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Abstract: The compressibility factor indicates the deviation of the real natural gas from the ideal behavior. It is one of the most important 

parameters in the natural gas industry. In the present study, two different types of neural networks – multi-layer perceptron (MLP) and radial 

basis functions (RBF) – were used to predict the compressibility factor Z of natural gas. The pressure, temperature, and speed of sound (SoS) 

were chosen as input parameters for the artificial neural network (ANN) models. The training and testing of the MLP-ANN and RBF-ANN 

were carried out on the basis of 151 days of continuous measurements. Different variants of both types of neural networks were implemented 

and a comparative analysis of their modeling capabilities was performed. The models developed show a very high prediction accuracy, with 

the results obtained showing a certain advantage of the RBF-ANN. The comparative analysis was performed on the basis of standard 

performance indicators such as R2, root mean square error (RMSE), mean square error (MSE), mean absolute error (MAE). The present study 

shows an intelligent method implemented in two different variants to determine the compressibility factor of natural gas without the need to 

use the equation of state.  
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1. INTRODUCTION 

The accurate custody transfer of natural gas is a complex 

metering task that has always been the subject of metrological 

control under an international standard or a local regulation 

[6]. The proper selection of equipment and the development 

of a methodology for billing the metered quantities help to 

maintain a good relationship between all parties involved in 

custody transfer.  

Natural gas is a complex mixture of different components 

[10]. Essentially, it consists of a mixture of hydrocarbons 

(mainly methane) and minimal amounts of non-carbon 

components such as nitrogen, hydrogen sulfide, carbon 

dioxide, etc. Тhe physical properties of natural gas are a fun-

damental issue in the gas industry [18], [5]. Among the most 

important are the compressibility factor, the calorific value, 

and the energy parameters as well as the determination of the 

composition of the gas components. 

The compressibility factor is denoted by the symbol Z and 

its value is determined by the equation of state (EOS) with 

the following expression: 

 𝑧 =
𝑉𝑟𝑒𝑎𝑙

𝑉𝑖𝑑𝑒𝑎𝑙
=

𝑉∙𝑃

𝑛∙𝑅∙𝑇
 , (1) 

where Vreal is the volume at real condition, Videal is the volume 

at ideal condition, R is the universal gas constant, n is the 

number of moles of the gas, T is the absolute temperature, P 

is the absolute pressure, and V is the volume of the gas. The 

values of the coefficient of compressibility of natural gas are 

required for various engineering tasks such as pipeline 

design, gas metering and others. There are three ways to 

determine the values of the compressibility factor – 

experimental data, EOS, and empirical correlations. 

The use of highly sensitive flow measuring devices is very 

important to ensure a high standard of natural gas distribution 

systems. The measurement of volume flow is carried out 

using various measuring instruments, such as ultrasonic-

meters [7], turbine-meters [20], and rotary-meters [16]. In 

addition, the calorific value of the gas is another important 

parameter, which is calculated from the mole fraction of the 

individual components of the gas [28], [27]. For this reason, 

the gas operator must develop a method for converting the 

measured quantity of natural gas from volume units to energy 

units using an energy conversion device. The metering task is 

defined by the operation of several separate devices [13], [4] 

– flow computer (a volume conversion device); volume flow 

meter; natural gas chromatograph (a calorific value 

determination device); pressure transmitter; temperature 

transmitter. 

In contrast to the volume flow measurement, where many 

different devices can be used to calculate the gas calorific 

value, the gas chromatograph [3] is most commonly used and 

preferred over calorimeters [27], [14], which are much 

simpler in design.  
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The process gas chromatograph (PGC) determines the 

physical composition of the natural gas on a molar basis, but 

it requires a high level of maintenance, such as the supply of 

carrier and reference gases and scheduled maintenance. All 

this makes the PGC an expensive asset, and in most cases the 

gas operator reduces the installation costs by reducing the 

installation locations.  

