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Abstract: Early anomaly detection plays a central role in the scientific maintenance of mechanical equipment. Although the application is 

limited by weak monitoring, it encounters the problem of missing labels. To overcome this challenge, the Gramian gray level co-occurrence 

matrix (GGLCM) analysis method is proposed, which includes three phases: first, the time-series are input into the Gramian angular field 

(GAF) in real time for signal dimension reconstruction. Second, the gray level co-occurrence matrix (GLCM) is applied to the reconstructed 

signal. Since the GAF preserves the dependencies in the time-series, the limitation of missing labels is significantly weakened. Third, 

a continuous alarm mechanism is developed for reliable detection. Finally, the GGLCM is verified by actual vibration datasets of overloaded 

bearings. 
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1. INTRODUCTION 

In view of the increasing maintenance requirements for 
heavy rotating machinery, there is an increased need for 
improved reliability and stability in early anomaly detection 
[1]. 

Early anomaly detection can predict the abnormal mode in 
time according to the degradation rules. Unlike serious stage 
fault, early anomaly detection is difficult due to its great 
similarity with normal series. Therefore, the detection method 
is still in the initial stage [2]. Current early anomaly detection 
methods are divided into the following three categories: 
knowledge-driven method, model-driven method, and data-
driven method [3]. 

The knowledge-driven method centers on establishing an 
expert prognosis platform that utilizes prior knowledge for 
fault detection through knowledge reasoning. Its merit lies in 
improving the scope and extension. In particular, Rojas et al. 
[4] proposed a knowledge-based fuzzy logic approach for 
predicting incipient faults in turbidity sensors at the water 
intake stage. Xu et al. [5] developed a belief rule-based expert 
system tailored for anomaly detection in marine diesel 
engines, providing accurate results even at low particle 
concentrations. 

In contrast, the model-driven method aims to construct 
mathematical models to explain early anomaly mechanisms. 
By incorporating considerations of the equipment structural 
mechanisms, this method achieves higher detection accuracy 

compared to the prevailing approaches. Angelo et al. [6] 
applied a particle filtering algorithm for early-stage fault 
diagnosis, while Wang et al. [7] developed a distribution 
network fault prediction mechanism based on minimum 
hitting set characteristics. 

Unfortunately, in many industrial systems, it is difficult to 

obtain expert prior knowledge and build fault-specific 

mechanism models. Consequently, the aforementioned 

knowledge-driven and model-driven methods have practical 

limitations. However, the data-driven method provides 

effective insights into early anomaly detection as it does not 

rely on prior knowledge or precise mechanism models. By 

leveraging historical data, this approach reveals the mapping 

relationship between the fault cause and the label, making it 

suitable for implicit modeling [8], especially in the context of 

early anomaly detection. Despite the increasing importance 

of data-driven methods for prediction, certain issues remain 

noteworthy. In addition to the frequently discussed 

challenges of early anomaly feature extraction and data 

imbalance caused by complicated working conditions, often 

underestimated factors include the sensitivity and real-time 

nature of the algorithms. The current state-of-the-art (SOTA) 

algorithms tend to rely heavily on the inherent properties of 

the data. 

To solve the aforementioned problems, this paper proposes 

a mathematical method for early anomaly detection, namely, 

the Gramian gray level co-occurrence matrix (GGLCM) 
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analysis method for mechanical vibration data with poor 

quantity, especially missing labels or non-labels. Inspired by 

the pixel level enhancement of image features, this method 

reconstructs real-time data from one dimension into two 

dimensions through the Gramian angular field (GAF), fixing 

the time series in the corresponding reconstructed images. 

Meanwhile, the gray level co-occurrence matrix (GLCM) 

helps to ensure the extraction and fusion of the real-time 

features. Then, the continuous anomaly alarm mechanism 

works for the real-time updated threshold calculated by the 

real-time features to locate the timing position of early 

anomalies. The main contributions are as follows: 

1. A GAF-based signal processing method for mechanical 

vibration data was developed. It can effectively enhance 

the signal features from the perspective of dimensional 

reconstruction and is more efficient than other post-

enhancement processing methods. 

2. First application of GLCM for image-based analysis of 

mechanical equipment faults, which enables robust 

anomaly feature extraction. 

