
MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 5, 158-173 

DOI: 10.2478/msr-2024-0022  *Corresponding author: sebahattin.babur3@ogr.sakarya.edu.tr, (Sebahattin Babur) 
  

158 

 

 

 

Estimation of Blood Calcium and Potassium Values from ECG 

Records 

Sebahattin Babur1*, Sanam Moghaddamnia2, Mehmet Recep Bozkurt1
 

1 Sakarya University, Electrical and Electronics Engineering, 54050, Sakarya, Turkey, 

sebahattin.babur3@ogr.sakarya.edu.tr, mbozkurt@sakarya.edu.tr 
2 Turkish-German University, Electrical and Electronics Engineering, 34820, İstanbul, Turkey, moghaddamnia@tau.edu.tr 

Abstract: The identification of diseases caused by changes in ion concentration is quite difficult and yet plays a decisive role in the success 

of clinical care, diagnosis and treatment. The clinically proven approach to diagnosing electrolyte concentration imbalance is blood tests. 

There is a need to provide a non-invasive diagnostic method that is not of a temporary nature. Bio-signals such as the electrocardiogram 

(ECG) can be used to meet this demand and become diagnostic tools that facilitate home monitoring of electrolyte concentration on a 

permanent basis. This study investigates the feasibility and efficiency of methods based on machine learning (ML) and ECG recordings in 

monitoring critical levels of existing potassium and calcium concentration. Morphological, frequency and frequency-time domain features 

were extracted to automatically estimate calcium and potassium levels. Furthermore, the potential of estimates based on modeling approaches 

will be demonstrated to gain insights into relevant clinical findings and improve the performance of monitoring approaches. Using the hold-

out validation method, the best results in terms of mean square error (MSE) and R for estimating the calcium value are 0.7157 and 0.57347, 

using fuzzy inference systems (FIS). Here, R represents the proportion of the variance in the calcium value that is explained by the model. 
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1. INTRODUCTION 

This research addresses the challenge of diagnosing 

diseases associated with ion concentration changes by 

proposing a non-invasive diagnostic method that goes beyond 

temporary measures. Unlike traditional blood tests, which are 

clinically accepted but invasive, this study explores the use of 

electrocardiogram (ECG) or bio-signal for continuous home 

monitoring of electrolyte concentration. Chronic kidney 

disease (CKD) is one of the most common diseases, affecting 

about 13.1 % of the population in the United States and about 

18.38 % in Europe [1], [2]. As a result of kidney failure, there 

are changes in the blood serum electrolyte concentrations of 

patients. Calcium, potassium and sodium are among the 

electrolytes that affect the electrophysiology of the heart. 

Patients with CKD therefore have a high risk of 

cardiovascular disease [3]. Hyperkalemia and hypokalemia in 

potassium are common causes of sudden cardiac deaths in 

clinical trials. To prevent such fatal outcomes, potassium 

(K+) disorders must be promptly detected and treated [4], [5]. 

Currently, dyskalemia is diagnosed by laboratory tests. 

Bedside blood tests provide a temporary analysis of 

electrolyte levels. However, the accuracy and precision of 

these tests may not be as reliable as that of a central clinical 

laboratory. Bedside point-of-care tests performed by nurses 

in emergency departments showed a high correlation with 

central laboratory results for several analytes, with only 3 out 

of 400 measurements exceeding clinically acceptable 

deviations [6]. The main reason for this discrepancy is that 

the estimated plasma K+ concentration falls short of the 

actual value, making it difficult to differentiate from 

hemolysis pseudohyperkalemia [7], [8]. Electrocardiography 

(ECG) is an essential test for cardiac and non-cardiac 

emergency patients, whose condition may show typical 

changes that occur in dyskalemia, as heart tissue is highly 

susceptible to this condition. Major ECG changes associated 

with hypokalemia include decreased T-wave amplitude, ST-

segment changes, T-wave reversal, prolonged PR interval, 

and prolonged QT interval (QTc) [9]. Typical ECG findings 

for hyperkalemia range from long crested T waves and a 

shortened QT interval to a prolonged PT interval and the 

disappearance of the P wave. Followed by a widening of the 

QRS complex, and finally a sinus wave morphology [9], [10]. 

Although these morphological changes are well known in 

dyskalemia, even experienced clinicians often struggle to 

recognize all these signs [11].  
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The main contribution of this study is the proposal of a 

reliable regression approach for detecting anomalies in 

calcium and potassium levels using feature extraction in the 

time- and frequency-domain and machine learning (ML). The 

study focuses on supervised ML and considers the analysis of 

temporal morphological features and frequency variations 

based on ECG recordings used as input. Many studies have 

shown the potential of morphological features for potassium 

and calcium detection. However, there is no study on the 

relationship between ion concentrations and features in the 

time and frequency domain.  

The choice of multilayer feed-forward artificial neural 

networks (ANNs) and fuzzy inference systems (FIS) is based 

on their different and complementary advantages. ANNs 

have the potential to capture complicated and non-linear 

correlations, which makes them highly flexible and powerful. 

On the other hand, FIS excel in providing interpretability and 

effective handling of uncertainty. Other methods, while 

potentially useful, generally lack the necessary adaptability, 

interpretability or ability to simulate non-linear interactions 

as successfully as the selected methods. Thus, ANNs and FIS 

offer a well-balanced method that combines accurate 

predictions with the ability to analyze results and incorporate 

expert knowledge. 

The rest of this article is organized as follows: Section 2 

provides an overview of the current state of research in this 

area. Section 3 provides relevant information about the 

database used. Section 4 provides a brief introduction to the 

analysis of morphological, frequency and time-frequency 

domain-based ion concentrations, followed by a detailed 

description of the applied ML methods. In Section 5, the 

evaluation results of the proposed system are presented and 

discussed. Finally, we conclude the article by highlighting the 

main contributions and providing future research directions. 

2. BACKGROUND & RELATED WORK 

Potassium is the most important intracellular electrolyte. In 

the organism, it is largely an intracellular cation that 

influences blood levels and neuromuscular activity in 

general. Many signs and symptoms of excess potassium 

(hyperkalemia) occur in the cardiovascular, central nervous 

and muscular systems. The potassium balance is regulated in 

the kidneys. Therefore, the urine contains most of the 

potassium lost from the organism [12], [13]. 

