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Abstract: We present a novel parallel and pipelined fast Fourier transform (FFT) architecture for high-speed and low-power applications, 

a critical component in wireless communications and digital signal processors. The new FFT model implements a data-inverted Vedic 

multiplier in the FFT architecture, which reduces data switching activity in the input patterns to minimize dynamic power consumption and 

computational delay. The proposed architecture incorporates a low-power bit inversion (BI) multiplier scheme for a minimum number of 

complex multiplications with a high-speed partial product generation technique in FFT computation. This research focuses on the 

investigation and implementation of a modified butterfly unit as the best choice compared to other low-power and high-speed multipliers, 

such as Booth and Wallace multipliers for FFT processors. The BI multiplier design was synthesized in a field programmable gate array 

(FPGA), and the results show that the area efficiency could be improved by about 30 % and the power consumption and delay could be 

reduced by 56 %. The proposed FFT processor utilizes only 8 % of the available look-up tables (LUTs) with a 1:3 ratio in resource utilization 

and a 56 % reduction in delays compared to previous research. This makes this architecture best suited for high-speed wireless 

communications and 5G applications. This BI-Vedic multiplier is used in convolutions, FFT, and digital signal processing (DSP) filters 

where fast multiplication is critical. Throughput in applications with real-time signals is improved. It is also used in image and video 

processing and is critical for algorithms that manipulate pixels, scale, and compress data when many multiplications need to be performed 

quickly. IoT and embedded systems are beneficial for low-power systems as BI reduces power consumption and switching activity. 

Keywords: low power fast Fourier transform, Vedic multiplier, bit inversion technique, look-up table, field programmable gate array, 5G 

application 

 

1. INTRODUCTION 

The fast Fourier transform (FFT) is a widely used 

mathematical algorithm in technical computing. It is used in 

various fields such as digital image processing, radar signal 

processing, wireless communications, and numerical solvers 

such as partial differential solvers and mechanical systems 

[1]. In digital signal processing, a conversion between the 

time domain and the frequency domain is necessary. For this 

purpose, the FFT algorithm has become one of the most 

important. The single-path delay feedback (SDF) FFT is the 

most commonly used structure for computing the FFT in 

hardware, as it offers high throughput with fewer hardware 

resources. Each stage of the SDF FFT consists of a butterfly 

unit, a rotator, and a buffer stage for the calculation. The 

butterfly unit performs both additions and subtractions, 

followed by the buffer stage, and the rotator rotates the data 

in the complex plane. The rotation angle can be changed at 

any time, and the set of angles rotated by the rotator is called 

the twiddle factor.  

The rotation operation is costly in hardware, so various 

techniques have been applied to reduce the hardware required 

to implement rotators [2]. Rotator allocation can simplify 

FFT rotators where different coefficients are needed to merge 

the shift-and-add multiplications to create the rotator stage. 

This idea can effectively distribute the rotations across the 

parallel branches in parallel FFT architectures. FFT 

algorithms have high computational parallelism and 

a pipelined structure with regular data flow, making them 

suitable for implementation in GPU-based large-scale 

parallel data processors [3]. The efficient design of pipelined 

FFT architectures can achieve high performance for modern 

real-time applications. They offer low latency and high 
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throughput suitable for high-speed real-time processing [4]. 

Advanced communication systems widely use FFT, 

especially in 4G technologies such as orthogonal frequency 

division multiplexing (OFDM) and single-carrier frequency 

division multiple access (SC-FDMA). IEEE 802.11ax and 

802.11ay are highly dependent on the speed and throughput 

of the FFT [5].  

The pulse descriptor word (PDW) of the radar pulse train 

signal is processed using either FFT or finite impulse 

response (FIR) filters [6]. Maintaining computational 

accuracy and the ability to derive large discrete Fourier 

transforms (DFTs) are important considerations when 

designing digital signal processing (DSP) circuits. These 

features pave the way for FFT circuits that offer better 

throughput and performance [7]. The radix-2k multi-path FFT 

architecture (MSC-FFT) was designed using the single-

carrier FFT architecture (SC-FFT), which allows extensive 

utilization of hardware. This leads to an area reduction, high 

data rates, and a simplification of the rotators. To achieve 

this, the structure of the processing element was optimized 

[8]. 

