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Abstract: Quality control is an essential step before grain storage. It requires the localization of grain truck compartments and guiding robotic 

arms to automatically sample grains. However, the diverse types of grain trucks and the variability in parking lead to difficulties in 

compartment localization and inaccurate measurements. To solve this problem, a rotating 3D laser scanner is proposed to scan grain trucks. 

After ground calibration, the XOY plane of the rotating scanned point cloud is aligned parallel to the ground. To avoid complex point cloud 

segmentation, grain truck point clouds are clipped using pre-defined regions of interest (ROI). Since only 2D corner points are required, this 

paper presents a projection-based point cloud processing method. Here, the points of the grain truck are projected onto the XOY plane and 

then the points of the rear and side panels of the projected compartment are extracted for line fitting. To robustly extract compartment 

corners, a region growing method based on density variations is proposed. Along the fitted line, the 2D corners of the rear and side panels 

are extracted to obtain the length and width dimensions of the compartment. Extensive tests have shown that the proposed method can 

accommodate various grain truck models with a corner extraction accuracy of less than 9.8 cm, making it suitable for the automated grain 

truck localization and measurement tasks. 
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1. INTRODUCTION 

Grains such as rice, wheat, corn and other strategic 

commodities are stored in large warehouses by the national 

agencies, which is an important means for people’s resilience 

to disasters and social stability. Quality control before grain 

storage includes setting up sampling points on trucks, using 

sampling rods to extract grains for on-site inspection, and 

finally deciding whether to store the grains based on the 

inspection results. The way in which the sampling points are 

set up is an important link in grain quality control. Traditional 

manual sampling is inefficient and requires manual labor, 

which is not conducive to monitoring. Automated sampling 

point generation has the advantages of high efficiency and 

unmanned operation [1], but due to the diversity of truck 

types and the variability of parking positions, it is not easy to 

determine the boundaries of the compartments [2], which 

makes the generation of sampling points very difficult [3], 

[4]. It is necessary to solve the problems of automatic 

compartment localization and calculation of compartment 

dimensions before determining the sampling points. 

Unlike the usual single-point localization by SLAM [6], 

[7] and GPS [8], [9], compartment localization requires a 

precise measurement of the compartment's orientation and 

dimensions. Common localization methods include 2D 

imaging [11], [12], [13], 3D laser scanning [14], [15], [16], 

[17], and rotating 3D laser scanning [18], [19]. Monocular 

visual localization requires pre-calibration of camera and 

robotic arm poses, followed by feature extraction and 

localization. Due to the uncertainty of the monocular visual 

scale, precise localization and measurement are challenging. 

Ai et al. [10] achieved vehicle segmentation by extracting 

vehicles from 2D images and establishing a transformation 

relationship between 2D images and 3D LIDAR point clouds. 

Jurado-Rodríguez et al. [11] used multi-angle 2D images 

captured by drones to reconstruct 3D models and applied 

convolutional neural networks for vehicle part segmentation. 

The use of corresponding relationships between images and 

3D models enabled compartment recognition. Compared to 

monocular measurement, stereo vision offers higher accuracy 

due to a known scale factor. Mrovlje et al. [12] used white 
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PVC boards as features and implemented a stereo 

measurement method to localize trucks in ports for automated 

cargo loading and unloading. Li et al. [13] used drones 

equipped with stereo imaging systems for truck localization 

and measurement. 

Stereo or multi-camera systems require overlapping fields 

of view for 3D reconstruction, while laser scanning 

effectively overcomes the need for overlapping views and 

complements stereo or multi-camera systems. Point cloud 

data acquisition is achieved using principles such as dTOF 

and iTOF [20]. Ren et al. [5] used single-line laser scanning 

for truck localization and measurement, enabling automated 

cement loading. Similarly, Yu et al. [4] used single-line laser 

scanning for automated truck detection and palletizing 

planning to project point clouds in multiple directions and fit 

lines, achieving compartment localization and segmentation. 