In patients with end-stage renal failure, a series of hydro-

electrolytic changes occur due to the lack of internal 

environment regulation, which is a fundamental function of 

the kidneys. Of these changes, hyperkalemia often affects 

neuromuscular symptoms, electrocardiographic changes and 

cardiac arrhythmias [14], [15]. As hyperkalemia worsens, 

potentially fatal electrocardiographic changes occur, 

manifested by high T waves, a prolonged P-R interval, 

bradycardia, ventricular arrhythmias, and flattening or 

absence of the P wave [16]. 

Determination of the serum level of this electrolyte in the 

laboratory may take some time. Electrocardiographic 

monitoring [9] and simultaneous documentation of the 

patient’s symptoms can be very helpful when results are 

published. An ECG can be a very useful diagnostic tool if a 

specialist is aware of the changes that can occur in abnormal 

situations [14]. 

In addition, this diagnostic tool can help to quickly 

determine whether renal functions in hemodialysis patients 

are due to various causes such as weakness, muscle weakness 

and fatigue [17], [18]. Similarly, several articles [9], [17]-[19] 

concluded that patients with CKD tolerate hypercalcemia 

better in their final stages and have fewer arrhythmias and 

neuromuscular manifestations than people with normal 

kidney function. 

Corsi et al. found that potassium concentration in the blood 

has an influence on the ECG and in particular on the T wave. 

69 samples (3 separate measurements from 23 hemodialysis 

patients) comprise the developed ECG-based potassium 

estimator. The authors developed an estimation scheme based 

on the ratio between the decreasing slope of the T-wave in the 

ECG signal and the amplitude value of the T-wave and tested 

it on 12 samples. According to the test results, the absolute 

error and standard deviation amount to 0.43 ± 0.28 mM, 

respectively. This study has shown that the proposed method 

is effective for monitoring patients at risk of hyper- and 

hypokalemia [20].  

Corsi, DeBie et al. analyzed 12-lead ECGs from 45 

hemodialysis patients and 12 patients with Long QT 

Syndrome (LQT) for the non-invasive measurement of blood 

potassium concentration from ECGs of hemodialysis 

patients. They determined the amplitude and the decreasing 

slope of the T-wave as relevant attributes. The quality of the 

presented estimation was evaluated by cross-validation. It 

was shown that there is a relationship between the K-ECG 

(potassium ECG) and the references [K+] from blood 

samples. According to the results of the test dataset, the 

absolute error and standard deviation are −0.09 ± 0.59 mM 

and 0.46 ± 0.39 mM, respectively. The method proposed in 

the study has been shown to be effective in monitoring 

patients at risk of hyper- and hypokalemia [21].  

Mesa, Pilia et al. investigated the efficiency of derivative 

reduction methods in estimating serum calcium and 

potassium concentration levels. The estimator was developed 

using the standard derivative of ECG signals. The electrical 

signals converted from the heart were obtained as a result of 

lead V2 reduction of the concentrations in the blood by lead 

reduction methods. They calculated five features describing 

the electrolyte changes from the signals by using principal 

component analysis (PCA) and maximum amplitude 

conversion. They used a first- and third-order polynomial 

equation combining the calculated features and concentration 

values to reconstruct the ion concentrations. In addition, 

30 dB of white Gaussian noise was added to the ECGs to 

simulate clinically measured signals. 
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The analysis results showed that the estimate of potassium 

and calcium obtained by first-order polynomial regression 

was 0.0003 ± 0.0767 mmol/l (mean ± standard deviation) and 

-0.0036 ± 0.1710 mmol/l, respectively. For the noisy signal 

scenario, the obtained results are -0.003 ± 0.2040 and -

0.0002 ± 0.2040 mmol/l for potassium and calcium, 

respectively [22]. 

Sánchez et al. found that potassium-related 

electrocardiographic changes were assessed in patients with 

end-stage CKD and compared with previous studies. The 

study measured the pre- and post-dialysis serum potassium 

and other electrolyte concentrations of hemodialysis patients, 

and obtained simultaneous 12-lead ECG signals in the first 

session. All ECGs of the patients were analyzed by a 

specialist physician, and 39 patients with a mean age of 67.35 

(24-89) were included in the study, of whom 58.9 % were 

female and 41.1 % were male. The range of serum potassium 

before hemodialysis was between 2.8 and 7.4 mEq/l (mean 

5.07 mEq/l). Thus, 29.4 % of patients had serum potassium 

levels of 5.5 mEq/l, with the peak value of T waves in leads 

V2 showing the most frequent change. In addition, the mean 

height of the T-wave in hyperkalemia in leads V4 was 7 mm. 

The results show that ECG can be a useful tool for early 

prediction and diagnosis of hyperkalemia [23].  

Mesa, Pilia et al. studied the effects of electrolyte 

fluctuation on cardiac signals (action potential and ECG) 

using an estimation model to investigate the link between 

CKD and cardiovascular disease. The first step was to look at 

the ventricular cell model at the cellular level, taking into 

account different levels of sodium (Na+), calcium (Ca2+) and 

potassium (K+) outside the cells, which are similar to those 

seen in people with CKD. They calculated a 12-lead ECG 

using the simulations proposed in the article. The results at 

the cellular and ventricular levels are consistent with the 

literature. In addition, new features to represent electrolyte 

changes were proposed in [23], which may be useful for 

further studies to estimate ion concentrations based on ECG 

recordings [24]. 

Pilia and Dössel proposed a method for reconstructing the 

calcium and potassium ion concentration from the ECG. In a 

first step, 91 monodomain simulations were performed with 

ten Tusscher ventricular cell models for different 

extracellular ion concentrations. This study resulted in a 

standard 12-lead ECG. ECGs with changes in calcium and 

potassium levels, amplitude and morphological differences 

were obtained. In the second step, simulated ECG signals 

were used to reconstruct ion concentrations directly from the 

ECG recordings. They used the features extracted from the 

signals to determine the changes caused by different ion 

concentrations. An artificial neural network (NN) solves the 

inverse problem, which involves recovering the ECG 

properties from the ion concentrations. Potassium estimation 

results were calculated using seven-fold cross-validation and 

an error value of 0.00 ± 0.28 mmol/l (mean ± standard 

deviation) was obtained. The estimation error for calcium was 

0.00 ± 0.08 mmol/l [25].  

Using supervised ML, Dillon et al. presented 12 

repolarization-related features selected for ion concentration 

detection. Moreover, in this study, normal and abnormal 

situations and the values of ion concentration are determined 

by supervised ML algorithms based on the features derived 

from the frequency changes of ECG signals. In our study, we 

try to increase the success by combining morphological 

features with frequency and time-frequency domain-based 

techniques and supervised ML algorithms [26].  