The ultrasonic flow meter (USM) is the most widely used 

and reliable measuring device for industrial purposes. It can 

provide measurements of the speed of sound (SoS) parameter, 

which is also used for internal operational diagnostics. The 

SoS is a parameter that can be observed not only in the USM, 

but also in the other blocks of the system, such as the gas 

chromatograph, the pressure and temperature transmitters. It 

is influenced by the gas composition, the pressure and 

temperature, the geometry of the measurement section and 

the transit time measurement of the flow meter. 

In recent years, data-driven approaches have been 

increasingly used to optimize and predict control systems and 

processes [25], [24]. These are alternatives to conventional 

techniques, based on artificial intelligence methods. Among 

them, artificial neural networks (ANN) are the most preferred 

models. ANNs have a number of advantages, such as 

approximation of dependencies and high accuracy in 

prediction [17], [26]. ANN models are often used to increase 

the accuracy of flow-meter measurements or to predict the 

calibration process. 

Tianjiao Zhang has developed a convolutional ANN to 

determine the flow rate, analyzing the arrival time of the 

signal [29]. Based on deep learning, the constructed one-

dimensional (1-D) network was verified with real data 

received from an USM in a pipeline. Santhosh and Roy 

created an optimized neural network that realizes adaptability 

in terms of pipe diameter, liquid density and temperature [22]. 

The output signal of the measuring device is a frequency that 

is converted into a voltage using a suitable converter. The 

implemented network avoids the need for re-calibration when 

changing different parameters. 

A majority of the developed neural networks is based on 

multi-layer perceptron (MLP) architecture to evaluate the 

compressibility factor, calorific value and SoS of natural gas. 

Jingya Dong et al. implemented ANN for the evaluation of 

compressibility factor and SoS [8]. An MLP-ANN was 

created as four different types of training algorithms were 

used: Gradient Descent, Levenberg-Marquart, Conjugate 

Gradient Descent, and Bayesian Regularization. A multiple 

linear regression approach was used to create a model that 

includes three of the training methods. 

An example of how the SoS value is dependent on the gas 

mixture is shown in study [15], in which measurements of 

natural gas with or without the addition of hydrogen (H2) 

were compared.  The SoS is significantly higher when the 

hydrogen is part of the natural gas. This offers the possibility 

of accurately measuring the H2 content only by using 

ultrasonic gas flow meters. 

The other type of neural network that is very often used 

successfully for predicting natural gas properties is radial 

basis functions (RBF)-ANN. They have identical 

characteristics and properties as MLP-ANN. Mohammad 

Hadi Shateri et al. [23] developed the Wilcoxon Generalized 

RBF-ANN to predict the compressibility factor of natural gas. 

An average relative error of 2.3 % was determined and the 

results were compared with various empirical correlations 

and equations of state. Elsayed et al. [9] predicted the 

compressibility factor based on 5490 datasets containing 

pseudo-reduced values of pressure and temperature. The 

study is carried out using RBF-ANN, Support Vector 

Machine and Functional Network. They obtained the best 

results for RBF-ANN with 0.99 correlation coefficient and 

0.14% average absolute error. 

The aim of this article is to investigate two ANN models 

based on MLP and RBF to predict the compressibility factor 

Z of natural gas. The dataset used includes measurement data 

from an USM of SoS, pressure P and temperature T. The 

models are evaluated against the key performance indicators. 

A comparison was made between the properties of the models 

created. 

2. SUBJECT & METHODS 

A. Measurement principle 

It is characteristic of gases that ideal conditions are reached 

when the pressure approaches zero. Under real conditions, 

gases are characterized by a compressibility factor due to 

various intermolecular interactions. This parameter indicates 

the extent to which the real gas differs from the ideal gas at 

a given value of temperature and pressure. Of the thermo-

dynamic parameters, the compressibility factor is an ex-

tremely important and critical parameter. There are numerous 

scientific studies in the literature based on different methods 

and correlations to calculate the compressibility factor, such 

as the Standing and Katz chart, the Dranchuk and Abou-

Kassem correlation, etc., each of which has different 

advantages and disadvantages [19], [1].  

Some of the main problems are related to the need for more 

computation time due to the increased complexity of the 

method or the increased error values in the data range. 