3. The developed real-time continuous alarm mechanism 

guarantees both the sensitivity and reliability of early 

anomaly detection. 

 

 

Fig. 1.  The diagram of the proposed GGLCM method. 

 

2. METHODOLOGY 

In this section, we will first present the problem 

description. Then a detailed introduction to the GGLCM will 

be given. In addition, the crucial application methods are 

comprehensively explained with the help of mathematical 

logic. 

A. Problem description 

Assume that a certain subset of the original dataset contains 

C different fault-labeled sample sets  (𝑋𝐸𝑗, 𝑌𝐸𝑗)𝑗=1
𝐶 , where 

for each sample set (𝑋𝐸𝑗, 𝑌𝐸𝑗) , 𝑋𝐸𝑗 = {𝑥
𝑖

𝐸𝑗
}
𝑖=1

𝑛𝐸𝑗
∈ ℝ

𝑛𝐸𝑗×𝑀, 

and  𝑌𝐸𝑗 = {𝑦
𝑖

𝐸𝑗
}
𝑖=1

𝑛𝐸𝑗
∈ ℝ

𝑛𝐸𝑗×𝑀, and M represents feature 

dimensions, 𝑥
𝑖

𝐸𝑗
 denotes vibration signals, and 𝑦

𝑖

𝐸𝑗
 represents 

fault labels, i.e. 0 or 1. Furthermore, assume that the other 

certain subset of continuous data input still contains 

corresponding C different time-labeled sample sets 

(𝑋𝐹𝑗 , 𝑌𝐹𝑗)𝑗=1
𝐶 , where for each sample set (𝑋𝐹𝑗 , 𝑌𝐹𝑗), 

 𝑋𝐹𝑗 = {𝑥
𝑖

𝐹𝑗
}
𝑖=1

𝑛𝐹𝑗
∈ ℝ

𝑛𝐹𝑗×𝑀, and  𝑌𝐹𝑗 = {𝑦
𝑖

𝐹𝑗
}
𝑖=1

𝑛𝐹𝑗
∈ ℝ

𝑛𝐹𝑗×𝑀. 

Therefore, the complete representation of two consecutive 

labeled vibration signals can be expressed as (𝑋(𝐸𝑗+𝐹𝑗),

𝑌(𝐸𝑗+𝐹𝑗))𝑗=1
2𝐶 . In addition, the unlabeled data, i.e. 

(𝑋𝐹𝑗 , 𝑁𝑜𝑛𝑒)𝑗=1
𝐶  is substituted for the original (𝑋𝐹𝑗, 𝑌𝐹𝑗)𝑗=1

𝐶 , 

resulting in a complete set of historical fault signals denoted 

as (𝑋𝐸𝑗+𝐹𝑗 , 𝑌𝐸𝑗+𝑁𝑜𝑛𝑒)𝑗=1
2𝐶 . Our task is to calculate an 

effective threshold  as a conditional parameter in order to 

obtain a regression label:  〈(𝑋𝐸𝑗+𝐹𝑗 , 𝑌𝐸𝑗+𝑁𝑜𝑛𝑒)𝑗=1
2𝐶 〉 , used 

to discriminate between the mechanical fault and non-fault 

stages. When the other certain subset is used for Ψ, there is 

a new threshold Ψ* based on Ψ. The mapping between the 

predicted label values and the continuous new data is then as 
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follows: 𝑌𝐹𝑒𝑠𝑡
∗
= 𝛹∗〈 𝑋𝑡𝑒𝑠𝑡 , (𝑋𝐸𝑗 , 𝑌𝐸𝑗)𝑗=1

𝐶 , (𝑋𝐹𝑗 , 𝑌𝐹𝑗)𝑗=1
𝐶 〉. 

Our idea is that the GGLCM maintains a high representation 

capacity even when the parameters are updated with new 

data, so as to minimize the discrepancy between the predicted 

temporal label and the actual fault time. In other words: 

𝑌𝐹𝑒𝑠𝑡
∗
≅ 𝑌𝐹𝑒𝑠𝑡 ≅ 𝑌𝐹𝑎𝑐𝑡𝑢𝑎𝑙. 

B. Structure of GGLCM 

GGLCM is a high-quality signal processing method based 

on fault signal dimension reconstruction and texture analysis 

of fault images. Its main components are a GAF fault 

dimension reconstruction algorithm based on segmented fault 

cycles and a GLCM algorithm for capturing and analyzing 

the texture features of fault images. The detailed algorithm is 

shown in Fig. 1. 