3. DATABASE 

Beth Israel Deaconess Medical Center in Boston, 

Massachusetts, registered the MIMIC III database between 

2001 and 2012. We used the latest version (v1.4) for this 

study. The MIMIC III database contains 58,976 referrals of 

46,520 patients. The criteria shown in Fig. 1 and Fig. 2 were 

applied to filter out patients who had a sufficient minimum 

amount of data for analysis. Table 1 shows the characteristics 

of the final data set. 

Table 1.  Classification of feature groups. 

Feature     Number  

Time domain  24 

Morphological features 12 

ICD codes 1 

Demographics (age)  1 

Frequency domain  3 

Time-frequency domain 20 

Total 61 

 

A subset of waveform records contains sufficient 

information to reliably identify the patient records, and these 

records match the time period represented by the MIMIC III 

Clinical Database [27]. We use all available information, 

either through manual corrections or mainly through 

automated matching processes. We can match a total of 

22,317 waveform records (34 %) in the database to a 

corresponding patient in the clinic. 

 

Fig. 1.  Exploring ion concentrations in patient data in the MIMIC 

III database. 

All data associated with a particular patient is stored in a 

single subdirectory named after the patient’s MIMIC III ID. 

Ten intermediate levels (match/p00 to match/p09) further 

subdivide these subdirectories. 
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Fig. 2.  MIMIC III Admissions data processing flow. 

The name of each matched waveform record has the format 

Matched /pXX /pXXNNNN /pXXNNNN-YYYY-MM-DD-

hh-mm; where XXNNNN is the matched MIMIC III Clinical 

Database SubjectID and YYYY, MM, DD, hh, and mm, year, 

month (01-12), day (01-31), actual hour (00-23), and minutes 

(00-59), which are derived from the start date and time. These 

data match the corresponding data records in the MIMIC III 

Clinical Database. 

This flowchart, shown in Fig. 3, outlines the basic steps in 

developing a predictive model for determining blood calcium 

and potassium levels. The flowchart consists of five main 

steps: 

 

Fig. 3.  Processing approach block diagram. 

• ‘Dataset Design’ refers to the process of carefully 

selecting and structuring the data to be used to train the 

model. In this step, we select the data collection methods 

and decide which data to use. 

• ‘Signal Pre-processing’ involves the preparation of the 

raw ECG signals to prepare them for use in the model. 

This process may include the implementation of noise 

reduction, signal filtering and signal normalization 

techniques. 

• ‘Feature Extraction’: The process of extracting relevant 

features from processed signals to train the prediction 

model is called ‘Feature Extraction’. These features 

represent unique data derived from the signals. 

• ‘Regression Methods’: Using a range of statistical and 

ML methods with the extracted features to predict 

calcium and potassium levels. In this step, experiments 

are performed with several regression models and then 

the one with the best performance is selected. 

• ‘Blood Calcium and Potassium Estimation’ refers to the 

evaluation of whether the model accurately predicts the 

amounts of calcium and potassium in the blood samples, 

which is the final outcome of the process. This step is 

crucial as it determines the accuracy and reliability of the 

model. 

The arrows in the flowchart illustrate the transition from 

one process to another and highlight the interdependence of 

each phase, paving the way for the subsequent phase. This 

illustrated that the effectiveness of the predictive model 

depends on the excellence and thoroughness of the tasks 

performed in each step. The modeling process requires a 

methodical and comprehensive strategy to extract meaningful 

information from complicated biological signals. 

4. METHODS 

In this section, we will thoroughly examine the core 

components of the predictive model and the methods used. 

First, we discuss the signal pre-processing and feature 

extraction processes, followed by an explanation of how ML 

and FIS are integrated to improve prediction accuracy. Each 

of these steps is crucial in influencing the model's 

performance, and in the following subsections we will focus 

on a detailed analysis of these processes. 

A. Binary feature labeling from MIMIC III 

The MIMIC III dataset assigns International Classification 

of Diseases (ICD) codes to patient records. In particular, 

Table 2 lists the relevant ICD codes for renal disease. This 

approach allows researchers to effectively identify and 

analyze patients with kidney-related conditions. 

Table 2.  ICD codes for kidney diseases’ stages. 

ICD code Description 

5851 CKD, Stage I 

5852 CKD, Stage II 

5853 CKD, Stage III 

5854 CKD, Stage IV 

5855 CKD, Stage V 

5859 CKD, Unspecified 

 

Age is another feature that we had to group. The MIMIC 

III dataset posed a challenge for age analysis, as the age value 

for patients over 89 years falls in the range of 300. To address 

this issue, we classified age into 20-year bins, as shown in 

Table 3. This allowed us to treat patients whose age was 

reported as 300 without having to exclude them from our 

analysis. 
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Table 3.  Categorizing age group. 

Group age range Description 

< 20 1 

21 - 40 2 

41 - 60 3 

> 61 4 

B. Signal pre-processing 

ECG recordings are often affected by various types of 

artifacts and noise, including baseline wander, muscle 

artifacts, electrical interference and motion artifacts, which 

limit the usability of the ECG signals and have to be removed. 

In the first step of pre-processing, baseline shift/wander 

correction is performed. A band-pass filter (5 Hz-100 Hz) is 

then used for denoising. In the last step, we perform a 

predictive isolation correction to obtain clean ECG signals.  

The ECG is a standard, cost-effective, and non-invasive 

tool for the early detection of various heart diseases. It can 

provide important information about underlying cardiac 

function by depicting the strength, timing and morphology of 

electrical signals propagating through the heart.  

The extracted features require the identification of the peak 

of each ECG waveform (P-wave, QRS complex, T-wave) as 

well as their open and offset-determining reference points. 

For this purpose, the filter bank method is used, which 

essentially utilizes the continuous wavelet transform. The 

flow diagram of the applied algorithm is shown in Fig. 4. 

 

Fig. 4.  Pre-signal processing P, QRS, T detection proposed 

algorithm [28]. 

Fig. 5 illustrates the different stages of pre-processing raw 

ECG signals to prepare them for further analysis. The pre-

processing stages are crucial to ensure that the data used for 

modeling is clean and reliable. 

 

Fig. 5.  Signal pre-processing stages a) Raw ECG signal b) Baseline 

removed c) High and low pass filtering d) Clean signal. 

Fig. 6 shows the results of applying the FilterBank method 

to the ECG signal and highlights the detected P, QRS and T 

points. The accurate detection of these points is crucial for 

analyzing the electrical activity of the heart and for extracting 

features used for the predictive model.  

