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Abstract: Early anomaly detection plays a central role in the scientific maintenance of mechanical equipment. Although the application is
limited by weak monitoring, it encounters the problem of missing labels. To overcome this challenge, the Gramian gray level co-occurrence
matrix (GGLCM) analysis method is proposed, which includes three phases: first, the time-series are input into the Gramian angular field
(GAF) in real time for signal dimension reconstruction. Second, the gray level co-occurrence matrix (GLCM) is applied to the reconstructed
signal. Since the GAF preserves the dependencies in the time-series, the limitation of missing labels is significantly weakened. Third,
a continuous alarm mechanism is developed for reliable detection. Finally, the GGLCM is verified by actual vibration datasets of overloaded

bearings.
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1. INTRODUCTION

In view of the increasing maintenance requirements for
heavy rotating machinery, there is an increased need for
improved reliability and stability in early anomaly detection
[1].

Early anomaly detection can predict the abnormal mode in
time according to the degradation rules. Unlike serious stage
fault, early anomaly detection is difficult due to its great
similarity with normal series. Therefore, the detection method
is still in the initial stage [2]. Current early anomaly detection
methods are divided into the following three categories:
knowledge-driven method, model-driven method, and data-
driven method [3].

The knowledge-driven method centers on establishing an
expert prognosis platform that utilizes prior knowledge for
fault detection through knowledge reasoning. Its merit lies in
improving the scope and extension. In particular, Rojas et al.
[4] proposed a knowledge-based fuzzy logic approach for
predicting incipient faults in turbidity sensors at the water
intake stage. Xu et al. [5] developed a belief rule-based expert
system tailored for anomaly detection in marine diesel
engines, providing accurate results even at low particle
concentrations.

In contrast, the model-driven method aims to construct
mathematical models to explain early anomaly mechanisms.
By incorporating considerations of the equipment structural
mechanisms, this method achieves higher detection accuracy
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compared to the prevailing approaches. Angelo et al. [6]
applied a particle filtering algorithm for early-stage fault
diagnosis, while Wang et al. [7] developed a distribution
network fault prediction mechanism based on minimum
hitting set characteristics.

Unfortunately, in many industrial systems, it is difficult to
obtain expert prior knowledge and build fault-specific
mechanism models. Consequently, the aforementioned
knowledge-driven and model-driven methods have practical
limitations. However, the data-driven method provides
effective insights into early anomaly detection as it does not
rely on prior knowledge or precise mechanism models. By
leveraging historical data, this approach reveals the mapping
relationship between the fault cause and the label, making it
suitable for implicit modeling [8], especially in the context of
early anomaly detection. Despite the increasing importance
of data-driven methods for prediction, certain issues remain
noteworthy. In addition to the frequently discussed
challenges of early anomaly feature extraction and data
imbalance caused by complicated working conditions, often
underestimated factors include the sensitivity and real-time
nature of the algorithms. The current state-of-the-art (SOTA)
algorithms tend to rely heavily on the inherent properties of
the data.

To solve the aforementioned problems, this paper proposes
a mathematical method for early anomaly detection, namely,
the Gramian gray level co-occurrence matrix (GGLCM)
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analysis method for mechanical vibration data with poor
quantity, especially missing labels or non-labels. Inspired by
the pixel level enhancement of image features, this method
reconstructs real-time data from one dimension into two
dimensions through the Gramian angular field (GAF), fixing
the time series in the corresponding reconstructed images.
Meanwhile, the gray level co-occurrence matrix (GLCM)
helps to ensure the extraction and fusion of the real-time
features. Then, the continuous anomaly alarm mechanism
works for the real-time updated threshold calculated by the
real-time features to locate the timing position of early
anomalies. The main contributions are as follows:

1. A GAF-based signal processing method for mechanical
vibration data was developed. It can effectively enhance
the signal features from the perspective of dimensional
reconstruction and is more efficient than other post-
enhancement processing methods.

2. First application of GLCM for image-based analysis of
mechanical equipment faults, which enables robust
anomaly feature extraction.

3. The developed real-time continuous alarm mechanism
guarantees both the sensitivity and reliability of early
anomaly detection.
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Fig. 1. The diagram of the proposed GGLCM method.

2. METHODOLOGY

In this section, we will first present the problem
description. Then a detailed introduction to the GGLCM will
be given. In addition, the crucial application methods are
comprehensively explained with the help of mathematical
logic.