Given training data  {𝑋𝐸 , 𝑌𝐸} ∈ ℝ𝑁×(𝑀+1)  where N is the 

number of samples, M is the feature dimensions, and “1” 

means that the predicted label is one-dimensional. To 

compress the amount of data, we calculate the length based 

on the rotation speed and sampling frequency to ensure that 

each coding length contains enough information. 

 

𝑋𝑚
𝐸 =

𝑋𝐸

𝑚
, 𝑚 = 1,2, … ,

𝑁 × 𝑟𝑝𝑚

60 × 𝑓𝑠
 (1) 

 

where rpm (r/min) is the rotation speed and 𝑓𝑠 (Hz) is the 

sampling frequency. By piecewise aggregation approxi-

mation (PAA) a new sequence is encoded by 

 

𝐼𝑘 = [
∑ 𝑋𝑚𝑖

𝐸𝑘
1

𝑘
,
∑ 𝑋𝑚𝑜

𝐸2𝑘
𝑘+1

2𝑘
,… ,

∑ 𝑋𝑚𝑝
𝐸𝑛𝑘

(𝑛−1)𝑘+1

𝑛𝑘
] (2) 

 

where 𝑋𝑚𝑖
𝐸 , 𝑋𝑚𝑜

𝐸 , and 𝑋𝑚𝑝
𝐸  denote the corresponding 

amplitudes in the 𝑋𝑚
𝐸 ,  𝐼𝑘 ∈ 𝑋𝑚

𝐸 . The representation of 𝐼𝑘 in 

the polar coordinate can be calculated by 

 

∅𝑘
𝑛 = arccos(𝐼𝑘̅),  𝐼𝑘̅ = exp (−|𝐼𝑘|) ∉ (0,1) (3) 

 

where ∅𝑘
𝑛 denotes the polar coordinate representation of the 

sample point in 𝐼𝑘. Each element in the Gramian matrix is 

decoded by 

 

𝐺𝑚
𝐸 = [

cos(∅𝑘
1 ± ∅𝑘

1) … cos(∅𝑘
1 ± ∅𝑘

𝑛)
⋮ ⋱ ⋮

cos(∅𝑘
𝑛 ± ∅𝑘

1) … cos(∅𝑘
𝑛 ± ∅𝑘

𝑛)
] (4) 

 

Now we can represent the original input signal as 

(𝐺𝑚
𝐸 , 𝑌𝐸) ∈ ℝ𝑁×(𝑀+1). By analogy, the newly fault-labeled 

and non-fault-labeled input signal can be denoted as  

(𝐺𝑚
𝐸 , 𝑌𝐸) and (𝐺𝑚

𝐸 , 𝑁𝑜𝑛𝑒), respectively. Since GAF is formed 

by the primary information on the main diagonal and the 

secondary information in other areas, we have defined 

1 = 135°, 2 = 0° or 90° as the two different directions of the 

gray levels. The GLCM of the primary information in 𝐺𝑚
𝐸  is 

given by 

 

𝐺𝐿𝐶𝑀Δ1(𝐺𝑚
𝐸 ) = ∑ ∑

𝐺𝑚𝑘
𝐸 (𝑖, 𝑗|𝜃1, 𝑑)

𝐺𝑚𝑘
𝐸 (𝑎𝑛𝑦|𝜃1, 𝑑)

𝑁

𝑘=1
0≤𝑖≤256
0≤𝑗≤256

 
(5) 

 

where d is the defined distance, i  and j  denote the pixel 

pairs. By analogy, the secondary information in 𝐺𝑚
𝐸  is given 

as 𝐺𝐿𝐶𝑀Δ2(𝐺𝑚
𝐸 ), and the entire  GGLCM of  𝐺𝑚

𝐸  is given by 

 

𝐺𝐿𝐶𝑀(𝐺𝑚
𝐸 ) = 𝐺𝐿𝐶𝑀Δ1(𝐺𝑚

𝐸 ) + 𝐺𝐿𝐶𝑀Δ2(𝐺𝑚
𝐸 ) (6) 

 