 

Fig. 6.  Detection of P-QRS-T points with the FilterBank method. 

C. Feature extraction 

In general, feature extraction is the first step in most signal 

processing applications. In general, we perform feature 

extraction in the time, frequency and time-frequency 

domains. Morphological feature extraction requires splitting 

the biomedical signal into short frames to obtain local 

information. We then extract a feature vector for each frame. 

Features in the frequency domain are also extracted. Both 

time and frequency domain features have been successfully 

used for classification purposes in previous studies [29]-[30].  

1) Time domain and morphological features 

We extracted 12 ECG features for in-depth analysis based 

on initial data and physiological significance. These features 

include the amplitude of P-, R- and T-waves, PR and QT 

intervals, PR and ST segments, QRS complex, R-T duration, 

right slope (T right slope), left slope (T left slope) and the 

ratio of the T-wave amplitude to the T right slope. We have 
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developed automatic algorithms to extract these 12 features. 

Fig. 7 illustrates the extraction process and representation of 

these features. 

 

Fig. 7.  ECG morphological features evaluated to determine 

concentrations changes [26]. 

Basic metrics such as mean, standard deviation and root 

mean square (RMS) are examples of statistical features. This 

feature set also includes statistics for skewness, form factor 

and higher-order kurtosis. These statistical measurements can 

detect deviations from typical signal behavior and are 

sensitive to changes in the signal patterns, especially when 

failing fault signs are present. 

➢ Shape factor 

RMS divided by the mean of the absolute value yields this 

value. The signal's shape affects the shape factor (SF), which 

is unaffected by the signal's dimensions. 

 𝑥𝑆𝐹 =  
𝑥𝑟𝑚𝑠

1

𝑁
 ∑ |𝑥𝑖|𝑁

𝑖=1    (1) 

The higher-order statistics provide valuable insight into the 

behavior of a system by examining the kurtosis (fourth 

moment) and skewness (third moment) of the signal. 

➢ Kurtosis 

Kurtosis refers to the extent of the tails of a signal 

distribution and indicates the susceptibility of the signal to 

outliers. The occurrence of anomalies during development 

can lead to a higher number of outliers, resulting in an 

increased value of the kurtosis metric. 

 𝑥𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =  
1

𝑁
 ∑ (𝑥𝑖−𝑥̅)4𝑁

𝑖=1

[
1

𝑁
 ∑ (𝑥𝑖−𝑥̅)2𝑁

𝑖=1 ]
2

  
 (2) 

➢ Skewness 

The presence of asymmetry in the distribution of a signal. 

Changes can affect the evenness of the distribution and thus 

increase the degree of asymmetry. 

 𝑥𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =  
1

𝑁
 ∑ (𝑥𝑖−𝑥̅)3𝑁

𝑖=1

[
1

𝑁
 ∑ (𝑥𝑖−𝑥̅)2𝑁

𝑖=1 ]
3

2⁄
  
 (3) 

Impulsive metrics refer to the features associated with the 

highest points of the signal. 

➢ Peak value 

Peak value is the highest absolute value of a signal. Used 

to calculate the remaining impulse metrics. 

 𝑥𝑃𝑒𝑎𝑘 =  max
𝑖

|𝑥𝑖| (4) 

➢ Impulse factor 

Impulse factor determines the ratio between the peak 

height and the average level of the signal. 

 𝑥𝐼𝑚𝑝𝑢𝑙𝑠𝑒 =  
𝑥𝑃𝑒𝑎𝑘

1

𝑁
 ∑ |𝑥𝑖|𝑁

𝑖=1      (5) 

➢ Crest factor 

We calculate the crest factor by dividing the peak value by 

the RMS value. Typically, changes in the signal's peakiness 

reveal problems before they manifest themselves in the 

signal's root mean square energy. The crest factor can serve 

as an initial indicator of problems in the early stages of their 

development. 

 
𝑥𝐶𝑟𝑒𝑠𝑡 =  

𝑥𝑃𝑒𝑎𝑘

√
1

𝑁
 ∑ 𝑥𝑖

2𝑁
𝑖=1     

 (6) 

➢ Clearance factor 

We calculate the clearance factor by dividing the peak 

value by the squared mean value of the square roots of the 

absolute amplitudes. 

 
𝑥𝐶𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒 =  

𝑥𝑃𝑒𝑎𝑘

(√
1

𝑁
 ∑ √|𝑥𝑖|𝑁

𝑖=1 )

2

    
 (7) 

➢ Signal quality metrics 

The signal processing metrics include functions for 

measuring distortions. System degradation can lead to an 

increase in noise level, a change in the harmonic ratio to the 

fundamental frequency or both simultaneously. 

• The signal-to-noise ratio (SNR) is defined as the ratio of 

the power of the signal to the power of the noise. 

• The signal-to-modulation-to-noise ratio (SMNR) is a 

measure that quantifies the degree of random variation 

compared to the pure periodicity [37]. It can be 

calculated using the following estimates: 

𝑆 = ∑ 𝑝𝑥(𝑘)
𝐾

𝑘=1
 (8) 

where 𝑝𝑥(𝑘) is the SMNR at the frequency component 

𝑘. 

• The total harmonic distortion (THD) is defined as the 

ratio of the power of all harmonic components to the 

power of the fundamental component. 
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• The signal to noise and distortion ratio (SINAD) is 

defined as the ratio of the total power of the signal to the 

combined power of noise and distortion. 

➢ Data distribution and autocorrelation features 

• The ‘Distribution features section’ contains conventional 

statistical characteristics that describe the overall 

distribution of the data. The features include the lowest 

value, the middle value, the highest value, quartile 

statistics and user-defined quantiles for a given value. 

• The ‘Autocorrelation features section’ contains features 

that represent the linear relationship between a variable 

and itself at two different time points. For stationary 

processes, only the time lag between two locations 

determines the autocorrelation between them. The 

autocorrelation function is a sequence that represents the 

autocorrelation values for each potential lag value. The 

sum of squares for a given value of n is the sum of 

squares of the first n autocorrelations. 

• The ‘Partial autocorrelation features section’ contains 

features that are comparable to the autocorrelation 

features. However, these features take into consideration 

the influence of mutual linear dependency on other 

variables in the sequence. The partial autocorrelation 

function (PACF) is a sequence that represents the partial 

autocorrelations for different lag values. The sum of 

squares for a given value of n is the sum of squares of the 

first n partial autocorrelations. 