A. Problem description

Assume that a certain subset of the original dataset contains
C different fault-labeled sample sets (X", Y*/)%_,, where

ANE
for each sample set (X%, YEi) , X/ = {xl.E’} S e RN,
i=1
. E\E; .
and YEi = {yl.’} 7 e R™™™ and M represents feature
i=1

dimensions, x; * denotes vibration signals, and y, * represents
fault labels, i.e. 0 or 1. Furthermore, assume that the other
certain subset of continuous data input still contains

corresponding C different time-labeled sample sets
(X%, YFi)S_,, where for each sample set (X", Y™)),
XFi = {xff}r_lFf e R and YFi = {yiFf}T_lFf e R"*M.
i=1 =1
Therefore, the complete representation of two consecutive
labeled vibration signals can be expressed as (XEitF)),
yEFD)2E, - In addition, the unlabeled data, i.e.
(x"i, None)§_, is substituted for the original (X"J, Y/)$_,,
resulting in a complete set of historical fault signals denoted
as (X%i*Fi, yFitNemeyaC, - Our task is to calculate an
effective threshold ¥ as a conditional parameter in order to
obtain a regression label: ¥((x"i*"i, y#i*None)aC )  used
to discriminate between the mechanical fault and non-fault
stages. When the other certain subset is used for ¥, there is
a new threshold ¥* based on ¥. The mapping between the
predicted label values and the continuous new data is then as
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follows:  YFest = w( Xtest, (x5, YENC_, (X7, YFS,).
Our idea is that the GGLCM maintains a high representation
capacity even when the parameters are updated with new
data, so as to minimize the discrepancy between the predicted
temporal label and the actual fault time. In other words:
YFest = YFest =~ yFactual,

B. Structure of GGLCM

GGLCM is a high-quality signal processing method based
on fault signal dimension reconstruction and texture analysis
of fault images. Its main components are a GAF fault
dimension reconstruction algorithm based on segmented fault
cycles and a GLCM algorithm for capturing and analyzing
the texture features of fault images. The detailed algorithm is
shown in Fig. 1.

Given training data {X%,YF} € R¥*M+1 where N is the
number of samples, M is the feature dimensions, and “1”
means that the predicted label is one-dimensional. To
compress the amount of data, we calculate the length based
on the rotation speed and sampling frequency to ensure that
each coding length contains enough information.

XE N X rpm
=12, 0, ——— 1
m " 60 X [, @)

where rpm (r/min) is the rotation speed and f; (Hz) is the
sampling frequency. By piecewise aggregation approxi-
mation (PAA) a new sequence is encoded by

k yE 2k yE E
Zlei k+1Xmo z:(n 1)k+1 mp

L nk

)

where X7, X5 ., and Xﬁlp denote the corresponding

amplitudes in the XE, I, € XE. The representation of I, in
the polar coordinate can be calculated by

7 =arccos(ly), I = exp (=II]) & (0,1) ®)

where @} denotes the polar coordinate representation of the
sample point in I,. Each element in the Gramian matrix is
decoded by

cos((Z)1 + 0%) cos(@j £ B%)
GE = : 4)
cos((Z)Ll + 0L cos(@y + O%)

Now we can represent the original input signal as
(GE,YE) e RV*(M+1) By analogy, the newly fault-labeled
and non-fault-labeled input signal can be denoted as
(GE,YE)and (GE, None), respectively. Since GAF is formed
by the primary information on the main diagonal and the
secondary information in other areas, we have defined
6, = 135°, 6 = 0° or 90° as the two different directions of the
gray levels. The GLCM of the primary information in GE is
given by

N G (0,161, d)

GLCM,,(GE) = —_——
21(Gm) k=1GE, (any|6,,d) ®)

0<i<256
0<j<256
where d is the defined distance, i and j denote the pixel

pairs. By analogy, the secondary information in GZ is given
as GLCMy,(GE), and the entire GGLCM of GE is given by

GLCM(GE) = GLCMp,(GE) + GLCM,,(GE) (6)

In each GGLCM, we have divided the potential feature into
five parts: contrast (CON), angular second moment (ASM),
entropy (ENT), inverse differential moment (IDM), and
correlation (CORR). These evaluation metrics are as follows:

CON =" (= *GLCM(GE) %
7 J
ASM = GLCM(GE)?
Z Z,- (Gm) ®)
ENT = Z Z GLCM(GE)log (GLCM(GE)) ©)
7 J
GLCM(GE)
IbM = ZZ 1+(1—-))? (10)

D *( —J)*GLCM (Gy)?
Varience

quanty quanty (l
CORR = Z z

11)

Let the calculated feature quantities be represented as
feature set f(GLCM, V). Perform a pairwise monotonicity
ranking of the features in the set using the Spearman
correlation coefficient until the five feature quantities are
monotonically sorted. The monotonicity score is given by

6Xod}

nn? —1) (12)

p=

where d; is the difference between the rankings of two
variables and n is the number of observations. Thus, we

obtain a ranked feature set f (GLCM, (Vf|p)).