A novel circuit is introduced to calculate bit reversal for 

parallel data with minimal use of buffers and multiplexers, 

resulting in insignificant memory usage. The number of 

multipliers required is proportional to the memory usage [9]. 

A reconfigurable mixed-radix 2k × 3-point feed-forward 

architecture is presented, which enables low-power parallel 

FFT. An 8-parallel 128-2048 points low-power and area-

efficient FFT processor has been implemented for the 4G 

standard using TSMC 90 nm technology to meet the growing 

demand for low-cost mobile devices.  

2. LITERATURE REVIEW 

To minimize the dynamic power consumption and area, 

recent research in low-power FFT focuses on optimizing the 

computational blocks, especially the multipliers: to preserve 

power during idle cycles, Cheng and Parhi (2021) proposed 

a low-complexity FFT processor using the radix-22 algorithm 

in conjunction with clock-gating and power-gating 

approaches. To save hardware and switching operations, 

Chen et al. (2020) implemented a pipelined FFT design that 

reuses twiddle factor multipliers. Xiong et al. (2019) have 

introduced approximate computation approaches in FFT 

multipliers that significantly reduce power consumption with 

negligible impact on accuracy. Booth multiplier reduces the 

number of incomplete products, but can make things more 

complicated. Dadda multipliers and Wallace trees are fast 

because they reduce the partial products at the same time, 

although they can use a lot of power. Though not always the 

best option for systems with limited power, the Baugh-

Wooley multiplier is preferred for signed operations in DSP 

(2020–2023). Approximate Multipliers Intentional error-

tolerance is used in emerging designs to minimize area and 

switching activities. These consist of error-tolerant multiplier 

(ETM) and lower-part or adder (LOA). The Vedic 

multiplication methods have been recently improved to 

include an energy-efficient Vedic multiplier using clock 

gating and operand isolation was proposed by Venkatesh et 

al. (2022). For high-speed applications, Ramesh et al. (2023) 

implemented a hybrid Vedic multiplier with partial product 

compression. Bit-level optimization: research has focused on 

bit reuse, bit truncation, and bit inversion (BI) [10].  

The performance of various high-speed multipliers – such 

as power, area, delay, FFT suitability, and utilization – is 

compared, as mentioned in Table 1.  

Table 1.  High speed multipliers comparison. 

Multiplier  Power  

[mW] 

Area (LUT) Delay  

[ns] 

FFT suitability Utilization 

Booth  2.35 150 12.5 Moderate Moderate area and speed 

Wallace tree  2.10 180 10.3 High High-speed, but complex logic increases area 

Dadda  2.25 160 9.8 High Similar to Wallace 

Baugh-Wooley  2.40 170 11.0 Moderate Best for 2’s complement 

Approximate LOA  1.50 120 8.5 Medium Power-efficient, may introduce slight computational error 

 

3. METHODOLOGY 

This article presents a high-speed and area-efficient FFT 

processor designed for low-power applications. The 

processor uses a bit-inversed Vedic multiplier to achieve its 

high speed and parallel and pipelined architecture. The 

pipelined FFT method can perform the FFT analysis 

sequentially so that it can run in real time without 

interruption. However, the pipelined FFT architecture may 

not be suitable for processing large FFTs because it consumes 

a lot of hardware space and may lead to incorrect 

implementation results on a single field programmable gate 

array (FPGA) chip. On the other hand, a parallel FFT 

architecture may offer better performance. The M-point DFT 

of an M-point series 𝑦(𝑛) is defined as: 

𝑌(𝐿) = ∑ 𝑦(𝑛) ∙ 𝑋𝑀
𝑛𝑙

𝑀=1

𝑛=0

 (1) 

where X is the twiddle factor value; L is the frequency domain 

index, ranging from 0 to M - 1 samples; n is the time domain 

index, ranging from 0 to M - 1 samples; 