2) Frequency domain features 

In this step, you must define the frequency range in which 

the spectral properties of the ECG signal are to be analyzed. 

Setting the lower and upper limits of this frequency range is 

crucial because it determines which parts of the signal's 

frequency spectrum are taken into account in the spectral 

analysis. By specifying these limits, you ensure that the 

analysis focuses on the relevant frequency components, 

which can improve the accuracy of feature extraction and 

subsequent modeling. This step is important to isolate 

specific frequency bands that are critical to recognizing and 

interpreting the underlying patterns in the ECG signal and 

ultimately contribute to the effective monitoring and 

prediction of electrolyte levels. 

➢ Spectral peaks 

By analyzing the amplitude of these peaks, one can create 

a feature. Calculate a feature by analyzing the frequency at 

which the peaks occur. 

➢ Peaks 

The quantity of peaks for which generated feature is 

created. Identify the most prominent peaks within the selected 

frequency range and arrange them in order of decreasing 

amplitude.  

➢ The minimum threshold for the peak value 

To exclude peaks with low amplitudes, limit the maximum 

size of the peaks to exclude those with low amplitudes.  

➢ Minimum frequency gap 

Specify the minimum difference in frequency. If the 

distance between two peaks is smaller than this specified 

value, the software disregards the smaller peak of the pair.  

➢ Peak excursion tolerance  

It refers to the minimum prominence required for a peak to 

be taken into account. The prominence of a peak quantifies 

its distinctiveness based on its inherent height and its position 

relative to neighboring summits. 

3) Time-frequency domain features 

Signals with non-stationary frequencies that shift over time 

are characterized by time-frequency features. These signals 

can originate from machinery that has deteriorated or 

experienced a hardware failure. 

Frequency domain feature extraction commonly involves 

the use of power spectral density (PSD), spectral entropy, 

often referred to as SE and the sum SMNR. You can calculate 

the PSD using: 

 𝑆(𝑘) =
1

𝑁
|∑ 𝑥(𝑛)𝑒−𝑗2𝜋𝑓𝑛𝑁−1

𝑛=0
|

2

=  
1

𝑁
|𝑋(𝑘)|2 (9) 

This is the Fourier transform of the sample sequence x(n), 

as cited in [31], [32]: 

The SE is a measure of signal irregularity, which can be 

obtained by applying the Shannon entropy approach to the 

normalized signal power distribution as below [33]-[36]: 

 𝐻 = − ∑ 𝑝(𝑘) log2 𝑝(𝑘)
𝑁

𝑚=1
 (10) 

where 𝐻 is the SE, 𝑁 is the total number of frequency points 

and 𝑝(𝑘) is the power distribution of the Fourier-transformed 

signal normalized to a power unit. 

➢ Spectrogram features 

Features derived from the examination of spectrograms. 

The following features are included: 

The spectral kurtosis (SK) metric measures the presence of 

transients in a signal by assigning low values to frequencies 

consisting predominantly of stationary Gaussian noise and 

high values to frequencies with transients. We specify the 

window size as "10". 

SE quantifies the fluctuations in the spectral power 

distribution of a signal over time. Significant fluctuations in 

value can indicate flaws.  

➢ Empirical mode decomposition features 

Characteristics derived from the empirical mode 

decomposition (EMD). The EMD of a signal quantifies the 

degree of randomness and unpredictability in the frequency 

content of the signal. An increase in the value may indicate 

the existence of a fault and the energy derived from the 

intrinsic mode function (IMF) signal generated by the EMD 

calculation. There are three IMFs. 



MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 5, 158-173 

165 

The Hilbert-Huang transform (HHT) is useful for time-

frequency analysis of non-stationary and non-linear data. The 

HHT is used to calculate the analytical signal [40]-[41]. 

The EMD method is an important part of the HHT and 

allows the decomposition of arbitrary data into a finite 

number of IMFs. Therefore, we can express signal 𝑋(𝑡) as 

follows: 

 𝑋(𝑡) = ∑ 𝑖𝑚𝑓𝑖(𝑡) + 𝑟𝑛(𝑡)
𝑛

𝑖=1
 (11) 

where  I = 1..., n is the number of IMFs. 

Wavelet entropy (WE) is a commonly used feature in 

various fields to quantify signal disorder. In the following 

expressions, the normalized power is denoted by the “p” 

value [38]-[39]. 

 𝑊𝐸 = − ∑ 𝑝(𝑘) log2 𝑝(𝑘)
𝑁

𝑚=1
 (12) 

This is the wavelet coefficient and the probability 

distribution of the wavelet energy. 

Finally, we include the demographic information of the 

patients from whom we take blood samples. We represent 

these numerically using ICD codes and specific age groups. 

The final feature vector consists of a total of 61 elements. 

D. Feature selection 

Feature selection is a crucial step in ML, which is about 

determining the most relevant features for creating a model. 

The F-test is a method commonly used for feature selection. 

It has been the focus of numerous research efforts aimed at 

improving its use in diverse fields. 

The optimization of F-measures in feature selection aims 

to reduce the imbalance between classes by assigning 

different costs to each class. This approach focuses on 

selecting features that accurately reflect all classes, not just 

the majority class. This improves the performance of models 

on imbalanced datasets [42]. 

In this study, 10 features that had the best F-value were 

selected. One of the most popular supervised feature selection 

methods is the Fisher score. However, it selects each feature 

separately based on how well it scores using the Fisher 

criterion, resulting in suboptimal selection of features. The 

ratio between the average intraclass separation and the 

average interclass separation is called the Fisher score. The 

feature's ability to discriminate increases with a higher Fisher 

score. It is calculated in this way: 

 𝐹 =  
∑ 𝑝𝑗(𝜇𝑗−𝜇)2𝑘

𝑗=1

∑ 𝑝𝑗
𝑘
𝑗=1 𝜎𝑗

2  (13) 

The following terms are defined:  

• 𝜇𝑗: The mean of the data points in a specific class for a 

particular feature.  

• 𝜎𝑗: The standard deviation of the data points in a specific 

class for a given feature.  

• 𝑝𝑗: The fraction of data points belonging to a specific 

class. 

• 𝜇: The global average of the data pertaining to the 

attribute. 

Use the above formula to determine which feature has a 

greater degree of discriminative power. 

Table 4 and Table 5 show the feature importance scores for 

calcium and potassium, ranked using the F-test algorithm. 