The measurement principle is shown in Fig. 1. The USM 

operates by measuring the propagation times of ultrasonic 

pulses emitted with a specific SoS between two transducers 

(Fig. 1). The transducers are installed in a direct path, and 

both continuously alternate their positions as transmitter and 

receiver. 

The volume flow rate at standard natural gas conditions can 

be determined using the following equation [16]: 

 𝑄𝑆 = 𝐾1 ∙ 𝑢 ∙ 𝐴, (2) 

where QS is the volume flow rate of the gas at standard 

conditions, K1 is the transforming coefficient, u is the flow 

velocity determined by USM, and A is the cross-section of 

the pipeline. The value of K1 can be determined by the 

following equation: 

 𝐾1 = (
𝑇𝑏

𝑇𝑓
) ∙ (

𝑃𝑓

𝑃𝑏
) ∙ (

1

𝑍𝑓
), (3) 

where T stands for the temperature, P for the pressure, Z for 

the compressibility factor, and the indices f and b for the flow 

or the standard conditions. 
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Fig. 1.  Ultrasonic flow measurement principle. 

 

The actual SoS in the gas under operating conditions can 

be calculated from the sum of the two measured propagation 

times (for the forward and opposite direction) of the path: 

 𝑆𝑜𝑆𝑖 =
𝐿𝑖

2
 ∙ (

1

𝑡𝑡𝑟𝑖

+
1

𝑡𝑟𝑒𝑐𝑖

), (4) 

where SoS – speed of sound, L – path length, ttr – propagation 

time in the direction of flow, trec – propagation time against 

the direction of flow, i – current path. 

The following formula applies to multipath ultrasonic 

meters: 

 𝑆𝑜𝑆 =
1

n
 ∙  ∑ 𝑆𝑜𝑆𝑖

𝑛
𝑖 , (5) 

where n is the number of paths. 

The flow velocity can be determined by the following 

equation: 

 𝑢 =
𝐿

2∙𝑐𝑜𝑠𝛼
∙ (

1

𝑡𝑡𝑟
−

1

𝑡𝑟𝑒𝑐
) (6) 

The compressibility factor is defined in the ISO20765-2 

standard. To determine its value, information about the 

components of the gas is required. Despite the many studies 

on the estimation of the compressibility factor, there is no 

general equation that is valid under all conditions. For this 

reason, alternative methods such as ANN are increasingly 

used, which offer more possibilities to study the relationships 

between the variables. 

The selection of input parameters for the evaluation of the 

compressibility factor is based on the well-known 

relationships and correlations used in traditional methods. 

The compressibility factor calculated from empirical 

correlations is characterized by relatively low accuracy and 

simplified dependencies, which usually include temperature, 

pressure, and gas composition. The EOS approach has high 

accuracy because two equations of state have been created 

specifically for industrial purposes – AGA8 and GERG 2008. 

In these equations, temperature, pressure, and gas 

composition data are required to determine the 

compressibility factor. 

In general, both methods, empirical correlations and EOS, 

require the same input parameters. When a USM is used in 

the measurement system, it is known from the propagation 

law of SoS that the ultrasonic velocity is different for the 

various components of the natural gas. For this reason, the 

SoS can be used to evaluate individual components and does 

not require the use of complex and expensive equipment to 

assess the composition of the gas. 

In the present study, an intelligent approach was developed 

to determine the compressibility factor without the need for 

information about the composition of the gas. 

B. Multi-layer perceptron model 

The ANN is a computer-based tool for parallel processing 

of information, further classification and forecasting without 

the knowledge of the functional relationship between the 

input and output parameters – typical examples are given in 

[12], [30]. The ANN is executed by interconnected 

processing units called neurons. They are organized in layers 

and form the structure of the network. Depending on the 

location of the neurons, the layers can be divided into three 

types: input, hidden, and output.  