To analyze 𝑌(𝐿), we must consider that 𝑦(𝑛) can be real 

or complex. This requires complicated multiplications and 

complex additions for each value of  l. Therefore, to calculate 

the M-point, 𝑌(𝐿) values require 𝑀2 complex multiplications 

with additions. The DIF-FFT algorithm uses the radix-𝑟2 FFT 

to divide a DFT into smaller DFTs. The input data 𝑥(𝑛) (32 

bits) is represented by the 2-dimensional array of data 

𝑥(8 𝑙 + 𝑚), stored in the memory block. Here, l is the length 

of the FFT; m is the number of stages. We calculate the DFT 
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by performing 8-point DFTs, and the T results are multiplied 

by the twiddle factors. The butterfly unit calculates each DFT 

operation, referred to as the FFT information path for FFT 

calculations. The basic technique used in the FFT method is 

a "divide and conquer" approach. This involves decomposing 

M-point DFTs into successively smaller DFTs [11]. Assume 

that the length of 𝑦(𝑛) is even (i.e., M is divisible by 2) and 

𝑦(𝑛) is decimated into 2 series of length M/2; computing the 

M/2-point DFT of each series requires random (𝑀/2)2 

multiplications and a similar number of additions. It is 

possible to determine the M-point DFT of 𝑦(𝑛) by using two 

M/2-point DFTs that requires less than 𝑀2 2⁄ , which 

facilitates storage. In this research, a high-speed and low-

power FFT architecture using a modified Vedic multiplier is 

proposed. This architecture includes hardware components 

for radix-2 algorithms that can compute an FFT based on user 

requirements. The generalized radix-2 FFT architecture uses 

a data-inverted Vedic multiplier instead of a complex 

multiplier to reduce the partial products in complex 

multiplications. In this work, low-power techniques are used 

to reduce the power consumption using a BI algorithm. Power 

consumption during multiplication has become a significant 

design issue in FFT architecture. Therefore, minimizing the 

switching activity during multiplication can lead to 

significant savings in the overall power budget of the FFT 

design. To reduce the multiplication cost, a BI technique is 

proposed to reduce the computational complexity. In this 

approach, an encoder increases the run length of '1' or '0'. In 

this way, the internal computation of the multiplier is reduced 

by bypassing the successive partial product generation. The 

required partial product generators (PPGs) are reduced in this 

phase, resulting in low propagation delay [12]. An innovative 

architecture has been presented that uses the FFT to reduce 

the switching activity of the internal computations in the 

Vedic multiplier. This is achieved by independently 

controlling the bits at odd and even positions of the multiplier 

input, reducing the randomness of the input pattern. 

A significant reduction in power consumption can be 

achieved by identifying the run length of the '0's and '1's in 

the multiplier input and applying one of four possible 

switching schemes (full inversion, no inversion, odd 

inversion, and even inversion). The power consumption is 

higher for input patterns that switch between 0→1 and 1→0 

transitions than for patterns that include 0→0 and 1→1 

transitions. 

Table 2 describes the BI scheme:  

• In pattern 1, there is a run length of 7 1's, greater than 

the applied '0' full inversion.  

• In pattern 2, where the number of 1's and 0's is the same, 

but the number of 1's in odd positions is greater than in 

even positions, the input pattern is switched with odd 

inversion. 

• For pattern 3, where the number of 1's and 0's is the 

same, but the number of 1's in the even positions is 

greater than in the odd positions, the input pattern is 

switched with even inversion. If the number of 0's is 

greater than that of 1's, no BI scheme is applied. 

Table 2. Different inversion schemes. 

Input 

Pattern 

Inversion scheme

  

Output 

Pattern 

11111110 ‘1’s – 7 / ‘0’s – 1 (1>0)  Full inversion 00000001 

10101001 ‘1’s – 4 / ‘0’s – 4 (1=0)  Odd inversion 00000011 

01010110 ‘1’s – 4 / ‘0’s – 4 (1=0)  Even inversion 00000011 

00000001 ‘1’s – 1 / ‘0’s – 7 (0>1)  No inversion 00000001 

 

Fig. 1 shows the proposed BI multiplier-based FFT 
architecture. The architecture includes: a serial to parallel 
converter, a bit stream analyzer, an FFT/IFFT module, an I/O 
controller, and a bit selection unit as the primary functional 
units of the proposed FFT architecture. A serial-to-parallel 
converter is a digital preprocessing circuit that converts serial 
data into parallel data for high-speed processing in the FFT 
[12]. The serial input data stream is received and analyzed to 
find out the run length of 0's and 1's in the patterns. 

 

Fig. 1.  FFT architecture with BI scheme. 

