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Abstract: With the rapid development of artificial intelligence (Al) and machine learning (ML), the medical field is experiencing significant
advances that make it easier for doctors to monitor and personalize the hemodialysis process in pediatric patients. This case study focuses
on the prediction of hydration in pediatric hemodialysis using hybrid ML models with hyperparameters for prediction accuracy. Data were
collected from pediatric hemodialysis at the University Children's Hospital in TirSova, and parameters such as weight, blood pressure, lean
tissue index (LTI), fat tissue index (FTI), body mass index (BMI), total body water, extracellular water (ECW), adipose tissue mass, body
cell mass, and bioimpedance were adjusted for training. The model was configured for each pediatric patient and retrained after each
treatment to make individualized predictions with the highest accuracy. The proposed model uses measurable parameters to estimate
hydration and provide better recommendations to the physician, leading to better results than commonly used state-of-the-art competing
methods. The hybrid ML models with hyperparameters represent a novel, simplified, safe, and efficient method for predicting hydration in

children, making it easier for doctors to monitor the hemodialysis process for children.
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1. INTRODUCTION

The kidneys are not only necessary to filter dangerous
substances from the body, but also to regulate the body's acid-
base balance, electrolyte balance, and blood pressure. Kidney
malfunction causes mild to fatal diseases, as well as
dysfunctions in other organs of the body. This is why experts
around the world are devoting their time to developing
techniques for the precise diagnosis and treatment of renal
problems. Machine learning (ML) techniques are
increasingly being used in medicine for diagnosis and as an
assessment tool for physicians to make better medical
decisions [1], and this also applies to various types of kidney
disease.

The essence of hemodialysis therapy (HD) is to maintain a
balanced fluid level in the body. It helps to prevent hypo- and
hyperhydration, which can lead to long-term cardiovascular
problems, reduced cardiac efficiency, and other problems.
HD is a method of removing excess fluid from the body of
a patient whose kidney function I s impaired or absent, and is
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often performed using ultrafiltration (UF). The introduction
of the body composition monitor (BCM) based on
bioimpedance spectroscopy (BIS) in recent years has
provided an objective way to determine the fluid status of
hemodialysis patients [2]. It is a promising approach to assess
total body water in patients with pathologic hydration, to
distinguish intracellular water (ICW) from extracellular water
(ECW) and to estimate body composition in HD patients [3].
Age, body mass index (BMI), and body weight (BW) have
been associated with overhydration (OH) even in healthy
individuals [4]. Hemodialysis patients have difficulty
maintaining sodium and water homeostasis, resulting in
excess sodium and water, causing elevated blood pressure
(BP) and weight gain [5]. The fat tissue index (FTI) and lean
tissue index (LTI) can be affected by volume status, as
polyglucose or hypertonic solutions are often used to treat
fluid overload. A stable BW or BMI does not guarantee
a stable body composition, as an increase in fat mass is
usually associated with muscle wasting. Lower FTI at
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baseline is associated with increased adiposity and/or
a decrease in lean mass [6]. Therefore, hydration levels and
factors related to fluid volume must be monitored during
hemodialysis. Accurate estimation of hydration status in
children is particularly difficult due to ongoing physiological
development, individual variability, and sensitivity to fluid
imbalances. Conventional methods are either invasive,
unreliable, or impractical for continuous use. This case study
addresses this clinical gap.

The main contributions of this paper are:

e Development of a non-invasive method to assess
hydration levels in pediatric hemodialysis patients to
improve quality of care and reduce discomfort with
current invasive methods.

e Improve the accuracy of hydration prediction by
combining the existing ML models into hybrid models
that allow better tradeoffs between the linear and
nonlinear parts of the medical features.

Given the complexity and variability of pediatric cases,
there is a great need for personalized predictive systems
tailored to individual patient profiles. This research does not
aim to provide universally more advanced ML models for all
disciplines. Instead, novel hybrid architectures are used and
tested in a medically important and data-sensitive setting,
where the accuracy of the model has a direct impact on the
quality of therapy.

The paper is organized as follows: Section 2 provides an
overview of studies using artificial intelligence (Al) to predict
different factors during hemodialysis. Section 3 presents the
data used in this study and describes the existing and
proposed methodology for predicting hydration in pediatric
patients. Section 4 discusses the comparison of results
between the existing and the proposed hybrid model, and
Section 5 presents the conclusions.