Projection methods use dimensionality reduction to project 

truck point clouds onto a plane, enabling more robust 

processing. However, the accuracy of line fitting varies 

greatly with noisy point clouds in projection-based methods, 

making them unsuitable for compartment localization and 

segmentation in open environments. Fan et al. [14] used 16-

line laser scanning for vehicle scanning and density clustering 

with the DBSCAN algorithm for vehicle segmentation. This 

method adapts to varying densities in 3D laser point clouds, 

but struggles with the random density variations caused by 

material and viewing angle effects in truck scanning point 

clouds. While 3D laser scanners are cost-effective and offer 

high scanning accuracy, conventional mechanical scanners 

are limited by their field of view, resulting in sparse point 

cloud data acquisition. To extend the field of view, a motor 

was added to drive the rotation of the scanner [18], [19]. Thus, 

a vertical field of view of 360° was achieved, which 

significantly expands the scanning range and avoids sparse 

point clouds and visual blind spots. 

To identify the boundaries of train compartments, 2D 

images are created by point cloud projection [2], where the 

boundary is exacted by the Canny operator, which leads to 

inaccurate edge extraction due to the influence of the point 

cloud thickness. A method for ship structure modeling based 

on the point cloud projection is proposed [21], in which the 

edges of the truck are exacted by line fitting with higher 

accuracy. 

Based on the aforementioned, laser scanning methods offer 

advantages over imaging methods in vehicle localization and 

measurement, such as the elimination of auxiliary features 

like white panels or overlapping views in stereovision. Active 

laser emission is better suited for outdoor vehicle localization 

and measurement. Therefore, a localization and measurement 

method based on laser scanning is developed in this article. 

To extend the scanning range, we use rotating laser scanners 

for compartment scanning so that a single device can be used 

to scan in width and height. 

Common methods for generating sampling points include 

manual selection and automatic selection [5]. This paper 

focuses on the method of automatic calculation of sampling 

points, which solves the problems of compartment 

localization and measurement. Compartment localization 

refers to determining the positions of the rear and side panel 

corners of the compartment and generating grain sampling 

points based on these corner positions. First, a rotating 

LIDAR is used to detect the grain truck, collect 

environmental point clouds, and remove non-vehicle point 

clouds using pre-defined region of interest (ROI) clipping 

frames. Then a method for projecting point clouds is 

proposed. Based on the ground calibration results, the point 

cloud is transformed into a two-dimensional point cloud in 

the XOY plane parallel to the radar coordinate system. Based 

on the dimensionality reduction idea, the point cloud is 

projected onto the XOY plane. Next, the rear and side panels 

of the compartment are segmented and a region growing 

method for corner point generation is proposed. Based on the 

corner points, the compartment position is determined and the 

sampling boundaries are calculated. Finally, a certain number 

of sampling points are randomly generated within the 

sampling boundaries. 

The innovations of this paper are as follows: 

• A method for automatically generating grain truck 

sampling points is proposed. After collecting large-scale 

point cloud data with a rotating laser radar, compartment 

corner points are located to construct sampling 

boundaries. Within these boundaries, a certain number 

of sampling points are randomly generated by 

a sampling machine. This method has the advantages of 

high efficiency and unmanned operation and fulfills the 

requirements for unmanned grain testing. 

• A projection-based method for grain truck point cloud 

processing is proposed. This method reduces three-

dimensional point clouds to two-dimensional point 

clouds within the XOY plane, which greatly reduces the 

computational complexity and avoids the instability 

problems that may arise from directly fitting planes in 

three-dimensional space. 

• A corner point extraction method for compartments 

based on region growth is proposed. First, the side and 

rear panels of the compartment are segmented, and the 

line equation of the projected point cloud of the 

compartment panels is fitted using a global least squares 

method. Two-dimensional grids are divided along the 

line and each grid is expanded based on the density 

variation rate of the point clouds. When the density 

variation rate exceeds a set value, the expansion is 

terminated and the current position is identified as 

a compartment corner point. This method partially 

solves the problem of positioning failure due to density 

variations in laser radar scanning point clouds. 

