
MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 134-140

DOI: 10.2478/msr-2025-0016 *Corresponding author: suryame3020@gmail.com (Surya P)

134

Performance Estimation of Low Power and Area-Efficient

Parallel Pipelined FFT

Surya P1* , Arunachalaperumal C2 , Dhilipkumar S3

1Research Scholar, Anna University, Chennai, 600025, Tamil Nadu, India, suryame3020@gmail.com
2Professor, Department of Electronics and Communication Engineering, Ramco Institute of Technology, Rajapalayam,

626117, Tamil Nadu, India, arunachalaperumal@ritrjpm.ac.in
3Assistant Professor, Department of Electronics and Communication Engineering, Loyola ICAM College of Engineering and

Technology (LICET), Chennai, 600034, Tamil Nadu, India, dhilipkumar.s@licet.ac.in

Abstract: We present a novel parallel and pipelined fast Fourier transform (FFT) architecture for high-speed and low-power applications,

a critical component in wireless communications and digital signal processors. The new FFT model implements a data-inverted Vedic

multiplier in the FFT architecture, which reduces data switching activity in the input patterns to minimize dynamic power consumption and

computational delay. The proposed architecture incorporates a low-power bit inversion (BI) multiplier scheme for a minimum number of

complex multiplications with a high-speed partial product generation technique in FFT computation. This research focuses on the

investigation and implementation of a modified butterfly unit as the best choice compared to other low-power and high-speed multipliers,

such as Booth and Wallace multipliers for FFT processors. The BI multiplier design was synthesized in a field programmable gate array

(FPGA), and the results show that the area efficiency could be improved by about 30 % and the power consumption and delay could be

reduced by 56 %. The proposed FFT processor utilizes only 8 % of the available look-up tables (LUTs) with a 1:3 ratio in resource utilization

and a 56 % reduction in delays compared to previous research. This makes this architecture best suited for high-speed wireless

communications and 5G applications. This BI-Vedic multiplier is used in convolutions, FFT, and digital signal processing (DSP) filters

where fast multiplication is critical. Throughput in applications with real-time signals is improved. It is also used in image and video

processing and is critical for algorithms that manipulate pixels, scale, and compress data when many multiplications need to be performed

quickly. IoT and embedded systems are beneficial for low-power systems as BI reduces power consumption and switching activity.

Keywords: low power fast Fourier transform, Vedic multiplier, bit inversion technique, look-up table, field programmable gate array, 5G

application

1. INTRODUCTION

The fast Fourier transform (FFT) is a widely used

mathematical algorithm in technical computing. It is used in

various fields such as digital image processing, radar signal

processing, wireless communications, and numerical solvers

such as partial differential solvers and mechanical systems

[1]. In digital signal processing, a conversion between the

time domain and the frequency domain is necessary. For this

purpose, the FFT algorithm has become one of the most

important. The single-path delay feedback (SDF) FFT is the

most commonly used structure for computing the FFT in

hardware, as it offers high throughput with fewer hardware

resources. Each stage of the SDF FFT consists of a butterfly

unit, a rotator, and a buffer stage for the calculation. The

butterfly unit performs both additions and subtractions,

followed by the buffer stage, and the rotator rotates the data

in the complex plane. The rotation angle can be changed at

any time, and the set of angles rotated by the rotator is called

the twiddle factor.

The rotation operation is costly in hardware, so various

techniques have been applied to reduce the hardware required

to implement rotators [2]. Rotator allocation can simplify

FFT rotators where different coefficients are needed to merge

the shift-and-add multiplications to create the rotator stage.

This idea can effectively distribute the rotations across the

parallel branches in parallel FFT architectures. FFT

algorithms have high computational parallelism and

a pipelined structure with regular data flow, making them

suitable for implementation in GPU-based large-scale

parallel data processors [3]. The efficient design of pipelined

FFT architectures can achieve high performance for modern

real-time applications. They offer low latency and high

 Journal homepage: https://content.sciendo.com

mailto:suryame3020@gmail.com
mailto:arunachalaperumal@ritrjpm.ac.in
mailto:dhilipkumar.s@licet.ac.in
https://orcid.org/0000-0001-7645-7996
https://orcid.org/0000-0002-0917-9946
https://content.sciendo.com/view/journals/msr/msr-overview.xml

MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 134-140

135

throughput suitable for high-speed real-time processing [4].

