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Abstract: This study introduces an innovative method for minimizing artifacts in electroencephalography (EEG) signals by integrating 

brainstorm optimization (BSO) with a variational autoencoder generative adversarial network (VAE-GAN), resulting in the BrOpt_VAGAN 

model. EEG signals are critical for the diagnosis of neurological disorders, for brain-computer interface (BCI) applications, and for the 

monitoring of neurological disabilities. However, EEG data often contains artifacts from physiological sources — such as electro-

oculographic (EOG), electromyographic (EMG), and electrocardiographic (ECG) signals — which can distort the accuracy of brain activity 

readings. Our proposed BrOpt_VAGAN model combines BSO with a VAE-GAN framework to more effectively remove these artifacts, 

thus improving the clarity and accuracy of EEG signals. In this model, the VAE first reduces the raw EEG signals into a lower-dimensional 

representation that captures the essential signal patterns while filtering out the noise. The GAN component then refines this representation 

via adversarial training, effectively minimizing artifacts and improving the quality of the processed EEG data. BSO optimally adjusts the 

encoding and decoding parameters within the VAE-GAN structure, enabling the model to handle different noise levels and helps to find 

different neurological disorders. Preliminary results show that BrOpt_VAGAN performs significantly better with an accuracy of 98.5 % and 

an error rate of 11.23 %, enabling a clearer and more precise EEG signal reconstruction.  
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1. INTRODUCTION 

Numerous studies have shown that neurological problems 

are increasing at an alarming rate. The WHO states that one 

in four people worldwide will experience neurological 

problems at some point in their lives [1]. Neurological 

diseases are the second most common disease worldwide 

after ischemic heart disease. Neurological diseases affect 

both the brain and the nervous system of the human body [2]. 

Many neurological disorders are well-documented and rather 

prevalent, while many others are uncommon. Neurological 

difficulties include a variety of conditions, including 

epilepsy, learning disabilities, neuromuscular disorders, 

autism, Alzheimer's disease, attention deficit hyperactive 

disorder  (ADHD),  multiple  sclerosis,  Parkinson's  disease, 

sleep problems, and cerebral palsy. Mental illnesses are 

classified as "psychiatric diseases" and are primarily 

characterized by abnormalities in cognition, emotion, or 

behavior that lead to suffering or functional impairment. 

A variety of brain-imaging modalities are available to 

diagnose neurological disorders, including positron emission 

tomography (PET), near infrared spectroscopy (NIRS), 

magnetoencephalography (MEG), electroencephalography 

(EEG), and functional magnetic resonance imaging (fMRI) 

[3]. This paper emphasizes EEG analysis due to its cost-

effectiveness, non-invasiveness, and portability, making it 

a widely used approach. An EEG systematically monitors and 

records the brain's electrical activity to assess the cerebral 

processes. Many studies use EEG data to detect neurological 
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diseases, neurodevelopmental problems, acute neurological 

events, and patient behavior [4]-[5]. Traumatic brain injury is 

the leading cause of disability and death in children 

worldwide. Over five million Americans are disabled as 

a result of a traumatic brain injury. Researchers believe that 

a computer-aided diagnosis (CAD) system trained on 

extensive patient data and physiologic signals and images 

using advanced signal processing and AI/ML techniques can 

help neurologists, neurosurgeons, radiologists, and other 

medical professionals improve clinical decision-making. 

Research in this area has increased significantly over the last 

ten years.  

In [6], a generalized EEG neural network (GENet) 

architecture is developed based on a convolutional neural 

network, which is able to identify various neurological 

disorders based on EEG data. This paradigm facilitates the 

execution of the essential functions for the categorization 

process. In [7], a deep neural networks (DNN)-based hybrid 

ensemble feature selection (HEFS) Framework for 

Parkinson's disease identification was proposed. Multi-level 

dimensionality reduction (MLDR) is applied to HEFS 

matrices. After normalizing the matrix scores, merging the 

scores, reconstructing a new dataset, and reducing the 

features using neighborhood component analysis (NCA), an 

accuracy rate of 97.08 % and an F1-score of 98.10 % were 

achieved. In [8], a unique expert system was introduced that 

utilizes just EEG information for the early diagnosis of 

schizophrenia. A deep learning network was developed to 

improve the accuracy of the image categorization outcomes. 