2. SUBJECT & METHODS 

Our automatic sampling system for grain trucks is shown 

in Fig. 1. The point cloud scanned by a rotating laser scanner 

is shown in Fig. 2. The points are projected into the ground 

plane, the lines are fitted for side and the rear point cloud, and 

corner B is extracted as the intersection point of two lines, the 

other two corners, A and C, are exacted based on density 

variation rate alone lines.  
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Fig. 1.  Automatic sampling system. 

 

Fig. 2.  Principle of measurement. 

A. Point cloud 

The static modeling equipment is based on a rotating laser 

scanner (see Fig. 3), which is mainly composed of a multi-

line laser scanner, a motor (including an encoder), an 

embedded computer, a voltage stabilization module, and 

other components. The static modeling equipment is securely 

installed on the cloud rail pillar at the sampling site. By 

controlling the continuous rotation of the motor, the 

equipment can capture the entire point cloud of the trucks in 

the sampling area. 

 

Fig. 3.  Rotating laser scanner. 

The sampling system uses a single radar for grain truck 

localization and measurement. To obtain a wide field of view, 

the rotating laser scanner is mounted on the pillar of the 

sampling equipment, see Fig. 4. Due to single-sided 

scanning, the opposite side of the grain truck cannot be 

scanned due to occlusions. However, given the symmetrical 

shape of the grain truck, scanning one side is sufficient for 

localizing and measuring the length and width. We have set 

the motor speed to 1.5 rpm, which means that the motor needs 

40 s for one full rotation. Since the radar scans symmetrically, 

half a rotation of the motor takes 20 s to scan the entire scene. 

However, to capture denser point clouds, we still scan for 

40 s. Apart from the occluded area, our rotating radar scan 

covers the entire spherical region centered on the installation 

position, so that any grain truck within the specified area can 

be scanned. 

 

Fig. 4.  Installation diagram of the rotating laser scanner. 

B. Segmentation of the truck 

LIDAR can scan scenes ranging from a few dozen to 

hundreds of meters, capturing point clouds containing trucks, 

roads, buildings, vegetation, and various machines. To 

simplify point cloud segmentation, in this paper a rectangle is 

delineated under the sampling robot for the truck positioning. 

Before vehicle localization, four corner points are manually 

selected in the scanned point cloud. These four points serve 

as the corner points of the rectangle used for segmenting the 

truck point cloud. The trucks are segmented by polygonal 

clipping of the point cloud. 

To mitigate the influence of ground points and scatter 

points between vehicles and the ground on corner point 

localization, a ground height (Z-axis) offsetting method is 

used in this work to remove ground points and retain only the 

point cloud data above. 

C. Ground correction 

Ground normal 

Due to the non-parallelism between the ground and the 

XOY plane of the rotating LIDAR, we must first rectify the 

horizontal plane of the truck to facilitate the subsequent point 

cloud projection and robust extraction of the corner points of 

the truck compartment. This rectification process is 

completed before positioning. To obtain the transformation 

relationship more robustly, we manually segment the ground 

point cloud and perform Gaussian filtering to obtain smooth 

point cloud data. Then, we calculate the centroid (x̅, y̅, z̅) of 

the plane point cloud and compute the covariance matrix 𝑴𝟑𝑫 

based on the centroid, as shown in (1) and (2). 

 

𝑪 =

[
 
 
 
 
𝑥1 − �̅� 𝑦1 − �̅� 𝑧1 − 𝑧̅
𝑥2 − �̅� 𝑦2 − �̅� 𝑧2 − 𝑧̅
𝑥3 − �̅�

⋮
𝑥𝑛 − �̅�

𝑦3 − �̅�
⋮

𝑦𝑛 − �̅�

𝑧3 − 𝑧̅
⋮

𝑧𝑛 − 𝑧̅]
 
 
 
 

 (1) 

 

where (𝑥𝑛 , 𝑦𝑛, 𝑧𝑛) are the coordinates of the nth point. 
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𝑴𝟑𝑫 = 𝑪𝑇𝑪 (2) 
 

Perform the singular value decomposition (SVD) of the 

covariance matrix 𝑴𝟑𝑫  to obtain eigenvalues and 

eigenvectors. The eigenvector corresponding to the smallest 

eigenvalue is set as the normal vector  𝑛0(𝑛𝑥, 𝑛𝑦 , 𝑛𝑧) of the 

ground. The normal vector should be normalized to unit 

length. 