Advanced communication systems widely use FFT,

especially in 4G technologies such as orthogonal frequency

division multiplexing (OFDM) and single-carrier frequency

division multiple access (SC-FDMA). IEEE 802.11ax and

802.11ay are highly dependent on the speed and throughput

of the FFT [5].

The pulse descriptor word (PDW) of the radar pulse train

signal is processed using either FFT or finite impulse

response (FIR) filters [6]. Maintaining computational

accuracy and the ability to derive large discrete Fourier

transforms (DFTs) are important considerations when

designing digital signal processing (DSP) circuits. These

features pave the way for FFT circuits that offer better

throughput and performance [7]. The radix-2k multi-path FFT

architecture (MSC-FFT) was designed using the single-

carrier FFT architecture (SC-FFT), which allows extensive

utilization of hardware. This leads to an area reduction, high

data rates, and a simplification of the rotators. To achieve

this, the structure of the processing element was optimized

[8].

A novel circuit is introduced to calculate bit reversal for

parallel data with minimal use of buffers and multiplexers,

resulting in insignificant memory usage. The number of

multipliers required is proportional to the memory usage [9].

A reconfigurable mixed-radix 2k × 3-point feed-forward

architecture is presented, which enables low-power parallel

FFT. An 8-parallel 128-2048 points low-power and area-

efficient FFT processor has been implemented for the 4G

standard using TSMC 90 nm technology to meet the growing

demand for low-cost mobile devices.

2. LITERATURE REVIEW

To minimize the dynamic power consumption and area,

recent research in low-power FFT focuses on optimizing the

computational blocks, especially the multipliers: to preserve

power during idle cycles, Cheng and Parhi (2021) proposed

a low-complexity FFT processor using the radix-22 algorithm

in conjunction with clock-gating and power-gating

approaches. To save hardware and switching operations,

Chen et al. (2020) implemented a pipelined FFT design that

reuses twiddle factor multipliers. Xiong et al. (2019) have

introduced approximate computation approaches in FFT

multipliers that significantly reduce power consumption with

negligible impact on accuracy. Booth multiplier reduces the

number of incomplete products, but can make things more

complicated. Dadda multipliers and Wallace trees are fast

because they reduce the partial products at the same time,

although they can use a lot of power. Though not always the

best option for systems with limited power, the Baugh-

Wooley multiplier is preferred for signed operations in DSP

(2020–2023). Approximate Multipliers Intentional error-

tolerance is used in emerging designs to minimize area and

switching activities. These consist of error-tolerant multiplier

(ETM) and lower-part or adder (LOA). The Vedic

multiplication methods have been recently improved to

include an energy-efficient Vedic multiplier using clock

gating and operand isolation was proposed by Venkatesh et

al. (2022). For high-speed applications, Ramesh et al. (2023)

implemented a hybrid Vedic multiplier with partial product

compression. Bit-level optimization: research has focused on

bit reuse, bit truncation, and bit inversion (BI) [10].

The performance of various high-speed multipliers – such

as power, area, delay, FFT suitability, and utilization – is

compared, as mentioned in Table 1.

Table 1. High speed multipliers comparison.

Multiplier Power

[mW]

Area (LUT) Delay

[ns]

FFT suitability Utilization

Booth 2.35 150 12.5 Moderate Moderate area and speed

Wallace tree 2.10 180 10.3 High High-speed, but complex logic increases area

Dadda 2.25 160 9.8 High Similar to Wallace

Baugh-Wooley 2.40 170 11.0 Moderate Best for 2’s complement

Approximate LOA 1.50 120 8.5 Medium Power-efficient, may introduce slight computational error