In [9]-[11], the use of variable-frequency complex 

demodulation (VFCDM) and convolutional neural networks 

(CNN) to differentiate between healthy, interictal, and ictal 

states was investigated using EEG data. Time frequency 

spectrum (TFS) shows frequency changes across different 

states that correspond to fluctuations in brain activity. The 

LOSO CV method routinely achieves good performance, 

ranging from 90 % to 99 % across different combinations of 

healthy and epileptic states. In [12]-[14], the EEG temporal 

spatial network (ETSNet) is introduced, which includes 

a Squeeze-and-Excitation Block and several CNNs tailored 

for eyes-open and closed resting states. Several limitations 

are evident form the above studies: 

1. The lack of standardized assessment measures and 

datasets makes comparison difficult. 

2. The computational complexity of some deep learning 

models such as CNN with long short term memory 

(LSTM) may limit their practical use. 

2. PROPOSED METHODOLOGY 

An optimization-enhanced variational autoencoder 

generative adversarial network (OE-VAE-GAN) for artifact 

reduction in EEG signals could be a robust approach for 

cleaning EEG data, especially in clinical and research 

contexts where artifact presence (e.g., due to muscle 

movements, eye blinks, or ambient noise) compromises the 

quality of data analysis, as shown in Fig. 1. 

 

Fig. 1.  BSO-VAE-GAN architecture for artifact reduction. 

Probabilistic variational autoencoder (PVA) based filtering 

First define the low-pass filter (LPF) and high-pass filter 

(HPF): 

 𝐿𝑃𝐹[𝑡] =
𝑆[𝑡].𝑤[𝑡]

∑ 𝑆[𝑖].𝑤[𝑖]𝑇−1
𝑖=0

 (1) 

 𝐻𝑃𝐹[𝑡] = 𝛿[𝑡] − 𝐿𝑃𝐹[𝑡] (2) 

where 𝑆[𝑡], 𝑤[𝑡], and 𝛿[𝑡] represent the sinc filter, the 

Hamming window, and the discrete unit impulse function. 

PVA consists of five main parts: feature extractor, encoder, 

sampler, feature generator, and signal reconstructor. The 

model's components work together to synthesize EEG 

signals. The feature extractor 𝑔𝑥(. ) uses cascade filters to 

divide the input signal y into four amplitude-modulated 

subsets 𝑥 ∈ {𝑥𝐻𝐻 , 𝑥𝐻𝐿 , 𝑥𝐿𝐻 , 𝑥𝐿𝐿}, which are the learning 

targets of the feature generator. The encoder 𝑔𝑒(. ) learns the 

distribution parameters of the latent variable z and cutoff 

frequency 𝜃. It makes two assumptions: 

• 𝜃𝑘~𝑢(𝑜, 1) for 𝑘 = 1,2 … .6 stands for six occurrences 

in the proposed model. The Bernoulli distributions 

approximates this distribution. 

• 𝑧𝑗~𝑁(𝜇𝑍𝑗,𝜎𝑧𝑗
2 ) for each dimension  𝑗 ∈ {1,2, … 𝐽}, where 

𝑗 is a hyperparameter that controls the number of 

dimensions. 