The action of a neuron with the number j can be 

represented by the following equations [11]: 

 𝑦𝑗
′ = ∑ 𝑤𝑖,𝑗𝑢𝑖 + 𝑏𝑗

𝑛
𝑖=1 , (7) 

where yj is the output, wij is the weight of ui, and bj is the bias 

of the neuron with the number j. The activation function f is 

generally non-linear: 

 𝑦𝑗 = 𝑓(𝑥)[∑ 𝑤𝑖,𝑗𝑢𝑖 + 𝑏𝑗
𝑛
𝑖=1 ] (8) 

The current study uses a feed-forward topology based on 

MLP to predict the compressibility factor Z using an 

ultrasonic flow meter. A Levenberg-Marquardt (LM) and 

a scaled conjugate gradient descent (SCGD) training 

algorithm were used to train the network. The structure of the 

MLP- ANN is shown in Fig. 2. 



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 1, 1-9 

4 

 

Fig. 2.  Schematic diagram of the MLP-ANN. 

 

C. Radial basis function network design 

RBF networks are widely used due to some important 

advantages, such as the relatively simple structures and the 

availability of faster training algorithms [22], [23]. The neural 

network architecture shown in Fig. 3 includes three layers – 

an input layer, a hidden layer and an output layer with feed 

forward algorithm. The RBF-ANN model is implemented 

with the activation function in the hidden layer depending on 

the distance between the input signal and a given central point 

of the neuron. The neurons in this layer usually have Gaussian 

transfer functions that have the following form [2]: 

 𝜑𝑖(𝑥) = exp (−
‖𝑥−𝜇𝑖‖2

2𝜎𝑖
2 ) (9) 

where φi is the nonlinear function of element i, x is the input 

vector, µi is the center of element i, and σi2 is the spread of the 

Gaussian function in the direction of element i. The form of 

the output signal of the RBF-ANN is as follows: 

 𝑌𝑘(𝑥) = ∑ 𝑤𝑘,𝑖 ∙ 𝜙𝑖(𝑥) + 𝑤𝑘𝑜
𝑚
𝑖=1  (10) 

where m is the number of functions, wkj is the weight between 

basis functions and output, Φ is the nonlinear function of 

element i, and wko is the weight of the output layer. The 

training algorithm of the RBF network is defined by different 

spread numbers in the interval from 0 to 1. 

The MLP-ANN and RBF-ANN studies were performed 

using MathWorks Matlab software. 

 

Fig. 3.  Schematic diagram of the RBF-ANN. 

D. Data collection 

For the purposes of this research, a package of 151 days of 

daily average data was collected, processed, and used. The 

real data set includes 604 values of continuous operation of 

the measuring devices and was collected from a gas 

transmission station on the territory of Bulgaria. The 

measuring   equipment   includes    a   USM    model    SICK 

Flowsic600-XT Quatro, calibrated measuring range 

1.00 ÷ 120.000 m3/h, relative error 0.2 %, pressure sensor 

system Rosemount 3051S, relative error 0.035 % and 

temperature sensor system Rosemount 3144P, relative error 

0.25 %. Based on this and using an ANN, it was possible to 

predict the compressibility factor Z, which is a key parameter 

for calculating the volume flow at base conditions.  
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The experimental data for this research was divided into 

two parts – the first is the training set and comprises 70 % of 

the observations used to train the MLP and RBF networks. 

The second set consists of the remaining 30 % of the data for 

validation. The data forming the training set is necessary for 

modifying the weights of the connections between the 

neurons in the structure of the neural network. The validation 

set is used for the overfitting analysis to obtain an optimal 

model. This dataset provides an implementation of the “early 

stopping” technique, which stops the learning of the network, 

when the validation errors start to increase compared to the 

training error. This technique overcomes the problems of 

overfitting and underfitting of ANNs. 

E. Performance indicators 

The evaluation of the best models is based on standard 

performance indicators – correlation coefficient R2, root 

mean square error (RMSE), mean absolute error (MAE), and 

mean square normalized error (MSNE) [21]. The correlation 

coefficient R2 is estimated in an interval from 0 to 1. Values 

of R2 that are closer to 1 indicate a better model. In contrast, 

the error values for the better models should be close to zero. 