3. METHODOLOGY

This article presents a high-speed and area-efficient FFT

processor designed for low-power applications. The

processor uses a bit-inversed Vedic multiplier to achieve its

high speed and parallel and pipelined architecture. The

pipelined FFT method can perform the FFT analysis

sequentially so that it can run in real time without

interruption. However, the pipelined FFT architecture may

not be suitable for processing large FFTs because it consumes

a lot of hardware space and may lead to incorrect

implementation results on a single field programmable gate

array (FPGA) chip. On the other hand, a parallel FFT

architecture may offer better performance. The M-point DFT

of an M-point series 𝑦(𝑛) is defined as:

𝑌(𝐿) = ∑ 𝑦(𝑛) ∙ 𝑋𝑀
𝑛𝑙

𝑀=1

𝑛=0

 (1)

where X is the twiddle factor value; L is the frequency domain

index, ranging from 0 to M - 1 samples; n is the time domain

index, ranging from 0 to M - 1 samples;

To analyze 𝑌(𝐿), we must consider that 𝑦(𝑛) can be real

or complex. This requires complicated multiplications and

complex additions for each value of l. Therefore, to calculate

the M-point, 𝑌(𝐿) values require 𝑀2 complex multiplications

with additions. The DIF-FFT algorithm uses the radix-𝑟2 FFT

to divide a DFT into smaller DFTs. The input data 𝑥(𝑛) (32

bits) is represented by the 2-dimensional array of data

𝑥(8 𝑙 + 𝑚), stored in the memory block. Here, l is the length

of the FFT; m is the number of stages. We calculate the DFT

MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 134-140

136

by performing 8-point DFTs, and the T results are multiplied

by the twiddle factors. The butterfly unit calculates each DFT

operation, referred to as the FFT information path for FFT

calculations. The basic technique used in the FFT method is

a "divide and conquer" approach. This involves decomposing

M-point DFTs into successively smaller DFTs [11]. Assume

that the length of 𝑦(𝑛) is even (i.e., M is divisible by 2) and

𝑦(𝑛) is decimated into 2 series of length M/2; computing the

M/2-point DFT of each series requires random (𝑀/2)2

multiplications and a similar number of additions. It is

possible to determine the M-point DFT of 𝑦(𝑛) by using two

M/2-point DFTs that requires less than 𝑀2 2⁄ , which

facilitates storage. In this research, a high-speed and low-

power FFT architecture using a modified Vedic multiplier is

proposed. This architecture includes hardware components

for radix-2 algorithms that can compute an FFT based on user

requirements. The generalized radix-2 FFT architecture uses

a data-inverted Vedic multiplier instead of a complex

multiplier to reduce the partial products in complex

multiplications. In this work, low-power techniques are used

to reduce the power consumption using a BI algorithm. Power

consumption during multiplication has become a significant

design issue in FFT architecture. Therefore, minimizing the

switching activity during multiplication can lead to

significant savings in the overall power budget of the FFT

design. To reduce the multiplication cost, a BI technique is

proposed to reduce the computational complexity. In this

approach, an encoder increases the run length of '1' or '0'. In

this way, the internal computation of the multiplier is reduced

by bypassing the successive partial product generation. The

required partial product generators (PPGs) are reduced in this

phase, resulting in low propagation delay [12]. An innovative

architecture has been presented that uses the FFT to reduce

the switching activity of the internal computations in the

Vedic multiplier. This is achieved by independently

controlling the bits at odd and even positions of the multiplier

input, reducing the randomness of the input pattern.

A significant reduction in power consumption can be

achieved by identifying the run length of the '0's and '1's in

the multiplier input and applying one of four possible

switching schemes (full inversion, no inversion, odd

inversion, and even inversion). The power consumption is

higher for input patterns that switch between 0→1 and 1→0

transitions than for patterns that include 0→0 and 1→1

transitions.

Table 2 describes the BI scheme:

• In pattern 1, there is a run length of 7 1's, greater than

the applied '0' full inversion.

• In pattern 2, where the number of 1's and 0's is the same,

but the number of 1's in odd positions is greater than in

even positions, the input pattern is switched with odd

inversion.