The samplers 𝑔𝑧(. ) and 𝑔𝜃(. ) provide a distinct data 

distribution estimate. The method uses reparameterization for 

backpropagation, sampling 𝑧𝑗 and 𝜃𝑘 to allow the gradients to 

flow across the network node. Using the encoder settings, 

feature generator 𝑔𝑧′(. ) creates four feature signals for the 

signal reconstructor. Signal reconstructor 𝑔𝑦(. ) uses the 

generated feature subsets to reconstruct the signals while 

preserving their fundamentals. Monte Carlo (MC) can be 

used to estimate the predicted log likelihood of reconstructing 

raw signals y from reconstructed feature signals x. 
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 −𝐸𝑞,(𝑥, 𝑧, 𝜃|𝑦)
[𝑙𝑜𝑔𝑝(𝑦|𝑥)] ≈ −

1

𝐿
∑ 𝑙𝑜𝑔𝑝(𝑦|𝑥(𝑙))𝐿

𝑙=1  (3) 

where 𝐿 is the number of samples. The mean square error 

(MSE) was reduced instead of the negative log likelihood 

from (4) to maintain convergence stability. 

 𝐽(𝜑𝑦; 𝑦) =
1

𝑁
∑ (𝑦𝑛 − 𝑔𝑛(𝑥𝑛))2𝑁

𝑛=1  (4) 

where the sample index and the total number of training 

samples are 𝑛 and 𝑁, respectively. The optimization of the 

latent variable 𝑍 reduces the Kullback-Leibler divergence 

(KLD) compared to the previous ones. Latent variable Z 

optimization under variational inference for 𝑝(𝑧) requires a 

reduction of the KLD relative to the prior. 

𝐸
𝑞(𝑧|𝑦)𝑞(𝜃|𝑦)𝑞(𝑥|𝑦, 𝜃)[log

𝑞(𝑧|𝑦)

𝑝(𝑧)
]

= 𝐾𝐿𝐷(𝑞(𝑧|𝑦)𝑝(𝑧) (5) 

The Gaussian distribution KLD and a VAE reparametri-

zation method were used for this optimization. 

Generative adversarial network with optimization process 

A GAN consists of two CNNs, a generator and a dis-

criminator, with opposing conditional arguments. In the 

discriminator, we used the Patch-GAN to classify each patch 

as true or generated. The discriminator should punish local 

signal patches to accurately mimic high-frequency 

components. The GAN training total loss function is: 

 𝐿𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦[𝑙𝑜𝑔𝐷(𝑥, 𝑦)] + 𝐸𝑥,𝑦[𝑙𝑜𝑔 (1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧)))]

  (6) 

The generator (G) minimizes the loss function 𝐿𝐺𝐴𝑁(𝐺, 𝐷), 

while the discriminator 𝐷 maximizes it to discriminate 

between the generated samples 𝐺(𝑥, 𝑦) and the actual 

samples 𝑦. We provide the discriminator estimate error loss 

feedback to guarantee successful training. Therefore, the final 

goal function is: 

 𝐺∗ = 𝐴𝑅𝐺 min
𝐺

max
𝐷

𝐿𝐺𝐴𝑁(𝐺, 𝐷) + 𝛾𝐿𝐿1(𝐺) (7) 

where 𝐿𝐿1(𝐺) is an extra 𝐿1 norm based on the generator 

function loss to approximate the ground truth output. 𝛾 is an 

adjustable parameter set to 100. The multi-modal feature-

fusion of image and interaction information L_GAN 𝐿𝐺𝐴𝑁  

causes the generative network to create the same pathological 

feature as the original signal: 

 𝐿𝐺𝐴𝑁 = ∑ 𝑙𝑜𝑔𝐷𝜃𝑥(𝐺𝜃𝑥(𝐼𝛼 , 𝑡))𝑁
𝑛=1  (8) 

where 𝑡 is the interactive information and 𝑁 is the number of 

samples. We use the visual perceptual loss to maintain the 

perceptual similarity. The loss function is: 

 𝐿𝐺𝐴𝑁/𝑖.𝑗 =
1

𝑊𝑖,𝑗𝐻𝑖,𝑗
∑ ∑ (𝜑𝑖,𝑗(𝐼𝑓) − 𝜑𝑖,𝑗(𝐺𝜃𝑔(𝐼𝛼,𝑡))

𝐻𝑖,𝑗

𝑗=1

𝑊𝑖,𝑗

𝑖=1  (9) 