The butterfly units are a crucial component of all FFT 
architectures. They are defined by the implementation of 
complex multiplication and addition. The efficiency of the 
FFT in terms of area, power, speed, and throughput is 
determined by the BI multiplier used. We have developed an 
encoder module, which is shown in Fig. 2. This module 
encodes the transmitting signal based on the number of zeros 
and ones. It defines the data to be inverted based on zeros and 
ones and consists of internal modules such as shift register, 
even counter, odd counter, comparator, and inverter. Power 
consumption during multiplication has become one of the 
main problems in the development of FFT. Therefore, 
minimizing the switching activity during multiplication can 
lead to significant power savings. To reduce the cost of 
multiplication, we propose a BI technique that reduces the 
computational cost. 

 

Fig. 2.  Encoder module. 

In this paper, we propose a high-speed, reconfigurable, and 
low-power FFT architecture, which is a key component in 
wireless communications. 
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Vedic multiplier algorithm 

 

Fig. 3.  A 3x3 multiplication using a Vedic multiplier. 

Fig. 3 shows a 3x3 multiplication performed with a Vedic 

multiplier. This architecture is faster than the existing 

multipliers and can be used in all numerical schemes [13]. 

 

• Step 1: Multiply the least significant bit (LSB) of the 

multiplicand and the multiplier vertically to obtain the 

final result of the LSB. 

• Step 2: To perform a binary multiplication, multiply the 

LSB of the multiplicand by the most significant bit 

(MSB) of the multiplier. Then multiply the MSB of the 

multiplicand by the LSB of the multiplier. Add the two 

products obtained in the previous steps. The result will 

give you the second bit of the result. 

• Step 3: To multiply two numbers using the 

multiplication method, we must first multiply the most 

significant digit of the multiplicand by the most 

significant digit of the multiplier. This should be done 

vertically. The resulting product is then added to the 

previous carry, which has already been determined in 

the previous steps. The resulting sum and carry are then 

measured as the MSB of the result.  

 

Let us consider two 3-bit binary numbers, A and B:  

A=a2a1a0,   

B=b2b1b0  

S0 = a0b0      

C1S1 = a0b1 + a1b0      

C2S2 = C1 + a1b1 + a0b2 + a2b0    

C3S3 = C2 + a1b2 + a2b1     

C4S4 = C3 + a2b2      

 

To understand the difference between the conventional UT-Vedic multiplier and the BI-UT Vedic multiplier, a detailed 

explanation is provided below: 

 

Classical UT-Vedic Multiplier: 

Let  

A = 101,   

B = 111 

S0 = a0b0 => 1 × 1 = 1 (CS = 1) 

C1S1 = a0b1 + a1b0 => 1 × 1 + 1 × 1 = 10 (CS = 2) 

C2S2 = C1 + a1b1 + a0b2 + a2b0 => 1 + 0 × 1 + 1 × 1 + 1 × 1 = 11 (CS = 3) 

C3S3 = C2 + a1b2 + a2b1 => 1 + 0 × 1 + 1 × 1 = 10 (CS = 2) 

C4S4 = C3 + a2b2 => 0 + 1×1 = 01 (CS = 1) 

where CS – computational cost 

Total computational cost = 1+2+3+2+1 = 9 

 

BI-UT-Vedic Multiplier: 

The bit switch scheme is applied to A and B: 

A = 101 – 1 > 0 = 010, 

B = 111 – 1 > 0 = 000 

S0 = a0b0 => 0 × 0 = 1 (CS = 0) 

C1S1 = a0b1 + a1b0 => 0 × 0 + 1 × 0 = 01 (CS = 1) 

C2S2 = 0 + a1b1 + a0b2 + a2b0 => 1 + 1 × 0 + 0 × 0 + 0 × 0 = 01 (CS = 1) 

C3S3 = 0 + a1b2 + a2b1 => 1 + 1 × 0 + 0 × 0 = 01 (CS = 1) 

C4S4 = C3 + a2b2 => 0 + 0 × 0 = 0 (CS = 0) 

Total computational cost = 0+1+1+1+0 = 3 

 

Based on the computations performed above, the bit-

inversed Vedic multiplier has a computational cost of 3, while 

the conventional Vedic multiplier has a computational cost of 

9. This proves that the proposed Vedic multiplier can 

significantly reduce the power consumption and delay in the 

FFT architecture without compromising the resource 

utilization as stated in reference [14].   
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4. RESULTS 

In this section, the experimental results and discussion of 

the proposed BI-Vedic multiplier based FFT architecture and 

a detailed performance analysis are described. The 

performance analysis is performed for both FPGA and ASIC. 