Next, we perform a PCA analysis on f (GLCM, (Vf|p)),

the first two principal components, PCA1 and PCA2, are used
to fuse the features, which can be given by

(f (6Lem, (v1p)) - #(f))T
=VA

a(f)

1
" (1 (6Lem, (v0)) ~ w(h)
4
o

v f (6Lem, (V1)) s

(13)
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where V denotes the eigenvectors corresponding to the
covariance matrix and A denotes the diagonal matrix. Thus,
GAF_GLCM is reduced from 5 dimensions to 1 dimension.
We perform three rounds of first-order exponential
smoothing on Y/7x, yt(l) (Z)and y(3) are the smoothing

values for the first, second, and third rounds, respectively.

@ (1)

¥ = eVt @ + (- 0y, 3 =Yg (0)

12 = a4 (1 - @y = o7 (14)
3 2 3

v = ay® + 1 - )y, Cl =%

where « is the smoothing coefficient. We perform the second
Z-score normalization on yt(3), obtaining a new normalized
sequence, i.e., Y1.ry = [¥1, -es ¥e» -, Y], Which is considered
as the final oscillation sequence.

We have designed a robust continuous fault alarm
mechanism. Given as a calculated current fusion parameter
denoted as y,. Then the threshold for the i moment can be
expressed as y- and the anomaly label at time i is L;. The
alarm mechanism is shown in Algorithm 1.

Algorithm 1. Continuous fault alarm mechanism.

Data: Fusion parameters yr, Threshold y%, New data y,*/
Result: Anomaly labels L;

l:fori<1tondo
l+]

YT « f(YT Y )
SL « 2]:1—9(}’7* < yqj"_l)
If S; = 10 then
L; < 1,
else
L; «0;

~No ok w N

3. EXPERIMENTS

A. Experimental setup

In this paper, the proposed method was validated using two
datasets:
e The public XJTU-SY bearing dataset [9].
e The private dataset with overloaded gearboxes from
Nanjing High Speed Gears (NGC) Co., Ltd.
NGC experimental platform is shown in Fig. 2.

——( e g e

Fig. 2. NGC overloaded gearbox fatigue life test bench.

As shown in Fig. 3, cracks (3 mm length, 0.2 mm width,
0.2 mm depth) can be seen in the output stage on the inner
and outer races of the third sun gear near the output-side
bearing. Three holes (0.15 mm diameter, 1.5 mm depth) are
drilled in the circumferential direction and target selected
rolling elements. The parameters of the test gearbox are also
listed in Table 1. The fatigue life test procedure of the steel
press gearbox is shown in Fig. 4.

Item 261 bearing:
One crack is deli-
. berately induced on
both the inner and
> outer races of the
e bearing, accompan-
’ : ied by the drilling
of a single hole on
d y 5 a designated rolling
& . 1D % *| @ =

- S D @ @ ) »&) & 5y

L= = =

clement.

Fig. 3. Schematic diagram of fault implantation.

Table 1. The parameters of the test gearbox.

Parameters Parameter values
Type MPGH2H900K63H
Rotation speed ratio 62.402

Rated power [kW] 710

Input rotation speed [rpm] 1490

Maximum input torque [N-m] 10032

Maximum output torque [KN-m] 626

Lubricating oil type ISO VG 320
Oil flow rate of lubrication station [I/min] 125

Oil mass [1] 230

1.6x10° 7 —e— Input Speed (r/min) 4 800
5 1.0x10°[ 700

1.4x10% - —— Input Torque (N.m)

1.2x10% | @ Time (min) 8.0x10°% [ 600

I 500

1.0x10° 6.0x10°F 400

8.0x10? 4.0x10° F- 300

6.0x10? 2.0x10°F 2%

4.0x10? _ 100
) 0.0 0

2.0x10° T T T T T T T T T T T

Step 1 2 3 4 5 6 7 8 9 10 11
Input Speed 300 600 900 1200 1480 1480 1480 1480 1480 1480 1480
Input Torque 0 0 0 0 0 1138 2276 3186 3641 4551 10032

Time 10 10 10 10 10 30 30 30 30 720 720

Fig. 4. Fatigue life test procedure of a steel press gearbox.

B. Validation results

The proposed method is implemented without using any
machine learning framework and validated on an Nvidia 3090
GPU and an Intel ® Xeon ® Gold 6248R CPU @ 3.00 GHz.

