59.9994 0.01233498 

C Phase 297.776 0.18 297.777 0.06 297.769 -0.42 

A Amplitude 59.8659 -0.00333923 59.8609 -0.00835200 59.8683 0.00400896 

A Phase 292.528 -0.3 292.523 -0.3 292.515 -0.78 

B Amplitude 59.867 0.00033402 59.8395 -0.04593516 59.8768 0.01636962 

B Phase 172.531 0.06 172.543 0.72 172.526 -0.3 

C Amplitude 59.9839 -0.01399967 59.9782 -0.00950255 59.9914 0.01250336 

C Phase 52.559 0.12 52.56 0.06 52.553 -0.36 

A Amplitude 59.894 -0.00367297 59.8893 -0.00784720 59.8961 0.00350619 

A Phase 66.858 -0.36 66.854 -0.24 66.845 -0.78 
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B. Acceleration ratio and scalability ratio experiments  

We first conducted experiments with the distributed aspect. 

In the experiments, the metrics parallel scaling and 

acceleration of computation were used to evaluate the 

performance of the proposed distributed SSA algorithm based 

on the distribution. In particular, the acceleration ratio was 

introduced in the experiments to be able to verify how the 

cluster size affects the task execution time in the acceleration 

ratio metric, i.e., the ratio of the task execution time of the 

cluster to that of a server, denoted as: 

 𝑠𝑝ⅇⅇ𝑑𝑢𝑝(ⅈ) = 𝑡1 ∕ 𝑡𝑖 (12) 

t1 denotes the runtime on one node and ti denotes the total 

runtime on the ith node. In this experiment, 100 experiments 

are performed to test the acceleration of the algorithm. The 

experimental environment remains unchanged, and the 

number of computational nodes is increased from 1 to 7 in 

order to compare and analyze the acceleration ratios for 

different data sizes; D1 to D5 denote the five different sizes 

of datasets corresponding to 70000, 140000, 210000, 280000, 

and 350000 on-line monitoring data of mutual inductors, 

respectively. 

 

Fig. 10.  Graph of acceleration ratio results for different data sizes. 

As shown in Fig. 10, the acceleration ratio for all datasets 

does not change if the cluster nodes are set to 1. As the 

number of cluster nodes increases, the acceleration ratio 

scales well with the cluster size if the cluster nodes are 

smaller than 5. For a data size of D5, increasing the number 

of nodes effectively improves the acceleration ratio of the 

algorithm. If the number of nodes is increased to more than 5 

and the data size is small, the acceleration then increases 

slowly due to the increased overhead caused by the greater 

communication between the servers. 

Scale-up ratio is a speed metric that increases with the size 

of the dataset to effectively utilize the cluster nodes and 

evaluate the capability of the parallel algorithm. Where tsi is 

the runtime of the dataset of execution size S on the ith node 

and ts1 is the running time of the dataset of execution size S 

on the 1st node. 

 𝑠𝑝ⅇⅇ𝑑𝑢𝑝(𝑆, ⅈ) = 𝑡𝑆1 ∕ 𝑡𝑆𝑖 (13) 

In Fig. 11, the scalability of the performance of the 

different algorithms was investigated by varying the number 

of nodes in each run to measure the runtime and scalability. 

To observe the effect of dataset size on performance 

scalability, the algorithms were analyzed for efficiency using 

variations of larger datasets with 7 nodes, and the runtime of 

all algorithms decreased almost linearly as the number of 

nodes in the cluster increased. 

 
Fig. 11.  Scalability ratio results for the D5 dataset. 

C. Transformer error prediction experiment 

First, we compare the mean absolute error (MAE), root 

mean square error (RMSE), and coefficient of determination 

(R-Square) of the models built with the particle swarm 

optimization multilayer perceptron (PSO-MLP), genetic 

algorithm optimization multilayer perceptron (GA-MLP), 

and SSA optimization multilayer perceptron (SSA-MLP), 

and the results are shown in Table 2. 

Table 2.  Comparison and contrast algorithm evaluation results. 

Methodologies MAE [V] RMSE [V] R2 

PSO-MLP 0.0600 0.0040 0.88407 

GA-MLP 0.1443 0.0040 0.814891 

SSA-MLP 0.0167 0.0054 0.815631 

 

The comparison results of the residual histograms of the 

three algorithms are shown in Fig. 12. The results of the 

comparison of the three algorithms are shown in Fig. 13. The 

Q-Q plot is a type of scatter plot corresponding to the Q-Q 

plot of the normal distribution, i.e., the scatter plot with the 

quantile of the standard normal distribution as the horizontal 

coordinate, and the sample value as the vertical coordinate. 

To determine if the sample data is approximately normally 

distributed using the Q-Q plot, we only need to see if the 

points on the Q-Q plot are approximately close to a straight 

line and the slope of this straight line is the standard deviation, 

the intercept is the mean. The Q-Q plot can also be used to 

obtain rough information about the skewness and kurtosis of 

the sample. The prediction results of the three methods are 

plotted in Fig. 14, where the blue line shows the actual values 

and the orange line shows the predicted values. 
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(a) PSO-MLP 

 

(b) GA-MLP 

 

(c) SSA-MLP 

Fig. 12.  Residual histogram comparison results for the three 

algorithms. 

 

(a) PSO-MLP 

 

(b) GA-MLP 

 

(c) SSA-MLP  

Fig. 13.  Comparison results of Q-Q plots of the three algorithms. 
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(a) PSO-MLP 

 

(b) GA-MLP 

 
(c) SSA-MLP  

Fig. 14.  Comparison results of the prediction effect graphs of the 

three algorithms. 

The complete error of each point is shown in Table 3. The 

experimental results show that the prediction errors of all the 

proposed methods are small. 