Each row represents a different feature related to ECG 

measurements, with the corresponding F-test scores 

indicating the importance or significance of each feature in 

the context of the analysis. 

Table 4.  Feature importance scores ranked using the F-test 

algorithm for calcium. 

ID Feature F-test 

1 ECG - Peak amplitude 1 5.7865 

2 ECG - EMD/energy – IMF2 4.5560 

3 ECG - Crest factor 3.6895 

4 ECG - Morphological/ QT interval 3.1012 

5 ECG - RMS  3.0393 

6 ECG - Standard deviation 2.7254 

7 ECG - Autocorrelation value ACF1 2.4775 

8 ECG - Partial autocorrelation value PACF1 2.4775 

9 ECG - Impulse factor 2.4223 

10 ECG - Minimum value 2.3894 

Table 5.  Feature importance scores ranked using the F-test 

algorithm for potassium. 

ID Feature F-test  

1 ECG - Spectrogram/peak value 5.3778 

2 ECG - Spectrogram/clearance factor 3.8139 

3 ECG - Partial autocorrelation value PACF5 3.7532 

4 ECG - Morphological/ PR segment 3.5735 

5 ECG - Peak amplitude 1 3.4404 

6 ECG - Crest factor 2.7231 

7 ECG - Autocorrelation value ACF10 2.4363 

8 ECG - Impulse factor 2.4075 

9 ECG - Autocorrelation value ACF1 2.0123 

10 ECG - Partial autocorrelation value PACF1 2.0123 

E. Regression methods 

This section describes widely-used modeling approaches 

based on the regression-based FIS and NN regression (NN-

R). 

1) Neural network - regression 

In this study, a multilayer feed-forward artificial NN was 

used. The investigations revealed a multi-layered structure 

with three intermediate layers. We decided that the 

dimensions of the layers should be at least half the number of 

input characteristics. We must ensure that the total number of 
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parameters computed in the hidden layer is less than the 

number of samples in the training set. Otherwise, the resulting 

NN structure will have perfect storage of all inputs, rendering 

learning impossible. 

Feedforward-controlled ANNs are NNs that have an input 

layer, an output layer and one or more intermediate layers. 

These networks use different activation parameters to transfer 

information from the input layer to the output layer in one 

direction. Additionally, there is no connection between cells 

within the same layer. We can use different methods to 

determine the number of cells in the hidden layer. However, 

a process of trial and error typically establishes the cell count 

[43]. 

The hidden layer output vector ℎ = (ℎ1, ℎ2, ℎ𝑠) is obtained 

from the network input vector  𝑥 = (𝑥1, 𝑥2, 𝑥𝑘) and after 

being processed in the output layer converted into the output 

vector 𝑦 = (𝑦1 , 𝑦2, 𝑦𝑧), and output vectors Y = [y(1), …, 

y(N)], where N is the number of input and output vectors and 

is calculated for all considered input vectors X = [x (1) ..., 

x(N)] as follows:  

 𝑌 = 𝜑(𝑊𝑦[𝜓(𝑊ℎ𝑋 + 𝑏ℎ)] + 𝑏𝑦) (14) 

where 𝜑(. ) and 𝜓(. ) represent the activation functions of the 

cells in the output layer and the hidden layer, respectively. 

Both the hidden layer and the output layer provide the user 

with a boundary value vector for their cells. The numbers 10, 

4, and 1 in Fig. 8 represent the sample size, number of layers, 

and number of output units, respectively. 

 

Fig. 8.  Diagram of NN. 

The model parameters chosen here for the NN-R model are 

as follows: a two-layer feedforward network with one hidden 

layer consisting of four neurons using a sigmoid activation 

function, an output layer with a single neuron using a linear 

activation function, and the Levenberg-Marquardt method as 

the training algorithm. 

A two-layer feedforward network is an artificial NN model 

that enables the systematic transformation of inputs into 

outputs through unidirectional data flow. This network 

consists of a hidden layer with four layers, each using a 

sigmoid activation function, and an output layer consisting of 

a single neuron using a linear activation function. The 

sigmoid function in the hidden layer normalizes the inputs to 

a range between 0 and 1, which helps in learning non-linear 

characteristics. On the other hand, the linear function in the 

output layer provides direct results and is therefore suitable 

for regression analysis and applications that require 

continuous value predictions. 

The Levenberg-Marquardt method is used as the training 

algorithm in this model. This approach is well-known for its 

efficiency in dealing with non-linear least squares problems 

that help to optimize the performance of the network. 

2) Regression-based FIS 

FIS are computational frameworks that integrate the 

advantages of fuzzy logic and inferential reasoning to 

effectively manage uncertainties and inaccuracies in data. 

They are especially valuable in situations where conventional 

binary logic systems are insufficient.  This is a revolutionary 

type-2 FIS that does not impose explicit rules and can handle 

numerous variables. The system uses Gaussian membership 

functions to represent the inputs and uses linearly 

parameterized system functions to derive the output. A 

genetic algorithm is used to determine the system parameters 

based on a multi-objective function. This approach combines 

the evolutionary algorithm with a feature selection method 

and a regularized ridge regression. The goal of the functions 

consists of two components: the tally of active features and 

the validation error for regression models or the accuracy for 

classification models. The aim of this method is to achieve a 

harmonious balance between the quality of the model and its 

simplicity. The improved approach, using type-2 fuzzy sets, 

shows superior efficiency compared to previous systems 

based on type-1 fuzzy sets across a number of trials, including 

function approximation, fuel consumption prediction, breast 

tissue classification and concrete compressive strength 

prediction [44]. 

F. Performance metrics 

Regression analysis is a critical component of supervised 

ML, which involves predicting a continuous target variable 

based on predictor factors. Individuals often evaluate the 

effectiveness of regression models using different criteria, 

although they cannot agree on a universally accepted 

criterion. 

The metrics R and mean square error (MSE) provide more 

comprehensive and insightful information compared to other 

measures. The coefficient of determination, referred to as R, 

is considered superior to other metrics for evaluating 

regression analysis. This is because R only provides a high 

score when a large portion of the actual values are accurately 
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predicted, overcoming the limitations in interpretability that 

occur with other metrics [45].  

 𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − 𝑦̂)2𝑁

𝑖=1  (15) 

 𝑅 =  √1 − 
∑(𝑦𝑖−𝑦̂)2

∑(𝑦𝑖−𝑦̂)2
 (16) 

where 𝑦𝑖  is the actual ion concentration value, the ion 

concentration estimate value. 𝑁 represents the number of 

samples. 