The simulation is performed in ModelSim. The proposed 

method is synthesized using CADENCE Genus solution and 

compiled in CADENCE INNOVUS for RTL to GDSII 

conversion based on 90 nm technology [15]. Fig. 4 shows the 

simulation output waveform of the BI scheme using 

ModelSim.  
 

 

Fig. 4.  Simulation waveform – BI scheme. 

5. PERFORMANCE EVALUATION OF FFT  

This section discusses the performance analysis of the BI 

multiplier FFT (BIM-FFT) architecture technique. The 

performances are analyzed in four different Xilinx FPGA 

families, namely Spartan-6, Virtex-4, Virtex-5, Virtex-6, and 

Zynq. The analysis focuses on various aspects such as the 

number of slices, flip-flops, look-up tables (LUTs), operating 

frequency, and I/O delay in the FFT architecture. 

The hardware utilization in Spartan-6, Virtex-4, Virtex-5, 

and Zynq FPGA devices is analyzed in Table 3. In addition, 

the communication performance of four Xilinx devices is 

shown in Table 4. The number of registers, LUTs, and slices 

was measured using Xilinx ISE. It was found that the number 

of slices used in the Virtex-6 and dyn devices is lower 

compared to the other FPGA families. Similarly, LUTs used 

by the Virtex-6 and Zynq devices are also lower compared to 

other FPGA families. However, the Spartan-6 FPGA 

operated at a higher frequency and had a higher throughput 

than any other FPGA family. In addition, the delay in the 

Spartan-6 FPGA was lower compared to Virtex-4, Virtex-5, 

and Virtex-6 FPGA devices [16].  

Table 3.  Performance analysis of the proposed BIM-FFT. 

Family   Registers    LUT's   Slices 

Spartan-6 - xc6slx9 1179/11440 1126/5720 475/1430 

Virtex-4 - xc4vsx55 1246/49152 1618/49152 1187/24576 

Virtex-5 - xc5vsx50t 1239/32640 1548/32640 710/8160 

Virtex-6 - xc6vlx75t 106/93129 266/46560 95/11640 

Zynq - xc7z010 106/35200 265/17,600 85/4400 

Table 4.  Performance analysis of the proposed DPR-FFT 

architecture with frequency and delay. 

Family Frequency 

[MHz] 

Delay 

[ns] 

Power 

[mW] 

Spartan-6 - xc6slx9 335.768 2.97 64.15 

Virtex-4 - xc4vsx55 190.81 5.241 76.49 

Virtex-5 - xc5vsx50t 188.79 5.297 75.38 

Virtex-6 - xc6vlx75t 246.77 4.052 79.01 

Zynq - xc7z010 261.55 3.823 64.23 

 

Fig. 5 shows a performance comparison graph of an FPGA 
for the BIM-FFT architecture. The FPGA performance is 
more efficient with the Virtex-6 and Zynq FPGAs. As can be 
seen in Fig. 7, the Zynq FPGA and Virtex-6 FPGA families 
consume a lower number of registers, LUTs, and slices 
compared to other FPGA families for the DPR-FFT 
architecture. In addition, the frequency is lower for Zynq and 
Virtex-6 FPGAs. Virtex-4 and Virtex-5 FPGAs consume 
more LUT resources compared to other families.  

 

Fig. 5.  Performance analysis of BIM-FFT for different FPGA 
families. 

From the data presented in Fig. 6, it is evident that the 
BIM-FFT architecture is capable of operating at high speeds 
in Spartan-6 FPGA. The delay time of this architecture is 
2.97 ns, which is lower than that of the Zynq and Virtex 
FPGA families. However, it should be noted that the delay 
time in Zynq and Virtex-6 FPGAs for R2RMDC FFT is even 
lower.  

 

Fig. 6.   Delay-FFT – Delay analysis for different FPGA family. 

The functional efficiency of the proposed BIM-FFT 
architecture is compared with the dynamically reconfigurable 
FFT processors presented by Sivakumar et al. (2018). The 
existing FFT architectures are executed to verify the 
parameter measurement. 
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Table 5.  Performance comparison for FFT. 