3. PERFORMANCE ANALYSIS 

Dataset description   

In this section, both study datasets are described. The 

CHB-MIT dataset [12] initially included 22 participants: 17 

women aged 1.5-19 years and 5 men aged 3-22 years. The 

collection includes 198 seizures and 969 hours of EEG 

recordings. The number of seizures is lower than the number 

of seizure-free signals. The second dataset, KAU, was 

obtained at 256 Hz from two male scalp EEG patients aged 

28 years. This dataset is similar to the CHB-MIT dataset. The 

subjects' ages were considered. The individuals in the CHB-

MIT dataset are similar to these two cases. In both datasets, 

an age range of 1-28 years was chosen. This is significant as 

age considerably affects the clinical and 

electroencephalographic features of seizures [13]. Both 

individuals had 38-channel EEGs. They had two 495 s 

seizures and four 417 s seizures, respectively. The CHB-MIT 

dataset selects 18 out of 23 channels because they are similar 

to all recordings.  

Experimental setup 

The time-step value in this study varied from 0 to 𝑚 − 𝑡, 

with 𝑡 set to 50. The prior and downstream tasks were each 

trained for 30 epochs with a batch size of 64. The network 

was trained using Python, PyTorch, and an RTX 3060Ti 

GPU. The BrOpt_VAGAN model with its complex VAE and 

GAN components can be very computationally intensive. 

Real-time EEG analysis requires significant hardware 

resources (e.g., GPUs, TPUs) that may not be available in all 

medical settings, especially for portable or low-power 

devices. Here, the modeling findings of the proposed artifact 

elimination method using the BrOpt_VAGAN network are 

quickly investigated. The simulation is performed by 

comparing the results with a number of well-known methods, 

including HEFS+DNN [12], VFCDM+CNN [14]. These are 

done to reduce artifacts due to random noise. The metrics 

used for assessment in this study include MSE and signal to 

noise ratio (SNR). 

The MSE measure describes the difference between the 

real reaction and the intended response: 

 𝑀𝑆𝐸 =
1

𝑁
 (𝑂𝑛 − 𝐷𝑛)2 (10) 

Table 1 shows the accuracy and error calculation for the 

proposed BrOpt_VAGAN method in terms of pseudo-clean 

and noisy input. 

Table 1.  Accuracy performance of the proposed BrOpt_VAGAN 

model. 

 Mixtures of artifact 

components 

Accuracy 

[%] 

Error 

[%] 

Pseudo-clean brain 98.5 12.41 

eye 96.2 11.53 

muscle 97.3 12.74 

Noisy input brain 98.6 11.84 

eye 95.9 11.90 

muscle 93.5 12.56 
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Fig. 2 shows that BrOpt_VAGAN consistently achieves 

the lowest MSE % with values between 11.2 % and 12.6 % 

and thus has superior accuracy. In contrast, HEFS+DNN 

shows stable but higher MSE values (20.1 % to 20.9 %), 

while VFCDM+CNN has the highest MSE % across all 

channels (21.3 % to 21.76 %). This shows that 

BrOpt_VAGAN is the most effective method for error 

reduction regardless of the number of channels, 

outperforming both HEFS+DNN and VFCDM+CNN. 

 

Fig. 2.  Comparison of MSE with the EEG+brain signal artifact. 

Fig. 3 shows the MSE of HEFS+DNN, VFCDM+CNN, 

and BrOpt_VAGAN for EEG signals with eye signal artifacts 

across channels (2 to 10). HEFS+DNN has stable MSE values 

between 19.4 % and 19.5 % and thus shows a constant 

performance. VFCDM+CNN has the highest MSE % (21.5 % 

to 21.9 %), indicating that it is less effective at handling 

artifacts. BrOpt_VAGAN achieves lower MSE values 

(15.3 % to 15.9 %) than VFCDM+CNN but slightly higher 

than HEFS+DNN, suggesting moderate effectiveness in 

reducing artifacts. Overall, HEFS+DNN is the most stable, 

while BrOpt_VAGAN performs better than VFCDM+CNN 

in error minimization. 