2. RELATED WORKS

A. Typically used medical metrics and methods

Conclusions regarding the medical characteristics to be
included in the hydration prediction study were drawn from
a comprehensive literature review. The amount of UF
administered is based on pre-dialysis BP, with elevated BP
assumed to be due to OH, also known as volume-dependent
BP [7]. The main conclusion of Rymarz et al. [8] was that
a decreasing LTI was associated with poorer survival in
hemodialysis patients. According to Marcelli et al. [9],
dialysis patients with an LTI and FTI within the 10" to 90t
percentile (of the age- and sex-matched healthy population)
had the highest survival rate. At the same time, a low FTI,
alow LTI, or a combination of both were associated with
higher mortality. Multiple-frequency bioimpedance analysis
(MF-BIA) assesses TBW by exposing it to low and high
frequency electrical currents at 50 different frequencies
between 5 and 1000 kHz using bioelectrical impedance
spectroscopy (BIS) [10]. BIS refines the approach by
calculating the resistance at zero frequency (R¢) and the
resistance at infinite frequency (Rw:) using the Cole model
[11]. The intracellular compartment resistance (Ri) is then
estimated using Kirchoff's formula for parallel circuits [12]
based on Re and Rt Re and R; are the largest electrical

correlates for ECW and ICW, respectively. Following this
logic, the calculation techniques using body height, weight,
and associated resistances as input variables, as well as
constants defining body fluid resistivity, body form, and body
density, are used to convert the resistance values into volumes
of ECW, ICW, and TBW [13]. The OH calculation is based
on a reference population of healthy age-, sex-, and weight-
matched control groups and includes an assessment of ECW,
ICW, and BW [14].

OH =1.136-ECW —0.430-ICW —0.114 - BW 1)

The above-described method is a non-invasive method that
allows continuous monitoring and is highly accurate in
determining fluid levels in the body, but requires a high level
of expertise to interpret the results. Other hydration
estimation methods during HD include lung ultrasound,
echocardiography, blood volume monitoring and clinical
score. Lung ultrasound [15] is used to assess the presence of
fluid in the lungs. An increase in the number of B-lines on
ultrasound may indicate more fluid, but it does not provide
quantitative data on total body fluid. Echocardiography [16]
is used to assess cardiac function and fluid volume. It is useful
to estimate the size of the inferior vena cava (IVC) and blood
volume, but it cannot be used continuously throughout the
entire hemodialysis session. Blood volume monitoring [17]
measures changes in blood volume during hemodialysis.
These changes may indicate fluid excess or deficiency, but
they can give false positive or negative results depending on
the patient's condition. The clinical score [18] is a method in
which physicians perform physical examinations, such as
checking for edema and assessing the patient’s blood
pressure, heart rate, and weight before and after dialysis. This
method relies heavily on the physician’s personal experience.

B. Use of machine learning in kidney-disease problems

In recent years, the expansion of Al and ML has found its
application in many scientific fields, including medicine. Al
techniques help medical researchers manage large amounts of
patient data and allow them to analyze and interpret raw data
for patient treatment. These technologies help in diagnostic
processes, such as high-speed body scans, and can create 3D
mapping solutions for patients [19]. Kanada E. et al. [20] have
developed a revolutionary system that analyzes hemodialysis
patient data, categorizes patients based on their
characteristics, and identifies patients at high risk of death
using ML algorithms. The sparse Laplacian regularized
random vector functional link (SLapRVFL) neural network
model outperforms other methods in dry weight assessment
with a low prediction error [21]. Next, artificial neural
networks (ANN) can be used to predict OH in pediatric
patients during the hemodialysis process [22]. Study [23]
proposes the random forest (RF) algorithm as the most
efficient ML algorithm for data processing with high
accuracy. This study also measures the performance of ML
models with and without tuning hyperparameters.
Asignificant improvement in prediction accuracy is
observed, highlighting the applicability of supervised ML
algorithms in bioinformatics and their compatibility with the
diagnosis of fatal diseases such as chronic kidney disease.
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In the RENAAL, IDNT, and ALTITUDE trials, the feed-
forward neural network model predicted end-stage renal
disease (ESRD) with satisfactory receiver-operator curve
results [24]. The feed-forward neural network model used
urine albumin to creatinine ratio, serum albumin, uric acid,
and serum creatinine as significant predictors and achieved
peak performance in predicting long-term ESRD. In the study
[25], a robust ML model for early detection of chronic kidney
disease (CKD) was developed, which achieved a high
classification metric using the University of California Irvine
(UCI) CKD dataset. The model's reliability and its potential
for clinical application emphasize its importance in
advancing the early diagnosis and management of CKD,
acritical global health challenge. The SVM model was
developed to accurately identify CKD in the CKD dataset,
overcoming flaws and achieving a low false negative rate,
demonstrating the potential for real-time diagnosis and
reduced mortality rates [26]. In [27], the proposed auto-ML
scheme achieved a very comprehensive model evaluation.
Research [28] develops an efficient clinical diagnosis system
using support vector machine (SVM) and logistic regression
algorithms (LGR) for CKD. The system uses chi-square
feature selection and hyperparameter tuning to increase the
model's accuracy. The SVM model, which has high accuracy,
helps physicians make early, accurate, and unambiguous
clinical decisions. The system's usefulness is to reduce human
losses by diagnosing this life-threatening renal disease.