The study does not contain individual patient data or 

information. The study contains no identifiable or 

recognizable information. It is declared that there is no 

conflict of interest and that the privacy of the research 

participants will be respected. It is imperative that this 

research is not used directly in clinical care. Additional 

validation and testing using variance data sets are necessary 

to assess potential bias. The study accurately cites the 

material and research sources used. We have taken all 

necessary measures to ensure that the study is based on the 

most accurate and up-to-date information available. All 

relevant sources have been cited in accordance with the 

standards for academic integrity established by the 

organization. 

5. RESULTS AND DISCUSSION 

MIMIC III contains many clinical datasets in scattered 

form. Therefore, those datasets that meet the necessary 

conditions were filtered and matched with electrical signals 

such as the ECG. Attributes were forged by using different 

techniques on ECG signals resulting from these matches. Our 

aim was to compare the performance results, performance 

training and validation processes with the NN-R and 

regression-based FIS methods, accepted as part of the 

regression model.  

Hold-out validation is a technique used to assess the 

predicted performance of statistical models. It involves 

splitting the data into separate sets for training and testing. 

For datasets with uneven class distribution, particularly with 

rare classes, repeated hold-out validation is recommended as 

the most appropriate validation approach [46]. 

Hold-out refers to the process of dividing a dataset into two 

different sets, namely the 'training' set and the 'test' set. The 

model is trained using the training set and its performance is 

evaluated on new data using the test set. An often-used 

division when applying the hold-out method is to use 70 % of 

the data for training purposes and reserve the remaining 30 % 

for testing.  

Morphological, frequency and time-frequency domain-

based attribute data from patients were used as input to the 

regression model to estimate the blood calcium and 

potassium  values  of patients. The performance results of 

NN-R and FIS are shown in Table 6 and Table 7. 

Table 6.  Regression results for potassium. 

Dataset type Regression methods MSE R 

Train  

set 

NN-R 0.1753 0.85636 

Regression-based FIS 0.5235 0.45189 

Validation 

set  

NN-R 2.2248 0.24328 

Regression-based FIS 0.3162 0.60699 

 

Table 7.  Regression results for calcium. 

Dataset type Regression methods MSE R 

Train  

set 

NN-R 0.3674 0.53613 

Regression-based FIS 0.4142 0.4531 

Validation 

set  

NN-R 1.1698 0.061436 

Regression-based FIS 0.7157 0.57347 

 

This study focuses on the calculation of potassium and 

calcium levels in patients with CKD using ECG 

measurements. There are 116 recorded cases of potassium 

and 101 recorded cases of calcium, respectively. The 

observations were randomly split into two groups:  

• a training group, which comprised 70 % of the data, and  

• a validation group, which comprised 30 % of the data.  

The training set, known as the potassium dataset, consists 

of 84 records, while the validation set contains 32 records. 

The calcium dataset consists of 81 records for training and 30 

records for validation. The components of the input vector x 

can be found in Table 1. The variable y reflects the combined 

value of potassium and calcium. The ridge regression value 

is set to R = 1𝑥106 for the training set and R = 1𝑥109 for the 

validation set of the potassium dataset. For the calcium 

dataset, the regularization parameter is R = 0.4531 for the 

training set and R = 0.57347 for the validation set. The 

population size for the multi-objective genetic algorithm is 

determined by the number of variables in each individual, 

denoted as n. The number of iterations is 50, resulting in 50 

assessments of the objective function. The models under 

consideration generate the actual value of y. 

Fig. 9, labeled "Calcium training: R = 0.4531", shows a 

scatter plot illustrating the correlation between the desired 

calcium values and the actual calcium values recorded during 

the training period. The graph also contains a linear 

regression line. The R-value of 0.4531 indicates a somewhat 

positive correlation between the targets and outputs, which 

means that the model's predictions are somewhat aligned with 

the actual values, but not perfectly. The regression equation 

"Calcium value = 0.275 × Target + 6.3" in the first graph 

shows that the measured output values do not perfectly align 

with the target values. 

Fig. 10 is labeled "Calcium validation: R = 0.57347" and 

shows a model validation setup with a linear regression line. 

The increased R-value in the validation phase compared to 

the training phase indicates a small improvement in the 

correlation. The regression equation "Calcium 
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value = 0.93 × Target + 5" from the second graph shows that 

for every increase in the calcium target value by one unit, the 

calcium value output increases by 0.93 units. 

Both plots feature a dotted line labeled "Y = T", which 

shows the optimal scenario where the measured values 

perfectly align with the target values. Nevertheless, the 

scattering of data points from the ideal line in both graphs 

indicates that the model does not fully reflect the correlation 

between the desired and observed values. 

 

Fig. 9.  FIS-Regression graph of training for calcium. 

 

Fig. 10.  FIS-Regression graph of validation for calcium. 

Fig. 11 and Fig. 12 show the training and validation phases 

of a model based on potassium data. The graph labeled 

"Potassium training: R = 0.45189" shows the data used for 

training and the corresponding linear regression fit. The next 

graph, labeled "Potassium validation: R = 0.60699" shows 

the validation data and the regression fit. 

 

Fig. 11.  FIS-Regression graph of training for potassium. 

 

Fig. 12.  FIS-Regression graph of validation for potassium. 

This NN architecture with the sigmoid activation function 

in the hidden layer for non-linear capabilities and the linear 

activation function in the output layer for direct output allows 

modeling of complicated interactions and can be used with 

diverse datasets. The backpropagation algorithm, which 

iteratively modifies the network's weights to minimize the 

error rate in the dataset, performs the network's training 

phase. A loss function commonly quantifies this process by 

assessing and optimizing the degree of agreement between 
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the model's predictions and the real values. In this step, you 

need to define the lower and upper frequency limits for the 

range used to calculate the spectral characteristics of the data. 

This is crucial for optimizing the performance of the 

Levenberg-Marquardt training algorithm, which is used to 

minimize the MSE during model training. By selecting an 

appropriate frequency range, you ensure that the extracted 

spectral features are relevant and contribute to improving the 

accuracy of the model. This process helps to fine-tune the 

algorithm's performance and results in a more effective and 

reliable predictive model. 