• For pattern 3, where the number of 1's and 0's is the

same, but the number of 1's in the even positions is

greater than in the odd positions, the input pattern is

switched with even inversion. If the number of 0's is

greater than that of 1's, no BI scheme is applied.

Table 2. Different inversion schemes.

Input

Pattern

Inversion scheme

Output

Pattern

11111110 ‘1’s – 7 / ‘0’s – 1 (1>0) Full inversion 00000001

10101001 ‘1’s – 4 / ‘0’s – 4 (1=0) Odd inversion 00000011

01010110 ‘1’s – 4 / ‘0’s – 4 (1=0) Even inversion 00000011

00000001 ‘1’s – 1 / ‘0’s – 7 (0>1) No inversion 00000001

Fig. 1 shows the proposed BI multiplier-based FFT
architecture. The architecture includes: a serial to parallel
converter, a bit stream analyzer, an FFT/IFFT module, an I/O
controller, and a bit selection unit as the primary functional
units of the proposed FFT architecture. A serial-to-parallel
converter is a digital preprocessing circuit that converts serial
data into parallel data for high-speed processing in the FFT
[12]. The serial input data stream is received and analyzed to
find out the run length of 0's and 1's in the patterns.

Fig. 1. FFT architecture with BI scheme.

The butterfly units are a crucial component of all FFT
architectures. They are defined by the implementation of
complex multiplication and addition. The efficiency of the
FFT in terms of area, power, speed, and throughput is
determined by the BI multiplier used. We have developed an
encoder module, which is shown in Fig. 2. This module
encodes the transmitting signal based on the number of zeros
and ones. It defines the data to be inverted based on zeros and
ones and consists of internal modules such as shift register,
even counter, odd counter, comparator, and inverter. Power
consumption during multiplication has become one of the
main problems in the development of FFT. Therefore,
minimizing the switching activity during multiplication can
lead to significant power savings. To reduce the cost of
multiplication, we propose a BI technique that reduces the
computational cost.

Fig. 2. Encoder module.

In this paper, we propose a high-speed, reconfigurable, and
low-power FFT architecture, which is a key component in
wireless communications.

MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 134-140

137

Vedic multiplier algorithm

Fig. 3. A 3x3 multiplication using a Vedic multiplier.

Fig. 3 shows a 3x3 multiplication performed with a Vedic

multiplier. This architecture is faster than the existing

multipliers and can be used in all numerical schemes [13].

• Step 1: Multiply the least significant bit (LSB) of the

multiplicand and the multiplier vertically to obtain the

final result of the LSB.

• Step 2: To perform a binary multiplication, multiply the

LSB of the multiplicand by the most significant bit

(MSB) of the multiplier. Then multiply the MSB of the

multiplicand by the LSB of the multiplier. Add the two

products obtained in the previous steps. The result will

give you the second bit of the result.

• Step 3: To multiply two numbers using the

multiplication method, we must first multiply the most

significant digit of the multiplicand by the most

significant digit of the multiplier. This should be done

vertically. The resulting product is then added to the

previous carry, which has already been determined in

the previous steps. The resulting sum and carry are then

measured as the MSB of the result.

Let us consider two 3-bit binary numbers, A and B:

A=a2a1a0,

B=b2b1b0

S0 = a0b0

C1S1 = a0b1 + a1b0

C2S2 = C1 + a1b1 + a0b2 + a2b0

C3S3 = C2 + a1b2 + a2b1

C4S4 = C3 + a2b2

To understand the difference between the conventional UT-Vedic multiplier and the BI-UT Vedic multiplier, a detailed

explanation is provided below:

Classical UT-Vedic Multiplier:

Let

A = 101,

B = 111

S0 = a0b0 => 1 × 1 = 1 (CS = 1)

C1S1 = a0b1 + a1b0 => 1 × 1 + 1 × 1 = 10 (CS = 2)

C2S2 = C1 + a1b1 + a0b2 + a2b0 => 1 + 0 × 1 + 1 × 1 + 1 × 1 = 11 (CS = 3)