In a previous work [29], we established the framework for
combining ML models that predict hydration during
hemodialysis, resulting in hybrid models. In this work, we
will use this framework to increase system performance.

C. Hybrid machine learning models applied in
hemodialysis setting

A hybrid ML model refers to the integration of multiple
ML techniques or models that combine the strengths of
different methods to improve overall prediction performance,
robustness, and/or efficiency. As mentioned in [29], we have
used several ML models, including elastic net (EN), support
vector regression (SVR), gradient boosting regression
(GBR), Gaussian Naive Bayes (GNB), LGR, etc. We will
briefly review the existing literature on hybrid models and the
CKD problem.

Ren et al. [30] proposed a hybrid neural network model
combining bidirectional long short-term memory (BiLSTM)
and autoencoder networks to predict kidney damage in
hypertensive patients. The proposed model outperforms SVM
and strong neural baseline systems on a raw electronic health
record (HER) data dataset. In [31], a fast hybrid model, i.e.,
ReP-SVM, is developed for CKD classification problems.
This diagnostic approach has two main features: fast learning
with high accuracy and identification of the most important
CKOD risk factors. Dey et al. [32] investigate the use of ML
algorithms for early detection of kidney disease. Using
different algorithms, a hybrid feature selection method (Chi2-
M), focusing on correlation scores for predicting CKD was
applied. The approach outperformed the other algorithms and

resulted in higher accuracy scores. Study [33] used Pearson
correlation feature selection and ML classifiers such as
gradient boosting (GB), GNB, decision trees, and RF to
develop a stacking algorithm that predicts CKD patient status
with high accuracy. The corresponding GB technique for
solving regression problems is GBR, which we will use in the
current study. In [34], the authors used data from the UCI
Repository to store 400 instances of 26 CKD features. The
results show that the neural network ensemble with Lasso
model achieved the highest accuracy (99.98 %). Ratnababu
and Raghava Naidu [35] confirmed that CKD can be
predicted using hybrid ML classifiers, specifically k-nearest
neighbor (KNN) and logistic regression. The primary
objective of [35] was to evaluate different ML algorithms
based on their performance accuracy. By combining these
two models, the F1 score was further improved and more
accurate results were obtained. In the study [36], a hybrid
technique for detecting important risk factors for people with
Metabolic syndrome (MetS) and CKD with moderate renal
insufficiency was developed using six ML methods: RF,
LGR, multivariate adaptive regression splines (MARS),
extreme GB (XGBoost), GB with categorical features support
(CatBoost), and a light GB machine (LightGBM). Because
our databases are small and the results of our research are
intended for use in hospitals on computers with limited
memory capacity, the XGBoost, CatBoost, and LightGBM
algorithms were not used in this study. Instead, the GBR was
used as it is suitable for smaller datasets and is less memory
intensive. Finally, the hybrid ANN-SVM model was shown
to perform better than ANN in predicting CKD and non-CKD
patients in terms of mean absolute error (MAE), root mean
square error (RMSE), relative absolute error (RAE), and root
relative square error (RRSE) [37].