Device Methodology LUTs Flip-flops Slices Frequency [MHz] Delay [ns] Power [mW] 

ASAP 7 nm 
R2MDC 12686 7416 4005 105.234 2.835 128 

Proposed   9548 7239 3634 188.790 1.914  75.38 

 
When implementing FPGAs, parameters such as LUTs, 

flip-flops, slices, frequency, and throughput are critical to the 
performance of a system. This phase is crucial for the 
selection of the appropriate device. The proposed FPGA 
provides a configurable structure through customizable 
modules, connected by programmable control elements and 
enclosed by an input and output block (IOB). Table 5 shows 
the results of the existing DPR and R2RMDC-OMS FFT 
architectures. The proposed FFT design was synthesized and 
compared with theVirtex-5 FPGA. Table 5 shows that the 
DPR-FFT is compared with an R2MDC FFT proposed by 
Sivakumar et al. (2018), in which the number of slice LUTs 
(area) is minimized to 9548 and the delay is reduced from 
2.835 ns to 1.914 ns. The proposed BIM-FFT utilizes an 8:1 
ratio of logical resources with a 38 % reduction in delay and 
operates at 58 % higher speed [17].  

 

Fig. 7.  Physical design of parallel and pipelined CTS-BIS FFT. 

Fig. 7 shows the ASIC implementation for the Vedic FFT 
architecture. The parallel and pipelined FFT with a 7-BI 
scheme was implemented in CMOS 90 nm technology. 
The Cadence Genus synthesis solution was used to 
generate reports on power, area, and timing. The proposed 
BI-Vedic FFT operates with an input size of 32 bits at an 
operating frequency of 50 MHz. It occupies an area of 
4.91 mm2 and consumes 54 mW at an operating voltage of 
1.8 V. 

6. FUTURE WORK 

Even though the current implementation of the BI-
Vedic Multiplier shows remarkable gains in power and 
delay, there are a number of improvements that could be 
explored.  
Pipelining and Parallelization:  

In high-speed systems, adding pipelined stages to the 
multiplier can help further reduce the latency in the critical 
path and increase throughput.  
Hybrid Designs:  

For certain workloads, performance can be improved by 
combining the bit-inverted approach with additional 

optimization strategies such as Booth encoding or carry 
save adders.  
Dynamic BI Logic:  

Using data-dependent inversion logic instead of static BI 
could adaptively reduce switching activity depending on 
the operand pattern.  
FPGA/ASIC Custom Optimization:  

By using vendor-specific tools and logic usage, the 
design can be tailored to specific hardware platforms (such 
as Xilinx, Intel, or low-power ASICs) to unlock additional 
area and power gains. The advantages of the proposed 
multiplier—low power, speed, and area efficiency—make 
it a compelling contender for use in a number of areas 
outside of FFT processing.  
Real-Time DSP Systems:  

Software-defined radios can benefit from fast and 
energy-efficient multiplication of 
modulation/demodulation blocks, convolutional neural 
networks (CNNs), and FIR/IIR filters.  
IoT and Edge AI Devices:  

Without sacrificing functionality, the proposed design 
could extend the battery life of devices with limited power 
consumption, such as wearable technology or smart 
sensors.  
Image and Video Processing Pipelines:  

The architecture is suitable for hardware accelerators in 
multimedia applications, as tasks such as scaling, filtering, 
and color space conversion require frequent 
multiplications.  
Higher Bit-Width Implementations:  

The scalability of the multiplier for more complex 
applications, such as FFT cores in radar or biomedical 
signal processing, would be confirmed by testing and 
evaluating 32-bit and 64-bit versions.  
Multi-Operand Multiplication:  

The architecture could be applicable to AI/ML hardware 
if extended for multiplication with multiple operands (e.g., 
for fused multiply-accumulate units). 

7. CONCLUSION 

A novel architecture for BIM-FFT with maximum 
throughput and minimum latency has been proposed and 
implemented in Xilinx Virtex-7 FPGA. The performance 
of the proposed FFT architecture was analyzed in terms of 
throughput, speed, and resource utilization. The power 
consumed by the BI-Vedic multiplier has been reduced, 
which contributes to an overall reduction in the power 
consumption of the complex FFT architecture. An 
innovative encoding technique, called data inversion 
scheme, was presented to minimize the switching activity 
of the system-level data inputs. The FFT processor 
presented in this research utilizes only 8 % and 9 % of the 
available LUTs and has a 56 % lower delay compared to 
previous research, making it suitable for IoT 4G and 5G 
applications. 
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