Transformation 

Our goal is to align the scanned ground point cloud parallel 

to the XOY plane of the LIDAR coordinate system and 

calculate the cross product 𝒗 of the normal vector and the unit 

vector 𝒏𝟏(0,0,1)in the positive direction of the Z-axis, as 

shown in (3). 

 

𝒗 = 𝒏𝟎 × 𝒏𝟏 (3) 

 

Using the Rodrigues' rotation formula, we can derive the 

rotation matrix 𝑹, which corresponds to the cross product 𝒗. 

Then we rotate the original point cloud to obtain the corrected 

point cloud. Finally, we project all corrected point clouds 

along the vertical direction onto the XOY plane, thus 

reducing the 3D point cloud to a 2D point cloud. 

D. Corner extraction 

Straight line fitting 

To fit the point clouds of the rear and side panels of the 

carriage into straight lines, we extract the scanned boundary 

point cloud of the carriage. Since the clipped point cloud 

usually contains no outliers, we determine the orientation of 

the LIDAR relative to the parking area using {sid, bot}, 

where 'sid' indicates whether the grain truck was scanned 

from the left or right side, and 'bot' indicates whether the rear 

panel of the carriage is at the farthest or closest end in the Y-

axis direction. Based on {sid, bot}, we construct straight lines 

𝑙1 and 𝑙2 that are parallel to the X-axis and the Y-axis (see 

Fig. 5). These lines represent the boundary regions of the 

carriage, which were calculated according to the nearest point 

principle. 

 

Fig. 5.  Scanned truck carriage point cloud. 

After obtaining the reference lines, all points within 

a distance threshold 𝑑  from the line are extracted as input 

data for fitting the line. 

In this study, the line fitting method based on RANSAC is 

used. First, a certain number of points are randomly selected 

from the input data for line fitting. Then, a line is fitted based 

on the least squares method with the selected random points. 

In order to mitigate the degeneration problem when fitting 

lines perpendicular to the X-axis, the centroid (�̅�, �̅�) of the 

point cloud is calculated together with the covariance matrix 

𝑴𝟐𝑫 as shown in (4). 
 

𝑴𝟐𝑫 = [
𝑴𝒙𝒙 𝑴𝒙𝒚

𝑴𝒚𝒙 𝑴𝒚𝒚
] (4) 

 
The direction vector of the line is calculated as: 

𝑽(𝑣𝑥, 𝑣𝑦) = (𝑴𝒙𝒙 − 𝑴𝒚𝒚 − √(𝑴𝒙𝒙 − 𝑴𝒚𝒚)
2
+ 4𝑴𝒙𝒚

2, 2𝑴𝒙𝒚) 

. 

Therefore, the equation representing the fitted line can be 

expressed as shown in (5). 

 

𝑣𝑥𝑥 + 𝑣𝑦𝑦 − 𝑣𝑥�̅� − 𝑣𝑦�̅� = 0 (5) 

 

Multiple line fittings are performed based on the RANSAC 

method. The line with the highest number of inliers is selected 

as the final fitted line. 

Corner generation 

The first corner point is defined as the intersection of the 

fitted lines representing the projections of the rear panel and 

the side panel obtained from the scan data. The second and 

third corner points are located on the rear panel and the side 

panel, respectively. The calculation of the first corner point is 

simple. It involves calculating the intersection point based on 

the fitted projections of the rear panel and side panel point 

clouds, as described previously. The method for calculating 

the second and third corner points is similar. 

Since the density of the point cloud decreases with 

increasing scanning distance, this paper proposes a corner 

point extraction method based on the density variation rate. 

To calculate the local density of the point cloud, we divide 

the space along the fitted line into rectangular grids with 

a grid size 𝑙, which is set to 0.3 m in this paper. The grid 

division method is shown in Fig. 6. Using the first corner 

point as a reference, we calculate the dot product of the vector 

constructed from the centroid of the fitted point cloud and the 

first corner point, with the direction vector of the fitted line. 