As mentioned in Section 2. A, expertise is required to
interpret BIS measurement results and to assess hydration in
HD patients. As shown in [22], neural networks are good
tools for hydration prediction. At the same time, [29] has
shown that EN provides the most accurate estimates of fluid
levels in the body compared to actual fluid levels. This raises
the question of whether it is possible to further optimize EN
as a linear model by creating hybrids with some nonlinear
models to achieve even greater accuracy in predicting
hydration. Based on the literature from Section 2. C, various
combinations of existing models were tested, including
combinations with models such as KNN or RF, but the results
were inferior to the EN results. Since GBR and SVR as
nonlinear models gave the next best results, it was our idea to
create EN-GBR and EN-SVR hybrids to further improve the
good EN results. These hybrid configurations will be applied
and evaluated in a real clinical setting with pediatric patients
undergoing hemodialysis, making this study a practical
exploration of personalized hydration prediction.

The aim of this research is to predict hydration in pediatric
hemodialysis patients using novel hybrid combinations. In
Section 3, we explain the dataset, the basic ML models and
how the data flow for the hybrid models was constructed.

214



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 5, 212-222

3. MEASURED PARAMETERS AND BASIC METHODS

A. Experimental data: the description of measured
parameters

Our measurements are based on data collected by the
University Children's Hospital in TirSova. The data were
collected from pediatric patients aged O to 16 years in May
2022. The database consists of n = 69 numerical medical
input features x;;, which have a direct influence on the
numerical medical output feature y;, which represents
hydration in liters (OH [I]). This dataset is represented as
a matrix of size m x (n + 1), see Fig. 1, where m represents
the total number of samples for a single patient over time.

Input and output parameters

i | Byg | = )R | Xin | D1
= :
: Xa1 | Xo2 | | X2 Xon | V2
=
g Xiz | Xipg | 0 | Xij Xin | Yi
Xm1 | Xm2 xmj Xmn @ Ym

Fig. 1. Matrix representation of a dataset with n input parameters
x;j (j = 1,..,mn) and output parameter y;, measured over m time
moments (i = 1,..,m).

Section 2. A. lists the necessary medical parameters
(TBW, BP, ECW, ICW, R;, Re, BIS, etc.) used to evaluate
OH. All these parameters form 69 input variables in the
database. The total number of measurements m depends on
the duration of hemodialysis and the number of hemodialysis
sessions of each patient. The databases contain between 200
and 500 measurements per patient. The datasets are created
individually for each patient, with the personalized datasets
containing their specific measurements and characteristics.
Hybrid ML models are then trained independently on these
personalized datasets, enabling adaptation to each patient’s
unique characteristics and data patterns.

All measurements were taken with a BIS device, the body
composition monitor (BCM). It can be used throughout the
patient’s life cycle, from CKD stage 1 to renal replacement
therapy and transplantation. The electrodes are attached to
one hand and one foot on the same side of the body while the
patient is in a supine position, the patient cable is connected,
the patient's height and weight are entered, and the
measurement is started. The data is transferred via the
PatientCard to several Fresenius Medical Care software
applications for further analysis, e.g. to the fluid management
tool (FMT), therapy monitor (TMon) and PatientOnline
(POL). All output parameters of the BCM have been
validated against the gold standard reference methods in
a number of studies with more than 500 patients and healthy
controls. BCM devices are typically factory calibrated and do
not require routine calibration by the end user. However,
periodic accuracy checks are performed by the manufacturer
or authorized service personnel to ensure measurement
accuracy.

B. Elastic net regression machine learning model for
predicting hydration

EN regression is a mixture of the two best shrinkage
regression techniques: Ridge regression (I, penalty) for
dealing with high-multicollinearity situations and least
absolute shrinkage selection operator (LASSO) regression
(1, penalty) for feature selection of the regression coefficients
[38].

The EN regression model is constructed by adding
a regularization term:

Ja D gl + o+ o) + 2 ) (@F + -+ 0])
to the multiple regression model, as in:

Vi = Wo + WXy + o+ wpXiy + €7
) ol +ot o) g
+/122(w% + -+ wl)

with 4,4, > 0, TP |we] < q, T, w? <p,
where g and p are the shrinkage amount for the [, and [,
penalties, successively. The [; penalty is used to construct
a sparse model, and the I, penalty is used to stabilize the
regularization of the [; penalty. A, and A, are tuning
parameters that determine the regularization intensity and
predictor variable selection.