During the training process of a two-layer feedforward 

network with the Levenberg-Marquardt algorithm, the model 

improves significantly, as shown by the metrics that are 

tracked across epochs. From epoch 0 to 1000, there is a 

significant improvement in performance as shown by the 

decrease in mean square error from 1.13 to 0.151. This 

decrease indicates an improved prediction accuracy. At the 

same time, the gradient decreases from 1.82 to 0.00156, 

indicating successful error reduction, while the damping 

factor Mu adjusts from 0.001 to 1𝑥106, optimizing the trade-

off between gradient descent and least squares fit. The 

validation tests remain consistently at 0 throughout, 

indicating that the model is continuously improving without 

overfitting. This demonstrates the efficiency of the 

Levenberg-Marquardt algorithm in improving the accuracy 

and reliability of the network over time. 

The following three graphs evaluate a NN-R model's 

ability to predict calcium levels. 

 

Fig. 13.  NN-R graph of training for calcium. 

Fig. 13 and Fig. 14 show the recorded output values 

compared to the target calcium values for both the training 

and validation stages of the model. The training graph shows 

a correlation coefficient R = 0.53613 indicating a moderate 

positive correlation between the targets and outputs. This 

indicates that the data fits the linear regression line reasonably 

well. The validation graph shows an unexpectedly low R-

value of 0.061436, indicating a weak correlation between 

target and output. This could indicate that the validation data 

differs significantly from the training data or that the model 

has been over-fitted to the training data and is unable to 

generalize effectively. 

 

Fig. 14.  NN-R graph of validation for calcium. 

 

Fig. 15.  NN-R graph of training for potassium. 

Fig. 15 and Fig. 16, "Potassium training: R = 0.85636", 

show a strong positive correlation between the target and 

measured potassium values during the training phase. 

"Potassium validation: R = 0.24328" also shows the 



MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 5, 158-173 

170 

validation phase data with a significantly lower R value. This 

indicates a weaker correlation and suggests that the model 

does not generalize well to new data on which it has not been 

trained. 

 

Fig. 16.  NN-R graph of validation for potassium. 

 

Summarizing the dataset for the prediction of potassium 

and calcium models shows different performances between 

the different regression methods and types of datasets. The 

NN-R for potassium shows remarkable performance in the 

training set, with a substantial R-value of 0.85636 and a 

minimum MSE of 0.1753. These values indicate robust 

prediction accuracy. However, the model's performance 

significantly decreases in the validation set, as indicated by a 

substantial MSE of 2.2248 and a low correlation coefficient 

R-value of 0.24328, which indicates overfitting. On the other 

hand, the regression-based FIS shows a higher consistency in 

its performance. It achieves moderate R-values of 0.45189 

and 0.60699 and MSEs of 0.5235 and 0.3162 for the training 

and validation sets, respectively. 

The NN-R for the calcium dataset shows a decline in 

performance when comparing the training set to the 

validation set. The MSE decreases from 0.3674 to 1.1698, 

while the R-value decreases from 0.53613 to 0.061436. In the 

training phase, the regression-based FIS shows a more 

consistent performance compared to the NN, even though it 

has a larger MSE. The R-value shows less variation, 

indicating better generalization from training to validation. 

In general, while NN-Regression can accurately capture 

the patterns in the training data, as shown by the high R-

values, it does not properly apply these patterns to new, 

unseen data. This leads to a significant decrease in 

performance when evaluating the model in the validation set. 

While the regression-based FIS is less accurate in the training 

set, it provides more consistent and reliable predictions for 

the unseen data. 

6. CONCLUSION 

The main objective of this work was to develop an 

automated method for predicting blood calcium and 

potassium levels from patients’ ECG recordings. To do this, 

ECG signals were collected in conjunction with blood 

samples to create models capable of calculating the levels of 

these electrolytes. This innovative method has the potential to 

streamline the monitoring of key blood parameters and 

provide a non-intrusive and potentially immediate substitute 

for conventional blood testing. 

The initial models in the study, using NN-R and 

regression-based FIS, had different levels of success. While 

the NNs performed remarkably well on the training data, they 

could not maintain accuracy on the validation sets. This 

difference highlights the need to improve the models to 

improve their ability to make accurate predictions in a wide 

range of situations. Furthermore, the large amount of features 

extracted from the ECG signals used as inputs for the model 

demonstrates the need for improvements. Further research 

will prioritize feature selection to optimize the model, 

increase computational efficiency, and potentially improve 

performance by reducing redundancy and emphasizing the 

most informative features. 

Another important area for future improvement is to 

address the impact of outliers on model accuracy. Outliers can 

result from anomalies in the ECG readings or patient-specific 

factors and affect prediction accuracy. To ensure the 

practicality of the models, efforts to minimize these effects 

will be a key focus. 

Existing research has primarily focused on the use of 

conventional blood tests to diagnose electrolyte imbalances 

and on further development of non-invasive methods that use 

bio-signals such as the ECG to estimate electrolyte 

concentrations. Several studies have investigated the 

extraction of morphological, frequency and time-frequency 

features from ECG signals. These studies have used ML 

models to estimate potassium and calcium levels. 

Nevertheless, most of these technologies have not been well 

evaluated in terms of accuracy and robustness, nor do they 

provide a thorough investigation of the practicality and 

effectiveness of using non-invasive techniques for continuous 

monitoring. 

This study stands out from others by exploring the 

application of machine learning and ECG recordings in 

monitoring potassium and calcium levels, as well as 

conducting a comprehensive analysis of the potential of FIS 

to improve estimation accuracy. Our approach combines FIS 

with feature extraction from ECG signals to predict 

electrolyte concentrations, particularly calcium. This 

integration has led to encouraging results in terms of MSE and 

correlation coefficient R. This study contributes to the field 



MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 5, 158-173 

171 

by demonstrating that FIS can provide a clearer and more 

efficient model for continuous and non-invasive monitoring 

of essential electrolyte levels. This addresses the 

shortcomings of current methods and supports the 

development of diagnostic tools that can be used at home. 

In the future, other physiological signals such as 

photoplethysmography (PPG) and the measurement of 

arterial blood pressure (ABP) will also be included in the 

study. By integrating these data, we can improve the accuracy 

and reliability of the models, leading to a comprehensive 

understanding of the patient's cardiovascular condition and its 

relationship to blood electrolyte levels. 

In essence, this research represents a significant milestone 

in the advancement of automated, non-invasive diagnostic 

methods. The results of this study have the potential to 

completely transform the management and monitoring of 

patients, particularly those who require frequent electrolyte 

level monitoring. Future studies will improve and extend the 

approaches used by incorporating a wider range of signals. 

This will lead to the development of more advanced and 

reliable prediction models that will ultimately improve 

patient care and healthcare outcomes. 
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