In each GGLCM, we have divided the potential feature into 

five parts: contrast (CON), angular second moment (ASM), 

entropy (ENT), inverse differential moment (IDM), and 

correlation (CORR). These evaluation metrics are as follows: 

 

𝐶𝑂𝑁 =∑∑ (𝑖 − 𝑗)2𝐺𝐿𝐶𝑀(𝐺𝑚
𝐸 )

𝑗
𝑖

 (7) 

 

𝐴𝑆𝑀 =∑∑ 𝐺𝐿𝐶𝑀(𝐺𝑚
𝐸 )2

𝑗
𝑖

 (8) 

 

𝐸𝑁𝑇 =∑∑ 𝐺𝐿𝐶𝑀(𝐺𝑚
𝐸 )log (𝐺𝐿𝐶𝑀(𝐺𝑚

𝐸 ))
𝑗

𝑖

 (9) 

 

𝐼𝐷𝑀 =∑∑
𝐺𝐿𝐶𝑀(𝐺𝑚

𝐸 )

1 + (1 − 𝑗)2𝑗
𝑖

 (10) 

 

𝐶𝑂𝑅𝑅 =∑ ∑
(𝑖 − 𝑖)̅ ∗ (𝑗 − 𝑗)̅ ∗ 𝐺𝐿𝐶𝑀(𝐺𝑚

𝐸 )2

𝑉𝑎𝑟𝑖𝑒𝑛𝑐𝑒

𝑞𝑢𝑎𝑛𝑡𝑘

𝑗=0

𝑞𝑢𝑎𝑛𝑡𝑘

𝑖=0
 

  (11) 

Let the calculated feature quantities be represented as 

feature set 𝑓(𝐺𝐿𝐶𝑀, 𝑉𝑓). Perform a pairwise monotonicity 

ranking of the features in the set using the Spearman 

correlation coefficient until the five feature quantities are 

monotonically sorted. The monotonicity score is given by 

 

𝜌 =
6∑ 𝑑𝑖

2𝑛
𝑖=0

𝑛(𝑛2 − 1)
 (12) 

 

where 𝑑𝑖 is the difference between the rankings of two 

variables and n is the number of observations. Thus, we 

obtain a ranked feature set 𝑓 (𝐺𝐿𝐶𝑀, (𝑉𝑓|𝜌)). 

Next, we perform a PCA analysis on 𝑓 (𝐺𝐿𝐶𝑀, (𝑉𝑓|𝜌)), 

the first two principal components, PCA1 and PCA2, are used 

to fuse the features, which can be given by 

𝑌𝑠𝑒𝑙
𝑚×1𝑓 (𝐺𝐿𝐶𝑀, (𝑉𝑓|𝜌)) 𝑆

1

𝑚 − 1

{
  
 

  
 
(
𝑓 (𝐺𝐿𝐶𝑀, (𝑉𝑓|𝜌)) − 𝜇(𝑓)

𝜎(𝑓)
)

𝑇

(
𝑓 (𝐺𝐿𝐶𝑀, (𝑉𝑓|𝜌)) − 𝜇(𝑓)

𝜎(𝑓)
)𝑉

}
  
 

  
 

= 𝑉Λ 

  (13) 
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where V denotes the eigenvectors corresponding to the 

covariance matrix and 𝛬 denotes the diagonal matrix. Thus, 

GAF_GLCM is reduced from 5 dimensions to 1 dimension. 

We perform three rounds of first-order exponential 

smoothing on 𝑌𝑠𝑒𝑙
𝑚×1. 𝑦𝑡

(1)
, 𝑦𝑡

(2)
and 𝑦𝑡

(3)
 are the smoothing 

values for the first, second, and third rounds, respectively. 

 

{

𝑦𝑡
(1)
= 𝛼𝑌𝑠𝑒𝑙

𝑚×1(𝑡) + (1 − 𝛼)𝑦𝑡−1
(1) , 𝑦0

(1) = 𝑌𝑠𝑒𝑙
𝑚×1(0)

𝑦𝑡
(2)
= 𝛼𝑦𝑡

(1)
+ (1 − 𝛼)𝑦𝑡−1

(2)
, 𝑦0

(2) = 𝑦0
(1)                  

𝑦𝑡
(3)
= 𝛼𝑦𝑡

(2)
+ (1 − 𝛼)𝑦𝑡−1

(3)
, 𝑦0

(3) = 𝑦0
(2)                  

 (14) 

 

where 𝛼 is the smoothing coefficient. We perform the second 

Z-score normalization on 𝑦𝑡
(3)

, obtaining a new normalized 

sequence, i.e., 𝑌{1:𝑇} = [𝑦1 , … , 𝑦𝑡 , … , 𝑦𝑇], which is considered 

as the final oscillation sequence. 