The regularization term introduces a penalty into the
combined regression models and reduces the sum of square
errors (SSE). Consequently, the SSE is written as follows,

e = (= 9)) + 4 ) (orl + -+ | ])

@)
+ 1, Z(w% + -+ wf)

Here, ¥; denotes the predicted value of the target variable
y; computed using the estimated coefficients w.

EN is an effective regression model for predicting
hydration because it performs feature selection by shrinking
some coefficients to zero. This can be beneficial for many
features as it helps to reduce noise and focus on the most
important predictors. EN's regularization can help prevent
overfitting, especially when many correlated features are
present. It strikes a balance between Ridge and Lasso
regularization and provides a good compromise between bias
and variance. We found that Ridge regression alone performs
less well than most other methods.

C. Gradient boosting regressor machine learning model for
predicting hydration

GBR is a powerful ensemble learning method that can be
particularly effective in scenarios where there are complex
relationships between features and the output parameter. It
works by sequentially fitting multiple decision trees, with
each tree correcting the errors of the previous ones. GBR is
known for its ability to capture nonlinear relationships and
interactions between features, making it well-suited for
datasets with complicated patterns. This ML approach makes
predictions by "boosting” an ensemble of weak prediction
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models, either decision trees or linear models, to create
a more robust model [39]. The "boosting™ technique reduces
overfitting by focusing on the errors of previous models,
while automatic feature selection identifies the key factors.
GBR is robust to outliers and extremely flexible, allowing it
to be adapted to different data types and tasks. A GBR is
defined as a set of sequential approximations of y; [40],
where the initial y; value is calculated as:

Yide=0o = Fo(xy) = arg;nin; L(yi,p) 4)

where L(y;, 7)) = (v — (v1))? is a loss function. y; is
further improved in T successive calculations (with T trees for
t=1,..,T):

e = Fe(xy) = Fi_1 (%) + pehe (x5 a,) 5)

where h.(x;a;) is the decision tree function and the GBR
method calculates the gradient and other GBR coefficients as
in:

,i=1,..,n
F(xp)=Fp-1(X;)

—  [OL(yi, F(x;))
5=~
= i AVL-— h ir z
a, ar,c;{'rlgun;[ yi — Bhe(xi; )]

= i Ly, ide) -

P, arg;nln; 0o o)

The GBR model used in this study is based on the GBR
approach from Scikit-learn [41].

D. Support vector regression machine learning model for
hydration prediction

SVR is a powerful technique for regression tasks that
particularly suitable for datasets with complex relationships
and nonlinear patterns. SVR finds the hyperplane that best fits
the data within a certain margin of tolerance (¢) while
minimizing the complexity of the model (controlled by the
regularization parameter).

In SVR, the goal is to find a function f (x) that has at most
€ deviation from the obtained targets y; for all training data.
SVR as a kernel-based learning method uses implicit
mapping ¢ of the input data into a high-dimensional feature
and kernel function K that returns the inner product
(D, px ), Lk=1,..,m. The SVR function for
calculating y; can therefore be defined as [42]:

e = Fe(xy) = Feo1 (%) + pehe (x5 a,), (6)

where we aim for solutions with small @ by minimizing the
objective function:

i 1|| 11?
min— ||w
wb 2

subjected to |y; — f(x;)] < e.

Nevertheless, it is possible that solution does not exist
under these conditions or that better results can be achieved
if outliers are allowed. For this reason, we introduce slack
variables é* and ¢~ so that:

S =fx)—y >«
Si=yi—f(x)>e¢

so that the objective function and the constraints for SVR are
finally stated as:

minZ el +C5 > G +&)
yi— fx) < e+

fx) -y <e+é @
& & =0i=1,..,n

subjected to

where C is a trade-off parameter between model complexity
and training error.

SVR efficiently models nonlinear relationships between
variables using Kernel functions, which enables better
predictions in complex datasets. In addition, SVR can handle
many variables by optimizing the margins to reduce error and
increase accuracy. SVR is robust and can effectively manage
outliers in the data and minimize their impact on the final
predictions. The flexibility of SVR allows it to adapt to
different types of data and tasks, making it an excellent choice
for analyzing and predicting complex relationships in
datasets.

4. HYBRID METHODS FOR IMPROVED PREDICTION

A. Case-specific model: elastic boosting

In this case study, we investigate a hybrid approach that
combines EN and GBR to improve hydration prediction in
pediatric hemodialysis patients.