 𝑅2 = (
∑ (𝑦𝑡−𝑦𝑡

𝑀)∙(�̂�𝑡−�̂�𝑡
𝑀)𝑛

𝑡=1

𝑛∙𝑆𝑓𝑜𝑟𝑒𝑐∙𝑆𝑜𝑏𝑠
) (11) 

 𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸 = √
∑ (𝑦𝑡−�̂�𝑡)2𝑛

𝑡=1

𝑛
 (12) 

 𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑡 − �̂�𝑡|𝑛

𝑡=1  (13) 

 𝑀𝑆𝑁𝐸 =
1

𝑛
∑

(𝑦𝑡−�̂�𝑡)

(∑ 𝑦𝑡
𝑛
1 )∙(∑ �̂�𝑡

𝑛
1 )

𝑛
𝑡=1  (14) 

where n is the total number of observations, yt and �̂�𝑡 are the 

predicted and observed values, yt
M and �̂�𝑡

𝑀 are the means of 

the predicted and observed values, Sforec and Sobs are the 

standard deviation of the predicted and observed values, 

respectively. 

3. RESULTS 

A. Multi layer perceptron ANN model 

The main problem in the development of the MLP 

architecture is the allocation of the hidden layers and the 

number of neurons in these layers. Many attempts have been 

made to determine the structure of the neural network. The 

main criterion was to achieve the best value of the correlation 

coefficient R2 and the lowest values of MSNE, RMSE, and 

MAE. Two training algorithms, LM and SCGD, were applied 

to investigate the number of hidden neurons. 

The influence of the number of neurons in the hidden layer 

for the LM algorithm is shown in Fig. 4. The evaluation is 

compiled in the form of MSNE, RMSE, and MAE values. The 

best result of the MLP-ANN structure for the LM algorithm 

is obtained for 51 neurons in the hidden layer. The effect of 

the number of hidden neurons for the SCGD learning 

algorithm is shown in Fig. 5. The best values for MSNE, 

RMSE, and MAE are obtained for 56 neurons. 

 

Fig. 4.  Effect of the number of hidden neurons of the MLP-ANN 

for the LM algorithm. 

 

Fig. 5.  Effect of the number of hidden neurons of the MLP-ANN 

for the SCGD algorithm. 

A comparative analysis of the LM and SCGD algorithms 

can be found in Table 1. 

Table 1.  Comparative analysis of LM and SCGD algorithms. 

Algorithm R2 MSNE RMSE MAE 

LM  0.99032 0.0581 0.1206 0.087 

SCGD  0.94229 0.0953 0.1543 0.1144 

 

The table shows that the MSNE and RMSE errors for the 

LM algorithm are slightly lower compared to the SCGD 

algorithm, with the correlation coefficient significantly in 

favor of the first algorithm. MLP-ANN shows the best fit for 

the optimal number of hidden neurons – 51 for the LM 

algorithm. The developed three-layer neural network with 

a 3-51-1 topology and LM algorithm was selected for the next 

analysis. The input layer includes three neurons (nodes) to 

which the database of temperature, pressure and SoS was 

applied. The hidden layer comprises 51 neurons and the 

output layer is represented by 1 node for the output parameter 

– the compressibility factor. 
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A linear transfer function of the output neuron of the ANN 

structure was chosen. The training process is performed with 

a learning rate of 0.05 and a number of epochs determined 

after examining the training and validation errors. Different 

types of activation functions were also tested. In general, the 

best performance – highest R2 and lowest error – was obtained 

for 'tansig' in both the hidden layer and the output neuron. The 

results are shown in Table 2. 

 

Fig. 6.  Scatter plot of predicted values versus observed values for 

MLP-ANN. 

After we ran a simulation with the optimal MLP-ANN 

architecture, the result of the regression analysis is shown in 

Fig. 6. 

After running the simulation process through the 3-51-1 

MLP-ANN, the optimal results obtained are: R2 = 0.99032; 

MSNE = 0.0581, RMSE = 0.1206, MAE = 0.087. 