C3S3 = C2 + a1b2 + a2b1 => 1 + 0 × 1 + 1 × 1 = 10 (CS = 2)

C4S4 = C3 + a2b2 => 0 + 1×1 = 01 (CS = 1)

where CS – computational cost

Total computational cost = 1+2+3+2+1 = 9

BI-UT-Vedic Multiplier:

The bit switch scheme is applied to A and B:

A = 101 – 1 > 0 = 010,

B = 111 – 1 > 0 = 000

S0 = a0b0 => 0 × 0 = 1 (CS = 0)

C1S1 = a0b1 + a1b0 => 0 × 0 + 1 × 0 = 01 (CS = 1)

C2S2 = 0 + a1b1 + a0b2 + a2b0 => 1 + 1 × 0 + 0 × 0 + 0 × 0 = 01 (CS = 1)

C3S3 = 0 + a1b2 + a2b1 => 1 + 1 × 0 + 0 × 0 = 01 (CS = 1)

C4S4 = C3 + a2b2 => 0 + 0 × 0 = 0 (CS = 0)

Total computational cost = 0+1+1+1+0 = 3

Based on the computations performed above, the bit-

inversed Vedic multiplier has a computational cost of 3, while

the conventional Vedic multiplier has a computational cost of

9. This proves that the proposed Vedic multiplier can

significantly reduce the power consumption and delay in the

FFT architecture without compromising the resource

utilization as stated in reference [14].

MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 134-140

138

4. RESULTS

In this section, the experimental results and discussion of

the proposed BI-Vedic multiplier based FFT architecture and

a detailed performance analysis are described. The

performance analysis is performed for both FPGA and ASIC.

The simulation is performed in ModelSim. The proposed

method is synthesized using CADENCE Genus solution and

compiled in CADENCE INNOVUS for RTL to GDSII

conversion based on 90 nm technology [15]. Fig. 4 shows the

simulation output waveform of the BI scheme using

ModelSim.

Fig. 4. Simulation waveform – BI scheme.

5. PERFORMANCE EVALUATION OF FFT

This section discusses the performance analysis of the BI

multiplier FFT (BIM-FFT) architecture technique. The

performances are analyzed in four different Xilinx FPGA

families, namely Spartan-6, Virtex-4, Virtex-5, Virtex-6, and

Zynq. The analysis focuses on various aspects such as the

number of slices, flip-flops, look-up tables (LUTs), operating

frequency, and I/O delay in the FFT architecture.

The hardware utilization in Spartan-6, Virtex-4, Virtex-5,

and Zynq FPGA devices is analyzed in Table 3. In addition,

the communication performance of four Xilinx devices is

shown in Table 4. The number of registers, LUTs, and slices

was measured using Xilinx ISE. It was found that the number

of slices used in the Virtex-6 and dyn devices is lower

compared to the other FPGA families. Similarly, LUTs used

by the Virtex-6 and Zynq devices are also lower compared to

other FPGA families. However, the Spartan-6 FPGA

operated at a higher frequency and had a higher throughput

than any other FPGA family. In addition, the delay in the

Spartan-6 FPGA was lower compared to Virtex-4, Virtex-5,

and Virtex-6 FPGA devices [16].

Table 3. Performance analysis of the proposed BIM-FFT.

Family Registers LUT's Slices

Spartan-6 - xc6slx9 1179/11440 1126/5720 475/1430

Virtex-4 - xc4vsx55 1246/49152 1618/49152 1187/24576

Virtex-5 - xc5vsx50t 1239/32640 1548/32640 710/8160

Virtex-6 - xc6vlx75t 106/93129 266/46560 95/11640

Zynq - xc7z010 106/35200 265/17,600 85/4400

Table 4. Performance analysis of the proposed DPR-FFT

architecture with frequency and delay.