 

Fig. 3.  Comparison of MSE with the EEG+eye signal artifact. 

Fig. 4 compares the MSE of the aforementioned methods 

when processing EEG signals with muscle signal artifacts 

over different numbers of channels. HEFS+DNN consistently 

shows the highest MSE %, ranging from 27.4 % to 28.6 %, 

indicating a significant error in handling muscle artifacts. 

VFCDM+CNN achieves lower MSE values, ranging from 

19.2 % to 19.5 %, indicating moderate effectiveness in 

artifact reduction. BrOpt_VAGAN consistently achieves the 

lowest MSE %, with values between 12.3 % and 12.98 %, 

indicating superior performance in minimizing errors due to 

muscle artifacts. Overall, BrOpt_VAGAN is the most 

effective, followed by VFCDM+CNN, while HEFS+DNN is 

the least effective in this context. 

 

Fig. 4.  Comparison of MSE with the EEG+muscle signal artifact. 

4. CONCLUSION 

The proposed study presents a BrOpt_VAGAN framework 

for automated classification of neurological disorders from 

raw EEG data. The experiments are performed with 

BrOpt_VAGAN, a publicly available benchmark dataset. The 

experiments were conducted under closed and open-eye 

conditions, as recommended in the CHB-MIT dataset 

publication and other research papers. The results show that 

the proposed method can improve the maximum performance 

by 98.7 % accuracy on the specified dataset using multiple 

channels. The performance improvement is shown for five-

class classification, which confirms the effectiveness and 

efficiency of the BrOpt_VAGAN framework. Therefore, 

future work will focus on exploring other loss functions 

tailored to imbalanced data or incorporating ensemble 

methods that can also lead to improved accuracy. 

Furthermore, fine-tuning the self-supervised learning 

approach with larger and more diverse datasets could lead to 

better generalization and make the method more reliable in 

practical applications. 

FUNDING 

King Salman Center for Disability Research through 

Research Group Number KSRG-2023-339. The funders had 

no role in the study design, data collection and analysis, the 

decision to publish, or the preparation of the manuscript. 

DATA AVAILABILITY STATEMENT 

The dataset is available under the following reference, 

Little, Max A et al. “Suitability of dysphonia measurements 

for telemonitoring of Parkinson's disease.” IEEE transactions 

on bio-medical engineering vol. 56, 4 (2009): 1015. 

ACKNOWLEDGMENTS 

The authors extend their appreciation to the King Salman 

Center for Disability Research through Research Group 

Number KSRG-2023-339 for supporting this research. 



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 1, 10-14 

14 

REFERENCES 

[1] Raghavendra, U., Acharya, U. R., Adeli, H. (2020). 

Artificial intelligence techniques for automated 

diagnosis of neurological disorders. European 

Neurology, 82 (1-3), 41-64.  

https://doi.org/10.1159/000504292  

[2] Jayanthi, J., Kavitha, M., Jayasankar, T., Britto, A. S. 

F., Prakash, N. B. (2021). Segmentation of brain tumor 

magnetic resonance images using a teaching-learning 

optimization algorithm. Computers, Materials & 

Continua, 68 (3), 4191-4203.  

https://doi.org/10.32604/cmc.2021.012252  

[3] Stephe, S., Jayasankar, T., Kumar, K. V. (2022). Motor 

imagery EEG recognition using deep generative 

adversarial network with EMD for BCI applications. 

Technical Gazette, 29 (1), 92-100.  

https://doi.org/10.17559/TV-20210121112228  

[4] Tawhid, M. N. A., Siuly, S., Wang, K., Wang, H. 