The results of the predicted versus observed values after 

the performed MLP simulation are shown in Fig. 7. 

 

Fig. 7.  Plot of predicted values versus observed values for MLP-

ANN. 

The most appropriate selection of activation functions in 
the MLP layers was also performed. The tested combinations 
for the selected variants of the tansig, logsig and purelin 
functions are listed in Table 2. 

The different activation functions tested show that three 
combinations have identical characteristics (logsig-purelin, 
tansig-tansig and logsig-tansig), which are close to tansig-
purelin without reaching them. 

The study of the prediction of the compressibility factor Z 
with MLP shows a very good accuracy of the results obtained, 
which is comparable to the values obtained by other 
researchers in this field. 

Table 2.   Tested combination of activation functions of MLP-ANN. 

Activation function 

hidden layer 

Activation function 

output layer 

R2 MSNE RMSE MAE 

tansig tansig 0.99032 0.0581 0.1206 0.087 

tansig purelin 0.99219 0.3866 0.3109 0.2363 

logsig tansig 0.94438 0.1034 0.1607 0.1072 

logsig purelin 0.98062 0.6353 0.3985 0.3117 

purelin tansig 0.82875 0.1136 0.1685 0.1184 

logsig logsig 0.83831 0.2505 0.2502 0.1884 

tansig logsig 0.85305 0.2536 0.2518 0.195 

purelin logsig 0.68672 0.2955 0.2718 0.2067 

 

B. Radial basis function ANN model 

An RBF-ANN was developed with three input nodes for 

temperature, pressure and SoS and an output neuron in the 

third layer for the compressibility factor of the natural gas. 

The evaluation of the RBF-ANN was based on the same 

performance indicators: R2, RMSE, MSNE, and MAE. To 

obtain an optimal architecture of the network, experiments 

were performed with different numbers of neurons in the 

hidden layer and different spread numbers. The analysis 

includes testing the number of hidden neurons from 10 to 140 

and the interval of spread number values between 0.1 ÷ 0.5. 

The experimental data used to train and test the RBF-ANN 

are the same as those used for the MLP-ANN. Table 3 shows 

the results on the influence of the number of neurons in the 

hidden layer and the different values of spread numbers. Тhe 

best spread value obtained is SV = 0.1 for the number of 

hidden neurons HN = 140 and the performance indicators 

R2 = 0.99899, RMSE = 0.0135, MAE = 0.0075. Fig. 8 and 

Fig. 9 show a regression plot and a plot of the predicted 

versus the observed values of the compressibility factor for 

RBF-ANN. 
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Table 3.  Influence of hidden neurons of RBF-ANN. 

Spread value Neurons MSE MSNE RMSE MAE 

0.1 140 0.99899 0.00073 0.0135 0.0075 

0.3 140 0.99742 0.0019 0.0215 0.0108 

0.5 140 0.99477 0.0038 0.0306 0.014 

0.1 130 0.9973 0.0019 0.022 0.0141 

0.3 130 0.99257 0.0053 0.0365 0.0181 

0.5 130 0.99272 0.0052 0.0361 0.0177 

0.1 120 0.9936 0.0046 0.0339 0.02 

0.3 120 0.98875 0.0081 0.0449 0.0268 

0.5 120 0.98833 0.0084 0.0457 0.0266 

 

Fig. 8.  Scatter plot of predicted values versus observed values for 

RBF-ANN. 

 

Fig. 9.  Plot of predicted values versus observed values for RBF-

ANN. 

4. DISCUSSION 

The aim of this study is to apply a machine-learning 

approach to predict the compressibility factor of natural gas 

depending on the data of three input parameters: SoS, 

temperature, and pressure. The intelligent approach used is 

based on ANN with a hidden layer. 

The developed neural networks based on the MLP 

architecture were evaluated for two learning algorithms: LM 

and SCGD. The results of the comparative analysis show the 

better performance of the LM algorithm. This is observed in 

the error values and the value of the coefficient of 

determination R2. The obtained results are in line with other 

researchers [8] who reported similar values for the parameters 

R2 (0.98 ÷ 0.99) and RMSE (0.1 ÷ 0.15). 