Table 3.  Complete errors at each point. 

Point ID Average absolute error [%] 

MTG I A 3.4839*10-4 

MTG I B 3.2072*10-5 

MTG I C 1.3902*10-4 

MTG II A 8.5602*10-6 

MTG II B 5.2492*10-6 

MTG II C 4.1639*10-5 

MTG III A 9.7242*10-6 

MTG III B 7.4469*10-5 

MTG III C 2.0402*10-6 

“Line I A” 5.3032*10-2 

“Line I B” 1.1202*10-3 

“Line I C” 8.5352*10-5 

“Line II A” 1.4852*10-5 

“Line II B” 2.0302*10-4 

“Line II C” 4.2032*10-5 

5. CONCLUSION 

This article mainly studies the online error prediction and 
parallelization method of voltage transformers. First, a MLP 
model optimized based on the SSA is proposed. The weight 
initialization process is optimized using the SSA to improve 
the prediction accuracy of the multilayer perceptron. Then, 
this article studied and analyzed the implementation principle 
and process of the parallel SSA based on Hadoop, and 
provided a detailed explanation of the overall process of the 
SSA and the specific design and implementation process of 
MapReduce. Based on this, a distributed sparrow search 
optimization MLP algorithm was developed and verified. The 
proposed algorithm helps to improve the measurement 
accuracy, prevent equipment failure, optimize the power grid 
operation strategies, and improve the stability and economy 
of the power grid. In the future, we may explore the 
application of deep learning algorithms for CVT 
measurement error prediction, such as using neural network 
models to perform nonlinear fitting and prediction on error 
data to improve the accuracy and reliability of prediction 
results. 

REFERENCES  

[1] Wang, C., Bian, W., Wang, R., Chen, H., Ye, Z., Yan, 
L. (2020). Association rules mining in parallel 
conditional tree based on grid computing inspired 
partition algorithm. International Journal of Web and 
Grid Services, 16 (3), 321-339.  
https://doi.org/10.1504/IJWGS.2020.109475  

[2] Wang, C., Xing, S., Gao, R., Yan, L., Xiong, N., Wang, 
R. (2023). Disentangled dynamic deviation transformer 
networks for multivariate time series anomaly 
detection. Sensors, 23 (3), 1104.  
https://doi.org/10.3390/s23031104  

[3] Gao, R., He, W., Yan, L., Liu, D., Yu, Y., Ye, Z. (2024). 
Hybrid graph transformer networks for multivariate 
time series anomaly detection. The Journal of 
Supercomputing, 80 (1), 642-669.  
https://doi.org/10.1007/s11227-023-05503-w  

https://doi.org/10.1504/IJWGS.2020.109475
https://doi.org/10.3390/s23031104
https://doi.org/10.1007/s11227-023-05503-w


MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 6, 244-254 

254 

[4] Crotti, G., Giordano, D., Sardi, A. (2011). Development 

and use of a medium voltage RC divider for on-site 

calibration. In 2011 IEEE International Workshop on 

Applied Measurements for Power Systems (AMPS). 

IEEE, 53-57.  

https://doi.org/10.1109/AMPS.2011.6090347  

[5] Zhang, H., Zhang, D., Zhang, X. (2023). The role of 

output-based emission trading system in the 

decarbonization of China's power sector. Renewable 

and Sustainable Energy Reviews, 173, 113080.  

https://doi.org/10.1016/j.rser.2022.113080  

[6] Zhang, H., Zhao, F., Hao, H., Liu, Z. (2023). 

Comparative analysis of life cycle greenhouse gas 

emission of passenger cars: A case study in China. 

Energy, 265, 126282.  

https://doi.org/10.1016/j.energy.2022.126282  

[7] Li, H., Ma, C., Zhang, C., Chen, Q., He, C., Jin, Y. 

(2024). A knowledge-based cooperative co-

evolutionary algorithm for non-contact voltage 

measurement. IEEE Transactions on Emerging Topics 

in Computational Intelligence, 8 (2), 1142-1155.  

https://doi.org/10.1109/TETCI.2023.3300526  

[8] Zang, X., Cao, Z., Xiao, M., Yang, X. (2023). Research 

on online monitoring of grid current transformer based 

on transformers and BiGRU. Journal of Computational 

Methods in Sciences and Engineering, 23 (3).  

https://doi.org/10.3233/JCM-226763  

[9] Valtierra-Rodriguez, M. (2019). Fractal dimension and 

data mining for detection of short-circuited turns in 

transformers from vibration signals. Measurement 

Science and Technology, 31 (2), 025902.  

https://doi.org/10.1088/1361-6501/ab48ac  

[10] Phadke, A. G., Thorp, J. S. (2008). Synchronized 

Phasor Measurements and Their Applications. 

Springer. https://doi.org/10.1007/978-0-387-76537-2  

[11] Pal, A., Chatterjee, P., Thorp, J. S., Centeno, V. A. 

(2016). Online calibration of voltage transformers using 

synchrophasor measurements. IEEE Transactions on 

Power Delivery, 31 (1), 370-380.  

https://doi.org/10.1109/TPWRD.2015.2494058  

Received February 22, 2024 

Accepted November 27, 2024 

 

 

https://doi.org/10.1109/AMPS.2011.6090347
https://doi.org/10.1016/j.rser.2022.113080
https://doi.org/10.1016/j.energy.2022.126282
https://doi.org/10.1109/TETCI.2023.3300526
https://doi.org/10.3233/JCM-226763
https://doi.org/10.1088/1361-6501/ab48ac
https://doi.org/10.1007/978-0-387-76537-2
https://doi.org/10.1109/TPWRD.2015.2494058