If the dot product is positive, we divide the grids in the 

direction of the direction vector, otherwise we divide the grids 

in the opposite direction of the direction vector. 

 

Fig. 6.  Grid division. 
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Given a density variation rate threshold ∆𝜌, we start by 

counting the number of points 𝑁 in each grid of the initial 

grid. Then we calculate the point cloud density 𝜌 using (6). If 

the density variation between adjacent grids exceeds ∆𝜌, the 

centroid of the points in that grid is identified as a corner 

point. Due to the inherent uncertainty in local point cloud 

density variations, a more robust approach to corner point 

extraction is adopted in this work by considering the current 

grid density together with the densities of the subsequent 𝑚 

grids. In particular, we check whether the density variation 

rates of all these grids exceed ∆𝜌 to determine corner points. 

 

𝜌 =
𝑁

𝑙
 (6) 

 

Due to the scanning setup used in this study, only one side 

of the carriage can be scanned while the other side remains in 

a blind spot. Therefore, it is challenging to calculate the fourth 

corner point 𝑐4 using the previously described method. This 

corner point corresponds to the non-localized corner on the 

side panel within the blind spot. To solve this problem, the 

fourth corner point 𝑐4 is calculated based on the symmetry of 

the corner points of the carriage, as shown in (7): 

 

𝑐4 = 𝑐3 + 𝑐2 − 𝑐1 (7) 

 

where 𝑐1  represents the first corner point, 𝑐2  represents 

another corner point on the rear panel, and 𝑐3  represents 

another corner point on the side panel. 

Sampling points 

Starting from the four corner points, the boundary lines of 

the rectangle are determined. A certain number of sampling 

points are randomly generated within these boundary lines. 

To ensure smooth sampling by the sampling device, this 

paper proposes offsetting the boundary lines inwards by 

a certain distance. In this paper, the offset is set to 0.2 m to 

ensure that the sampling machine can reliably extract grains. 

3. RESULTS 

The application of our measurement system is shown in 

Fig. 7. To validate our method, we scanned 10 grain trucks 

and tested the side line fitting error and corner localization 

deviation to illustrate the effectiveness of our algorithm. In 

particular, the corner localization deviation is very important 

to indicate that the measurement system is operating 

normally. 

To ensure the normal operation of the system, the 

verification interval is set at six months. Employees regularly 

check whether the maximum error of corner localization is 

within 9.8 cm. A diagram of the traceability measurement is 

shown in Fig. 8. 

 

Fig. 7.  Application of the measurement system. 

 

Fig. 8.  Traceability measurement. 

A. Segmentation 

The scanned point cloud, see Fig. 9 (left), shows a good 

overall quality of the point cloud in the scene. Since 

a rectangular parking area has been designated in advance for 

the grain transport truck, where the truck can park freely, we 

can extract the rectangular region of interest in advance. To 

do this, we use a polygonal clipping method to remove point 

cloud data outside the polygon. The segmented container 

truck is depicted with the collected point cloud data being 

complete, see Fig. 9 (right). This data can be used for 

positioning and measurement purposes. 
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Fig. 9.  Original (left) and segmented (right) truck point cloud. 

B. Side line fitting for compartment 

The original point cloud and the corresponding projected 

points are shown in Fig. 10. The projected points have 

prominent linear features representing the side panels and 

rear panel. The green lines in the projected points represent 

the fitted lines. The intersection point of these two fitted lines 

is defined as the first corner point of the carriage, with the 

other corner points positioned relative to this point. Due to 

the characteristics of the rotating LIDAR, which scans from 

top to bottom, the upper edge of the carriage's other side can 

also be scanned. However, due to its narrowness, the point 

cloud can be sparse in the distance. Therefore, it is more 

robust to rely on the rear panel and side panels of the carriage, 

which are closer to the LIDAR. 

 

Fig. 10.  Original points of the grain truck (top) and corresponding projected points (bottom). 

 

We tested the error of 20 sets of fitted lines using the Root 

Mean Square Error (RMSE) as the method for error 

calculation. The distribution of side line fitting errors is 

shown in Fig. 11. The average error value for all test sets is 

6.7 cm. This indicates a high degree of accuracy in the line 

fitting process. 