The characteristics of MLP-ANN for different activation 

functions in the individual layers were investigated. 

Experiments were performed with different variants of the 

tansig, purelin and logsig functions. The results obtained 

show best values for two of the test variants - tansig-tansig 

and tansig-purelin. For the second combination, R2 has 

a higher value, but the error values are significantly higher. 

Despite the similar characteristics, it can be generally stated 

that the tansig-tansig combination shows the best behavior of 

MLP-ANN. 

The effectiveness of the modeling process of the 

compressibility factor of natural gas by MLP-ANN and RBF-

ANN was evaluated. The comparison of the models based on 

the investigated performance indicators R2, MSNE, RMSE 

and MAE was performed. The results of the analysis are 

shown in Table 4. 

Table 4.  Comparison between MLP and RBF models. 

Type ANN R2 MSNE RMSE MAE 

MLP-ANN 0.99032 0.0581 0.1206 0.087 

RBF-ANN 0.99899 0.000729 0.0135 0.0075 

 

From the values obtained for the indicators, it can be 

summarized that they are quite high and very close to similar 

results obtained by other researchers using the same methods. 

The correlation coefficient R2 values are very close to each 

other. The RBF-ANN model, although with a minimal 

difference, has a higher value of R2 = 0.99899 compared to 

R2 = 0.99032 obtained by MLP-ANN. The obtained values of 

MSNE, RMSE and MAE show that the RBF-ANN model has 
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better properties. The comparative analysis and the values 

obtained for the coefficient of determination R2 and errors are 

identical with the data presented by other researchers [8], [9]. 

 

Fig. 10.  Comparison of relative errors of the MLP-ANN and the 

RBF-ANN model. 

Fig. 10 shows a comparison of the relative errors (RE) for 

the MLP-ANN and RBF-ANN models. It can be clearly seen 

that the relative errors for the two ANN models are quite 

different. The RE values for RBF-ANN are significantly 

lower compared to those for MLP-ANN for the analyzed area. 

It is interesting to note that the difference in values is several 

times greater. From the comparison between Table 4 and 

Fig. 7, Fig. 9 and Fig. 10, it can be concluded that the 

correlation coefficients R2 are very close to each other, while 

the difference in the MSNE, RMSE, MAE and RE errors is 

significantly in favor of the RBF-ANN model. 

5. CONCLUSION 

The current study presents a comparative analysis of two 

intelligent approaches based on ANN for modeling the 

compressibility factor of natural gas. Real data from sensors 

and devices in a gas distribution station on the territory of the 

Republic of Bulgaria were used for the study. The capabilities 

of MLP-ANN and RBF-ANN for predicting the Z-value are 

presented so that the results can be used for further calculation 

of volume flow measurement in the baseline condition. 

The ANN approach shows very good abilities and 

characteristics of the developed models, which can be 

successfully used for the prediction of the compressibility 

factor of natural gas. From the results of the comparison of 

the two methods, it can be concluded that the RBF-ANN has 

better characteristics. The best values of R2 = 0.99899, 

MSNE = 0.000729, RMSE = 0.0135 and MAE = 0.0075 for 

RBF-ANN are similar to the values obtained by other 

researchers. From the analyses performed, it can be 

concluded that the better model was obtained by the RBF 

method. 

The graphical interpretation of the comparison between the 

relative errors for the two models shows that the RBF-ANN 

model has a clear advantage. The error values RE are meny 

times smaller compared to those of MLP-ANN. The 

experiments carried out indicate that the RBF-ANN model 

describes the experimental dataset better, which is based on 

the better values of all indicators – the correlation coefficient 

and the errors. 

In this study, the compressibility Z-factor of natural gas can 

be calculated from the values of three input variables: 

temperature, pressure and SoS, without the need for 

chromatographic analysis. The developed ANN is able to 

realize a high-quality prediction of the Z-factor of natural gas 

with sufficiently high accuracy by using only an ultrasonic 

flow meter. 
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