This research is solely concerned with validating the
proprietary approach in terms of accuracy and generalization
under different operating conditions. Two datasets were
selected from each operating condition of the XJTU-SY
dataset, specifically Bearingl_1, Bearingl_3, Bearing2_2,
Bearing2_4, Bearing3_1, and Bearing3_4. Table 2 shows the
detailed results for XJTU-SY datasets with missing labels as
new data was gradually entered, the predicted labels remained
unchanged, theoretically illustrating the low false alarm rate
and high reliability of this method. Fig. 5 illustrates clear
deterioration trends that are very similar to the actual state of
the respective bearings. This observation shows that GGLCM
is capable of detecting early, subtle fault shocks.

160



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 4, 157-163

Table 2. The detailed results for XJTU-SY datasets.

Subject Input ratio YFactuat YFest YFest [s] Acc* [%]
[%] [s] [s] +10 % +20 % +30 % +0% +10% +20% +30%
Bearingl 1 70 4 393.95 4712.06 4712.06 4712.06 471206 95.69 9569 9569 95.69
Bearingl 3 70 5578.64 5568.23 5568.23 5568.23 5568.23 99.81 99.81 99.81 99.81
Bearing2_2 70 2 848.64 2949.91 294991 2949.91 294991 9644 9644 96.44 96.44
Bearing2_4 70 1798.43 1830.34 1830.34 1830.34 1830.34 9822 9822 98.22 98.22
Bearing3_4 70 55 195.86 56 648.44 56 648.44 56 648.44 56 648.44  97.37 97.37 97.37 97.37
Bearing3 5 70 1346.31 1435.74 1435.74 1435.74 1435.74 93.36 93.36 93.36 93.36
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Fig. 5. The temporal evolution of variable yi (the results of early anomaly detection on XJTU-SY). (a) Bearingl_1, (b) Bearingl_3,
(c) Bearing2_2, (d) Bearing2_4, (e) Bearing3_1, (f) Bearing3_4.
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C. Evolutions of the GGLCM anomaly detection ability

In addition, the NGC dataset with missing labels is used to
validate the SOTA of this methodology. Fig. 6 shows that the
current method maintains robust detection accuracy even
under the challenging working conditions of heavy load and
high speed, thus providing effective early warning.

) > 3 Fusion features
£ 600 ’ g i Threshold
= y Fault

Fusion features
>
(=3
(=}

80000 100000 120000 140000
Time (s)

d . 20000 40000 60000
Fig. 6. The detection result on the NGC dataset.

Three groups of SOTA methods are performed on the NGC
dataset, including self-adaptive deep feature matching
(SDFM) [10], time-series transfer learning (TSTL) [11], and
GGLCM.

(B sprv [ TSTL -(;(;1.('1\1[

Procrastination ratio

GGLCM
b

...........

Fig. 7. Performance comparison of three SOTA methods.

Fig. 7 shows that the average detection accuracy of
GGLCM is higher than that of SDFM and TSTL by 9.9 % and
4.9 %, respectively. In particular, GGLCM has an
overwhelming advantage in the procastination ratio. The
primary factor is that GGLCM minimizes the dependence on
computer hardware resources and timing labels.

In summary, the GGLCM method effectively detects early
anomalies under label scarcity: by using GAF to transform
1D vibration signals into 2D images, combined with GLCM
for texture extraction and a continuous alarm mechanism, it
achieves >93 % accuracy on the XJTU-SY and NGC
datasets. It outperforms SOTA methods such as SDFM and
TSTL and adapts to industrial environments with scarce
labels. Future work could explore deep learning integration,
multi-sensor fusion, or edge computing optimization for real-
time use.

4, CONCLUSION

This paper presents the GGLCM method, which utilizes
GAF to convert 1D mechanical vibration signals into 2D
feature graphs and applies GLCM analysis to extract texture
features, complemented by a continuous alarm mechanism
for early anomaly detection under label scarcity.
Experimental results with different datasets demonstrate the
superior performance of GGLCM: in the XJTU-SY bearing
dataset, GGLCM achieves a detection accuracy of
95.69-99.81 % for early faults, with an average of 97.3 %,
while the industrial NGC heavy-load gearbox dataset has an
accuracy of 98.7 % in label-scarce scenarios.

Compared to SOTA methods, GGLCM outperforms
SDFM by 9.9 % and TSTL by 4.9 % in overall accuracy, with
a procastination ratio reduced by 30% compared to
conventional approaches.

Future research could focus on integrating GGLCM with
lightweight neural networks to automate feature optimization
(targeting a 15 % reduction in computational latency),
extending it to multi-sensor fusion for complex machinery
systems, or optimizing it for edge devices to enable low-
power, real-time deployment in resource-constrained
industrial environments. These advancements would further
cement GGLCM as a robust, data-efficient solution for early
anomaly detection in rotating machinery.
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