 
Fig. 11.  Side line fitting error distribution. 

C. Corner localization 

The results of corner localization for the grain truck are 

shown in Fig. 12, where the red points represent the localized 

corners. It can be seen that the proposed localization method 

accurately calculates the positions of the corner points. 

 

An indirect method was used to measure the localization 

accuracy. Ten trucks were tested (see Table 1). The length 

and width of the carriage were measured manually using 

a tape measure as reference dimensions. These measurements 

were then compared with the dimensions calculated using the 

localized corner points as measured values. 

The deviation between the reference dimensions and the 

measured dimensions was used to evaluate the localization 

accuracy. As can be seen in Fig. 13, the accuracy of the width 

measurement is higher than that of the length measurement, 

as the LIDAR is installed closer to the rear of the carriage. 

The localization accuracy achieved is 9.8 cm, which is 

sufficient for the requirements of grain sampling. For 

applications that require higher localization accuracy, it is 

recommended to use a LIDAR with higher precision. 

The accuracy of the corner extraction algorithm is better 

than 9.8 cm, which is sufficient to control the sampling robot 

and complete the grain quality inspection. The reason for this 

is as follows: To prevent the sampling robot from colliding 

with the truck, the sampling points are placed at a distance of 

20 cm from the bounding box of the corners. Even with 

a maximum deviation of 9.8 cm, we can ensure that all 

sample points are inside the truck without collision, see 

Fig. 14. The accuracy of the corner extraction is sufficient. 
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Fig. 12.  Corner localization. 

Table 1.  Dimensions of trucks. 

Truck ID 1 2 3 4 5 6 7 8 9 10 

Width [cm] 254.4 257.3 255.2 257.1 255.5 255.1 258.3 212.5 213.1 213.7 

Length [cm] 1295.8 1301.9 1297.0 1298.6 1298.2 1295.3 1301.5 392.6 393.0 393.3 

 
Fig. 13.  Localization deviation. 

 

Fig. 14.  Sample points are inside the carriage. 

4. DISCUSSION 

The effectiveness of the corner point localization approach 

proposed in this paper has been extensively tested in 

experiments. By defining a fixed clipping area, the grain 

carriage can be extracted quickly without the need for 

complex segmentation of the point cloud of the truck. Using 

the projection method to project 3D point clouds onto the 

ground plane, the rear and side panel point clouds of the 

carriage are extracted for 2D line fitting to perform the first 

corner point localization. This approach avoids the instability 

introduced by 3D plane fitting and results in a high line fitting 

accuracy with an average error of 4.7 cm. Finally, along the 

fitted lines, a method based on the region growth of the 

density variation rates of the grid point cloud is proposed to 

extract the second and third corner points. This method is 

characterized by high precision, simplicity, and adaptation to 

the uneven density variation of point clouds. Experimental 

results show a localization accuracy of up to 9.8 cm. If higher 

localization accuracy is required, it is recommended to 

replace the LIDAR with a more precise one while keeping the 

rotation mechanism unchanged. However, the proposed 

method also has its limitations: 

1. The accuracy of corner point localization may decrease 

for vehicles with significant deformations, as the 

projected side or rear panel lines of the deformed vehicle 

may have poor linearity, which affects the accuracy of 

line fitting. 

2. For trucks with small gaps between the front and 

carriage, there may not be a significant difference in 

point cloud density between the side panels and the 

front. This can cause the region growing method to 

incorrectly locate the corner points in the front part of 

the vehicle. 

5. CONCLUSION 

In this paper, we addressed the challenges posed by 

different grain truck models and variable parking positions in 

automated sampling, which leads to difficulties in carriage 

localization and inaccurate measurements. We proposed 

a method that incorporates fixed parking areas and robust 

grain truck point cloud extraction using polygonal clipping. 

We introduced a projection-based approach using line fitting 

to determine the first corner point of the carriage, which 

demonstrated high precision. This first corner point served as 

a reference for corner localization. Additionally, we proposed 

a region growing method based on density variation rates of 

point clouds to localize the second and third corner points. 