We have designed a robust continuous fault alarm 

mechanism. Given as a calculated current fusion parameter 

denoted as 𝑦𝑇 . Then the threshold for the ith moment can be 

expressed as 𝑦𝑇
𝑖  and the anomaly label at time i  is 𝐿𝑖. The 

alarm mechanism is shown in Algorithm 1.  

 

Algorithm 1.   Continuous fault alarm mechanism. 

Data: Fusion parameters 𝑦𝑇, Threshold 𝑦𝑇
𝑖 , New data 𝑦𝑇

𝑖+𝑗
 

Result: Anomaly labels 𝐿𝑖 
1：for 𝑖 ← 1 to n do 

2：  𝑦𝑇
𝑖 ← 𝑓(𝑦𝑇

𝑖−1, 𝑦𝑇
𝑖+𝑗
); 

3：  𝑆𝑖 ← ∑ (𝑦𝑇
𝑗
< 𝑦𝑇

𝑗−1
)𝑖

𝑗=𝑖−9  

4：  If 𝑆𝑖 ≥ 10 then 

5：    𝐿𝑖 ← 1; 

6：  else 

7：    𝐿𝑖 ← 0; 

3. EXPERIMENTS 

A. Experimental setup 

In this paper, the proposed method was validated using two 

datasets: 

• The public XJTU-SY bearing dataset [9]. 

• The private dataset with overloaded gearboxes from 

Nanjing High Speed Gears (NGC) Co., Ltd.  

NGC experimental platform is shown in Fig. 2. 

 

 

Fig. 2.  NGC overloaded gearbox fatigue life test bench. 

As shown in Fig. 3, cracks (3 mm length, 0.2 mm width, 

0.2 mm depth) can be seen in the output stage on the inner 

and outer races of the third sun gear near the output-side 

bearing. Three holes (0.15 mm diameter, 1.5 mm depth) are 

drilled in the circumferential direction and target selected 

rolling elements. The parameters of the test gearbox are also 

listed in Table 1. The fatigue life test procedure of the steel 

press gearbox is shown in Fig. 4. 

 

 

Fig. 3.  Schematic diagram of fault implantation. 

Table 1.  The parameters of the test gearbox. 

Parameters Parameter values 

Type MPGH2H900K63H 

Rotation speed ratio 62.402 

Rated power [kW] 710 

Input rotation speed [rpm] 1 490 

Maximum input torque [N·m] 10 032 

Maximum output torque [kN·m] 626 

Lubricating oil type ISO VG 320 

Oil flow rate of lubrication station [l/min] 125  

Oil mass [l] 230 

 

 

Fig. 4.  Fatigue life test procedure of a steel press gearbox. 

B. Validation results 

The proposed method is implemented without using any 

machine learning framework and validated on an Nvidia 3090 

GPU and an Intel ® Xeon ® Gold 6248R CPU @ 3.00 GHz. 

This research is solely concerned with validating the 

proprietary approach in terms of accuracy and generalization 

under different operating conditions. Two datasets were 

selected from each operating condition of the XJTU-SY 

dataset, specifically Bearing1_1, Bearing1_3, Bearing2_2, 

Bearing2_4, Bearing3_1, and Bearing3_4. Table 2 shows the 

detailed results for XJTU-SY datasets with missing labels as 

new data was gradually entered, the predicted labels remained 

unchanged, theoretically illustrating the low false alarm rate 

and high reliability of this method. Fig. 5 illustrates clear 

deterioration trends that are very similar to the actual state of 

the respective bearings. This observation shows that GGLCM 

is capable of detecting early, subtle fault shocks.  
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Table 2.  The detailed results for XJTU-SY datasets. 