Family Frequency

[MHz]

Delay

[ns]

Power

[mW]

Spartan-6 - xc6slx9 335.768 2.97 64.15

Virtex-4 - xc4vsx55 190.81 5.241 76.49

Virtex-5 - xc5vsx50t 188.79 5.297 75.38

Virtex-6 - xc6vlx75t 246.77 4.052 79.01

Zynq - xc7z010 261.55 3.823 64.23

Fig. 5 shows a performance comparison graph of an FPGA
for the BIM-FFT architecture. The FPGA performance is
more efficient with the Virtex-6 and Zynq FPGAs. As can be
seen in Fig. 7, the Zynq FPGA and Virtex-6 FPGA families
consume a lower number of registers, LUTs, and slices
compared to other FPGA families for the DPR-FFT
architecture. In addition, the frequency is lower for Zynq and
Virtex-6 FPGAs. Virtex-4 and Virtex-5 FPGAs consume
more LUT resources compared to other families.

Fig. 5. Performance analysis of BIM-FFT for different FPGA
families.

From the data presented in Fig. 6, it is evident that the
BIM-FFT architecture is capable of operating at high speeds
in Spartan-6 FPGA. The delay time of this architecture is
2.97 ns, which is lower than that of the Zynq and Virtex
FPGA families. However, it should be noted that the delay
time in Zynq and Virtex-6 FPGAs for R2RMDC FFT is even
lower.

Fig. 6. Delay-FFT – Delay analysis for different FPGA family.

The functional efficiency of the proposed BIM-FFT
architecture is compared with the dynamically reconfigurable
FFT processors presented by Sivakumar et al. (2018). The
existing FFT architectures are executed to verify the
parameter measurement.

MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 134-140

139

Table 5. Performance comparison for FFT.

Device Methodology LUTs Flip-flops Slices Frequency [MHz] Delay [ns] Power [mW]

ASAP 7 nm
R2MDC 12686 7416 4005 105.234 2.835 128

Proposed 9548 7239 3634 188.790 1.914 75.38

When implementing FPGAs, parameters such as LUTs,

flip-flops, slices, frequency, and throughput are critical to the
performance of a system. This phase is crucial for the
selection of the appropriate device. The proposed FPGA
provides a configurable structure through customizable
modules, connected by programmable control elements and
enclosed by an input and output block (IOB). Table 5 shows
the results of the existing DPR and R2RMDC-OMS FFT
architectures. The proposed FFT design was synthesized and
compared with theVirtex-5 FPGA. Table 5 shows that the
DPR-FFT is compared with an R2MDC FFT proposed by
Sivakumar et al. (2018), in which the number of slice LUTs
(area) is minimized to 9548 and the delay is reduced from
2.835 ns to 1.914 ns. The proposed BIM-FFT utilizes an 8:1
ratio of logical resources with a 38 % reduction in delay and
operates at 58 % higher speed [17].

Fig. 7. Physical design of parallel and pipelined CTS-BIS FFT.

Fig. 7 shows the ASIC implementation for the Vedic FFT
architecture. The parallel and pipelined FFT with a 7-BI
scheme was implemented in CMOS 90 nm technology.
The Cadence Genus synthesis solution was used to
generate reports on power, area, and timing. The proposed
BI-Vedic FFT operates with an input size of 32 bits at an
operating frequency of 50 MHz. It occupies an area of
4.91 mm2 and consumes 54 mW at an operating voltage of
1.8 V.

6. FUTURE WORK

Even though the current implementation of the BI-
Vedic Multiplier shows remarkable gains in power and
delay, there are a number of improvements that could be
explored.
Pipelining and Parallelization:

In high-speed systems, adding pipelined stages to the
multiplier can help further reduce the latency in the critical
path and increase throughput.
Hybrid Designs:

For certain workloads, performance can be improved by
combining the bit-inverted approach with additional

optimization strategies such as Booth encoding or carry
save adders.
Dynamic BI Logic:

Using data-dependent inversion logic instead of static BI
could adaptively reduce switching activity depending on
the operand pattern.
FPGA/ASIC Custom Optimization:

By using vendor-specific tools and logic usage, the
design can be tailored to specific hardware platforms (such
as Xilinx, Intel, or low-power ASICs) to unlock additional
area and power gains. The advantages of the proposed
multiplier—low power, speed, and area efficiency—make
it a compelling contender for use in a number of areas
outside of FFT processing.
Real-Time DSP Systems:

Software-defined radios can benefit from fast and
energy-efficient multiplication of
modulation/demodulation blocks, convolutional neural
networks (CNNs), and FIR/IIR filters.
IoT and Edge AI Devices:

Without sacrificing functionality, the proposed design
could extend the battery life of devices with limited power
consumption, such as wearable technology or smart
sensors.
Image and Video Processing Pipelines:

The architecture is suitable for hardware accelerators in
multimedia applications, as tasks such as scaling, filtering,
and color space conversion require frequent
multiplications.
Higher Bit-Width Implementations:

The scalability of the multiplier for more complex
applications, such as FFT cores in radar or biomedical
signal processing, would be confirmed by testing and
evaluating 32-bit and 64-bit versions.
Multi-Operand Multiplication:

The architecture could be applicable to AI/ML hardware
if extended for multiplication with multiple operands (e.g.,
for fused multiply-accumulate units).

7. CONCLUSION

A novel architecture for BIM-FFT with maximum
throughput and minimum latency has been proposed and
implemented in Xilinx Virtex-7 FPGA. The performance
of the proposed FFT architecture was analyzed in terms of
throughput, speed, and resource utilization. The power
consumed by the BI-Vedic multiplier has been reduced,
which contributes to an overall reduction in the power
consumption of the complex FFT architecture. An
innovative encoding technique, called data inversion
scheme, was presented to minimize the switching activity
of the system-level data inputs. The FFT processor
presented in this research utilizes only 8 % and 9 % of the
available LUTs and has a 56 % lower delay compared to
previous research, making it suitable for IoT 4G and 5G
applications.

MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 134-140

140

REFERENCES

[1] Adámek, K., Novotný, J., Thiyagalingam, J., Armour,

W. (2021). Efficiency near the edge: Increasing the

energy efficiency of FFTs on GPUs for real-time edge

computing. IEEE Access, 9, 18167-18182.

https://ieeexplore.ieee.org/document/9330509

[2] Andersson, R., Garrido, M. (2020). Using rotator

transformations to simplify FFT hardware

architectures. IEEE Transactions on Circuits and

Systems I: Regular Papers, 67 (12), 4784-4793.

https://doi.org/10.1109/TCSI.2020.3006253

[3] Dai, J., Yin, H. (2020). Design and realization of non-

radix-2 FFT prime factor processor for 5G broadcasting

in release 16. In 2020 13th International Symposium on

Computational Intelligence and Design (ISCID). IEEE,

406-409.

https://doi.org/10.1109/ISCID51228.2020.00098

[4] Garrido, M., Malagón, P. (2021). The constant

multiplier FFT. IEEE Transactions on Circuits and

Systems I: Regular Papers, 68 (1), 322-335.

https://doi.org/10.1109/TCSI.2020.3031688

[5] Hsu, S.-C., Huang, S.-J., Chen, S.-G., Lin, S.-C.,

Garrido, M. (2020). A 128-point multi-path SC FFT

architecture. In 2020 IEEE International Symposium on

Circuits and Systems (ISCAS). IEEE.

https://doi.org/10.1109/ISCAS45731.2020.9180883

[6] Garrido, M., Huang, S.-J., Chen, S.-G., Gustafsson, O.

(2016). The serial commutator FFT. IEEE Transactions

on Circuits and Systems II: Express Briefs, 63 (10),

974-978.

https://doi.org/10.1109/TCSII.2016.2538119

[7] Juliano, J., Lin, J., Erdogan, A. George, K. (2020).