We used the prior knowledge of symmetry to determine the 

position of the fourth corner point. The achieved localization 

accuracy was up to 9.8 cm. Finally, we used the localized 

corner points to generate randomly sampled points within the 

carriage boundary. 

Future research directions include exploring localization 

solutions by integrating LIDAR with 2D cameras and using 

image segmentation methods to extract the rear of the 

carriage, which is mapped onto the point cloud for 
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localization. This could solve the problem of low localization 

accuracy for trucks with small gaps between the front and 

carriage. In addition, the application of point cloud deep 

learning methods for carriage corner point localization could 

be investigated. 

ACKNOWLEDGMENT 

This research was funded by the Sichuan Province Major 

Science and Technology Special Project - Development of 

Special Operation Robot for Grain Storage and Brewing 

(2022ZDZX0045). 

REFERENCES 

[1] Nuttall, J. G., Oleary, G. J., Panozzo, J. F., Walker, C. 

K., Barlow, K. M., Fitzgerald, G. J. (2017). Models of 

grain quality in wheat—A review. Field Crops 

Research, 202, 136-145.  

https://doi.org/10.1016/j.fcr.2015.12.011  

[2] Qiao, X., Gao, S., Cao, W., Wang, C., Liu, J., Zhou, K. 

(2023). A point cloud segmentation and material 

statistics algorithm for train carriage. Measurement and 

Control, 56, 537-545.  

https://doi.org/10.1177/00202940221092043  

[3] Zou, W., Shen, D., Cao, P., Lin, C., Zhu, J. (2022). Fast 

positioning method of truck compartment based on 

plane segmentation. IEEE Journal of Radio Frequency 

Identification, 6, 774-778.  

https://doi.org/10.1109/JRFID.2022.3213852  

[4] Yu, J., Huang, L., Tang, H., Huang, G., Chen, G. (2022). 

Incoming vehicle detection and planning system for 

automatic vehicle loading. Applied Laser, 42, 91-100.  

https://doi.org/10.14128/j.cnki.al.20224201.091  

[5] Ren, W. (2019). Research on automatic loading 

machine for bagged cement. Master's Thesis, 

University of Science and Technology of China.  

[6] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., 

Scaramuzza, D., Neira, J., Reid, I., Leonard, J. J. (2016). 

Past, present, an future of simultaneous localization and 

mapping: Toward the robust-perception age. IEEE 

Transactions on Robotics, 32, 1309-1332.  

https://doi.org/10.1109/TRO.2016.2624754  

[7] Fuentes-Pacheco, J., Ruiz-Ascencio, J., Rendón-

Mancha, J. M. (2015). Visual simultaneous localization 

and mapping: A survey. Artificial Intelligence Review, 

43, 55-81. https://doi.org/10.1007/s10462-012-9365-8  

[8] Yang, Y., Jia, B., Yan, X.-Y., Li, J., Yang, Z., Gao, Z. 

(2022). Identifying intercity freight trip ends of heavy 

trucks from GPS data. Transportation Research Part E: 

Logistics and Transportation Review, 157, 102590.  

https://doi.org/10.1016/j.tre.2021.102590  

[9] Markham, G., Seiler, K. M., Balamurali, M., Hill, A. J. 

(2022). Load-haul cycle segmentation with hidden 

semi-Markov models. In 2022 IEEE 18th International 

Conference on Automation Science and Engineering 

(CASE). IEEE, 447-454.  

https://doi.org/10.1109/CASE49997.2022.9926488  

[10] Ai, L., Xie, Z., Yao, R., Li, L. (2023). R-VPCG: RGB 

image feature fusion-based virtual point cloud 

generation for 3D car detection. Displays, 77, 102390.  

https://doi.org/10.1016/j.displa.2023.102390  

[11] Jurado-Rodríguez, D., Jurado, J. M., Pádua, L., Neto, 

A., Muñoz-Salinas, R., Sousa, J. J. (2022). Semantic 

segmentation of 3D car parts using UAV-based images. 

Computers & Graphics, 107, 93-103.  

https://doi.org/10.1016/j.cag.2022.07.008  

[12] Mrovlje, J., Vrančić, D. (2012). Automatic detection of 

the truck position using stereoscopy. In 2012 IEEE 

International Conference on Industrial Technology. 