Subject Input ratio 

[%] 
𝑌𝐹𝑎𝑐𝑡𝑢𝑎𝑙  
[s] 

𝑌𝐹𝑒𝑠𝑡  
[s] 

𝑌𝐹𝑒𝑠𝑡
∗

 [s] Acc* [%] 

+10 % +20 % +30 % +0 % +10 % +20 % +30 % 

Bearing1_1 70 4 393.95 4 712.06 4 712.06 4 712.06 4 712.06 95.69 95.69 95.69 95.69 

Bearing1_3 70 5 578.64 5 568.23 5 568.23 5 568.23 5 568.23 99.81 99.81 99.81 99.81 

Bearing2_2 70 2 848.64 2 949.91 2 949.91 2 949.91 2 949.91 96.44 96.44 96.44 96.44 

Bearing2_4 70 1 798.43 1 830.34 1 830.34 1 830.34 1 830.34 98.22 98.22 98.22 98.22 

Bearing3_4 70 55 195.86 56 648.44 56 648.44 56 648.44 56 648.44 97.37 97.37 97.37 97.37 

Bearing3_5 70 1 346.31 1 435.74 1 435.74 1 435.74 1 435.74 93.36 93.36 93.36 93.36 

 

 

     
                                                        (a)                                                                                                            (b)          

 

        
                                                        (c)                                                                                                            (d) 

 

       
                                                        (e)                                                                                                            (f)  

Fig. 5.  The temporal evolution of variable 𝑦𝑇
𝑖  (the results of early anomaly detection on XJTU-SY). (a) Bearing1_1, (b) Bearing1_3, 

(c) Bearing2_2, (d) Bearing2_4, (e) Bearing3_1, (f) Bearing3_4. 
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C. Evolutions of the GGLCM anomaly detection ability 

In addition, the NGC dataset with missing labels is used to 

validate the SOTA of this methodology. Fig. 6 shows that the 

current method maintains robust detection accuracy even 

under the challenging working conditions of heavy load and 

high speed, thus providing effective early warning.  

 

Fig. 6.  The detection result on the NGC dataset. 

Three groups of SOTA methods are performed on the NGC 

dataset, including self-adaptive deep feature matching 

(SDFM) [10], time-series transfer learning (TSTL) [11], and 

GGLCM. 

 

Fig. 7.  Performance comparison of three SOTA methods. 

Fig. 7 shows that the average detection accuracy of 

GGLCM is higher than that of SDFM and TSTL by 9.9 % and 

4.9 %, respectively. In particular, GGLCM has an 

overwhelming advantage in the procastination ratio. The 

primary factor is that GGLCM minimizes the dependence on 

computer hardware resources and timing labels. 

In summary, the GGLCM method effectively detects early 

anomalies under label scarcity: by using GAF to transform 

1D vibration signals into 2D images, combined with GLCM 

for texture extraction and a continuous alarm mechanism, it 

achieves >93 % accuracy on the XJTU-SY and NGC 

datasets. It outperforms SOTA methods such as SDFM and 

TSTL and adapts to industrial environments with scarce 

labels. Future work could explore deep learning integration, 

multi-sensor fusion, or edge computing optimization for real-

time use. 

4. CONCLUSION 

This paper presents the GGLCM method, which utilizes 

GAF to convert 1D mechanical vibration signals into 2D 

feature graphs and applies GLCM analysis to extract texture 

features, complemented by a continuous alarm mechanism 

for early anomaly detection under label scarcity. 

Experimental results with different datasets demonstrate the 

superior performance of GGLCM: in the XJTU-SY bearing 

dataset, GGLCM achieves a detection accuracy of 

95.69-99.81 % for early faults, with an average of 97.3 %, 

while the industrial NGC heavy-load gearbox dataset has an 

accuracy of 98.7 % in label-scarce scenarios. 

Compared to SOTA methods, GGLCM outperforms 

SDFM by 9.9 % and TSTL by 4.9 % in overall accuracy, with 

a procastination ratio reduced by 30 % compared to 

conventional approaches.  

Future research could focus on integrating GGLCM with 

lightweight neural networks to automate feature optimization 

(targeting a 15 % reduction in computational latency), 

extending it to multi-sensor fusion for complex machinery 

systems, or optimizing it for edge devices to enable low-

power, real-time deployment in resource-constrained 

industrial environments. These advancements would further 

cement GGLCM as a robust, data-efficient solution for early 

anomaly detection in rotating machinery. 
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