(2024). GENet: A generic neural network for detecting 

various neurological disorders from EEG. IEEE 

Transactions on Cognitive and Developmental Systems, 

16 (5), 1829-1842.  

https://doi.org/10.1109/TCDS.2024.3386364   

[5] Ouhmida, A., Saleh, S., Ammar, A., Raihani, A., 

Cherradi, B. (2024). HEFS-MLDR: A novel hybrid 

ensemble feature selection framework for improved 

deep neural network architecture in the diagnosis of 

Parkinson’s disease. Multimedia Tools and 

Applications.  

https://doi.org/10.1007/s11042-024-20276-x   

[6] Al Fahoum, A., Zyout, A. (2024). Wavelet transform, 

reconstructed phase space, and deep learning neural 

networks for EEG-based schizophrenia detection. 

International Journal of Neural Systems, 34 (9), 

2450046. https://doi.org/10.1142/S0129065724500461   

[7] Veeranki, Y. R., McNaboe, R., Posada-Quintero, H. F. 

(2023). EEG-based seizure detection using variable-

frequency complex demodulation and convolutional 

neural networks. Signals, 4 (4), 816-835.  

https://doi.org/10.3390/signals4040045  

[8] Shah, S. J. H., Albishri, A., Kang, S. S., Lee, Y., 

Sponheim, S. R., Shim, M. (2023). ETSNet: A deep 

neural network for EEG-based temporal–spatial pattern 

recognition in psychiatric disorder and emotional 

distress classification. Computers in Biology and 

Medicine, 158, 106857.  

https://doi.org/10.1016/j.compbiomed.2023.106857  

[9] Fouad, I. A., Labib, F. E.-Z. M. (2023). Identification 

of Alzheimer’s disease from central lobe EEG signals 

utilizing machine learning and residual neural network. 

Biomedical Signal Processing and Control, 86 (B), 

105266. https://doi.org/10.1016/j.bspc.2023.105266  

[10] Holmes, G. L. (2012). Consequences of epilepsy 

through the ages: When is the die cast? Epilepsy 

Currents, 12 (4_suppl), 4-6.  

https://doi.org/10.5698/1535-7511-12.4s.4   

[11] Kaur, C., Singh, P., Sahni, S. (2021). EEG artifact 

removal system for depression using a hybrid denoising 

approach. Basic and Clinical Neuroscience, 12 (4), 

465-476. https://doi.org/10.32598/bcn.2021.1388.2  

[12] Zhao, X., Liu, D., Ma, L., Ai, Q., Liu, Q., Xie, S. (2021). 

EEG signals de-noising with wavelet by optimizing 

threshold based on fruit fly optimization. In ICNCC '20: 

Proceedings of the 2020 9th International Conference 

on Networks, Communication and Computing. New 

York, US: Association for Computing Machinery, 71-

77. https://doi.org/10.1145/3447654.3447665  

[13] Chen, X., Xu, X., Liu, A., McKeown, M. J., Wang, Z. 

J. (2018). The use of multivariate EMD and CCA for 

denoising muscle artefacts from few-channel EEG 

recordings. IEEE Transactions on Instrumentation and 

Measurement, 67 (2), 359-370.  

https://doi.org/10.1109/TIM.2017.2759398  

[14] Gorjan, D., Gramann, K., Pauw, K. D., Marusic, U. 

(2022). Removal of movement-induced EEG artefacts: 

Current state of the art and guidelines. Journal of 

Neural Engineering, 19 (1), 011004.  

https://doi.org/10.1088/1741-2552/ac542c  

Received June 4, 2024 

Accepted January 16, 2025 

 

https://doi.org/10.1159/000504292
https://doi.org/10.32604/cmc.2021.012252
https://doi.org/10.17559/TV-20210121112228
https://doi.org/10.1109/TCDS.2024.3386364
https://doi.org/10.1007/s11042-024-20276-x
https://doi.org/10.1142/S0129065724500461
https://doi.org/10.3390/signals4040045
https://doi.org/10.1016/j.compbiomed.2023.106857
https://doi.org/10.1016/j.bspc.2023.105266
https://doi.org/10.5698/1535-7511-12.4s.4
https://doi.org/10.32598/bcn.2021.1388.2
https://doi.org/10.1145/3447654.3447665
https://doi.org/10.1109/TIM.2017.2759398
https://doi.org/10.1088/1741-2552/ac542c