Radar pulse on pulse identification parallel FFT and

power envelope algorithm. In 2020 11th IEEE Annual

Ubiquitous Computing, Electronics & Mobile

Communication Conference (UEMCON). IEEE, 0609-

0613.

https://doi.org/10.1109/UEMCON51285.2020.929813

2

[8] Priya, A. L., Deepthi, V. M. (2022). Design and

implementation of area efficient pipelined FFT

processor. Turkish Journal of Computer and

Mathematics Education (TURCOMAT), 12 (11), 7245-

7251. https://doi.org/10.17762/turcomat.v12i11.11940

[9] Kanders, H., Mellqvist, T., Garrido, M., Palmkvist, K.,

Gustafsson, O. (2019). A 1 million-point FFT on a

single FPGA. IEEE Transactions on Circuits and

Systems I: Regular Papers, 66 (10), 3863-3873.

https://doi.org/10.1109/TCSI.2019.2918403

[10] Kang, H., Lee, J., Kim, D. (2021). HI-FFT:

Heterogeneous parallel in-place algorithm for large-

scale 2D-FFT. IEEE Access, 9, 120261-120273.

https://doi.org/10.1109/ACCESS.2021.3108404

[11] Lin, C.-H., Liu, J.-C., Yang, P.-K. (2020). Performance

enhancement of GPU parallel computing using memory

allocation optimization. In 2020 14th International

Conference on Ubiquitous Information Management

and Communication (IMCOM). IEEE.

https://doi.org/10.1109/IMCOM48794.2020.9001771

[12] Madanayake, A., Cintra, R. J., Akram, N., Ariyarathna,

V., Mandal, S., Coutinho, V. A., Bayer, F. M., Coelho,

D., Rappaport, T. S. (2020). Fast radix-32 approximate

DFTs for 1024-beam digital RF beamforming. IEEE

Access, 8, 96613-96627.

https://doi.org/10.1109/ACCESS.2020.2994550

[13] Garrido, M. (2019). Multiplexer and memory-efficient

circuits for parallel bit reversal. IEEE Transactions on

Circuits and Systems II: Express Briefs, 66 (4), 657-

661.

https://doi.org/10.1109/TCSII.2018.2880921

[14] Tsai, W.-L., Chen, S.-G., Huang, S.-J. (2019).

Reconfigurable radix-2k×3 feedforward FFT

architectures. In 2019 IEEE International Symposium

on Circuits and Systems (ISCAS). IEEE.

https://doi.org/10.1109/ISCAS.2019.8702346

[15] Wang, J., Li, X., Fan, G., Tuo, Z. (2019). A parallel

radix-2k FFT processor using single-port merged-bank

memory. In 2019 IEEE International Symposium on

Circuits and Systems (ISCAS). IEEE.

https://doi.org/10.1109/ISCAS.2019.8702088

[16] Tsai P.-Y., Lin, C.-Y. (2011). A generalized conflict-

free memory addressing scheme for continuous-flow

parallel-processing FFT processors with rescheduling.

IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 19 (12), 2290-2302.

https://doi.org/10.1109/TVLSI.2010.2077314

[17] Luo, H.-F., Liu, Y.-J., Shieh, M.-D. (2015). Efficient

memory-addressing algorithms for FFT processor

design. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 23 (10), 2162-2172.

https://doi.org/10.1109/TVLSI.2014.2361209

Received March 18, 2024

Accepted May 7, 2025

https://ieeexplore.ieee.org/document/9330509
https://doi.org/10.1109/TCSI.2020.3006253
https://doi.org/10.1109/ISCID51228.2020.00098
https://doi.org/10.1109/TCSI.2020.3031688
https://doi.org/10.1109/ISCAS45731.2020.9180883
https://doi.org/10.1109/TCSII.2016.2538119
https://doi.org/10.1109/UEMCON51285.2020.9298132
https://doi.org/10.1109/UEMCON51285.2020.9298132
https://doi.org/10.17762/turcomat.v12i11.11940
https://doi.org/10.1109/TCSI.2019.2918403
https://doi.org/10.1109/ACCESS.2021.3108404
https://doi.org/10.1109/IMCOM48794.2020.9001771
https://doi.org/10.1109/ACCESS.2020.2994550
https://doi.org/10.1109/TCSII.2018.2880921
https://doi.org/10.1109/ISCAS.2019.8702346
https://doi.org/10.1109/ISCAS.2019.8702088
https://doi.org/10.1109/TVLSI.2010.2077314
https://doi.org/10.1109/TVLSI.2014.2361209