IEEE, 755-759.  

https://doi.org/10.1109/ICIT.2012.6210029  

[13] Li, S., Han, L., Dong, P., Sun, W. (2022). Algorithm for 

measuring the outer contour dimension of trucks using 

uav binocular stereo vision. Sustainability, 14 (22), 

14978. https://doi.org/10.3390/su142214978  

[14] Fan, X., Xu, G., Li, W., Wang, Q., Chang, L. (2019). 

Target segmentation method for three-dimensional 

LIDAR point cloud based on depth image. Chinese 

Journal of Lasers, 46, 7-15.  

https://doi.org/10.3788/CJL201946.0710002  

[15] Sahin, O., Nezafat, R. V., Cetin, M. (2022). Methods 

for classification of truck trailers using side-fire light 

detection and ranging (LiDAR) data. Journal of 

Intelligent Transportation Systems, 26 (1), 1-13.  

https://doi.org/10.1080/15472450.2020.1733999  

[16] Sahin, O., Cetin, M., Ustun, I. (2021). Detecting empty 

and loaded platform semi-trailers using side-fire 

LiDAR data for supporting freight analysis. Case 

Studies on Transport Policy, 9 (3), 1035-1041.  

https://doi.org/10.1016/j.cstp.2021.05.006  

[17] Wei, S., Niu, D., Li, Q., Chen, X., Liu, J. (2019). A 3D 

vehicle recognition system based on point cloud library. 

In 2019 Chinese Control Conference (CCC). IEEE, 

7023-7027. 

https://doi.org/10.23919/ChiCC.2019.8865898  

[18] Wang, S., Zhang, H., Wang, G., Liu, R., Huo, J., Chen, 

B.  (2022). FGRSC: Improved calibration for spinning 

LiDAR in unprepared scenes. IEEE Sensors Journal, 22 

(14), 14250-14262.  

https://doi.org/10.1109/JSEN.2022.3176979  

[19] Wang, S., Zhang, H., Wang, G. (2023). OMC-SLIO: 

Online multiple calibrations spinning LiDAR inertial 

odometry. Sensors, 23 (1), 248.  

https://doi.org/10.3390/s23010248  

[20] Suss, A., Rochus, V., Rosmeulen, M., Rottenberg, X. 

(2016). Benchmarking time-of-flight based depth 

measurement techniques. In Smart Photonic and 

Optoelectronic Integrated Circuits XVIII. SPIE, 9751, 

199-217. https://doi.org/10.1117/12.2212478  

[21] Miao, Y., Li, C., Li, Z., Yang, Y., Yu, X. (2021). A 

novel algorithm of ship structure modeling and target 

identification based on point cloud for automation in 

bulk cargo terminals. Measurement and Control, 54, 

155-163. https://doi.org/10.1177/0020294021992804  

Received May 8, 2024 

Accepted April 9, 2025 

 

https://doi.org/10.1016/j.fcr.2015.12.011
https://doi.org/10.1177/00202940221092043
https://doi.org/10.1109/JRFID.2022.3213852
https://doi.org/10.14128/j.cnki.al.20224201.091
https://doi.org/10.1109/TRO.2016.2624754
https://doi.org/10.1007/s10462-012-9365-8
https://doi.org/10.1016/j.tre.2021.102590
https://doi.org/10.1109/CASE49997.2022.9926488
https://doi.org/10.1016/j.displa.2023.102390
https://doi.org/10.1016/j.cag.2022.07.008
https://doi.org/10.1109/ICIT.2012.6210029
https://doi.org/10.3390/su142214978
https://doi.org/10.3788/CJL201946.0710002
https://doi.org/10.1080/15472450.2020.1733999
https://doi.org/10.1016/j.cstp.2021.05.006
https://doi.org/10.23919/ChiCC.2019.8865898
https://doi.org/10.1109/JSEN.2022.3176979
https://doi.org/10.3390/s23010248
https://doi.org/10.1117/12.2212478
https://doi.org/10.1177/0020294021992804