EN is effective for datasets that can be approximated by
linear functions. EN can reduce overfitting by shrinking
irrelevant coefficients and handling correlated features. On
the other hand, GBR is known for its ability to capture
complex relationships and nonlinear patterns in the data. By
combining these two techniques, the hybrid model can
leverage EN's feature selection and regularization capabilities
while benefiting from the descriptive power of GBR. The EN
component can help filter out noise and focus on the most
relevant features, which are then used as input to the GBR
model for further refinement. This hybrid approach can be
beneficial when working with datasets with many features,
some of which may be indirectly or inversely correlated.

The mathematical model for the EN-GBR class can be
described as a combination of EN and GBR models. First,
these models are initialized with the corresponding
parameters (aand Afor EN, and v for GBR). The EN model is
then fitted to the input data to obtain predictions. The EN
residuals are calculated as the difference between the actual
values and the predictions of the EN model. The GBR model
is then fitted to the input data and these residuals. The final
prediction is obtained by adding the EN prediction to the
prediction of the residuals.

PT’edEN_GBR = PT’edEN + ReSPTedGBR (8)
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B. Case-specific model: elastic support regressor

Similar to EN-GBR, elastic support regression (EN-SVR)
uses an EN to fit the linear data part, and its residuals are
predicted by SVR, as in:

PTEdEN_SVR = PT'edEN + ReSPredSVR (9)

SVR has more nonlinear Kernel functions than GBR and
is particularly useful for datasets with high dimensionality
and complex patterns - it can handle a large number of
features and is less sensitive to outliers. This hybrid approach
can achieve high accuracy in predictive modeling tasks and is
particularly useful due to its lower memory footprint and
faster training, especially when dealing with complex
datasets.

5. RESULTS AND DISCUSSION

In this study, 70 medical features, including OH, were
recorded during pediatric hemodialysis at the University
Children's Hospital in TirSova. All these medical features are
sorted into a growing database, which is updated with new
measurements every 15 minutes during each hemodialysis
session. This creates a comprehensive picture of a patient's
health status.

A. Experimental environment

The optimization and regression were performed in
Anaconda’s Spyder [43] on a computer with Intel Core i5 —
10400F, 2.90 GHz, 16 GB RAM, nVidia GTX1650 4 GB
DDR6, and Windows 10 operating system. The algorithm
was trained by dividing the data 80-20 (80 % for training and
20 % for testing). Cross-validation is a statistical technique
for evaluating the performance of a ML model in which the
dataset is divided into subsets, the model is trained on some
of these subsets and evaluated on the remaining subsets [44].
To overcome the overfitting limitation in standard Grid
search, k-fold cross-validation is used, where the samples are
randomly divided into k-folds.

Hastie et al. [48] suggested that EN can converge for
0<a<1 and 0<A1<1, while GBR converges for
0 < v < 1. Adjusting the parameters « and A in the EN part
of the model can help to control the complexity and select
relevant variables. On the other hand, the parameter v in the
GBR part of the model can be explored to achieve optimal
convergence speed and model generalization in different
patients. Adjusting the v parameter can affect how GBR uses
information from previous iterations to update hydration
predictions, which can be crucial for good performance.

As suggested by [49], the model parameters for SVR are
as assumed to be 0<e<1 and 1<C <100. The
adjustment of the e and C parameters in the SVR part of the
model controls the complexity and the variable selection. The
exploration of the € and C parameters in the SVR part of the
model aims to achieve optimal generalization for each patient
and performance, which affects the adjustment of the
hyperplane for prediction.

When searching for the optimal parameters for hybrid
models, optimizing the parameters for both components
combined (EN and GBR, or EN and SVR) is a crucial but
complex step. However, it leads to a model that combines the

advantages of both techniques and provides better
performance than using either technique individually. To find
the optimal parameters of both EN-GBR and EN-SVR
models, the GridSearchCV algorithm from Scikit-learn [45]
is used. The optimization process is patient-specific,
reflecting the individual nature of pediatric care and allowing
real-time adaptation to each patient's fluid balance trajectory.

B. Performance metrics

If Y represents the mean of m samples of real hydration
values over time and Y; and Y, are actual and estimated
hydration values, respectively, we evaluate hybrid models
using the RMSE, the mean absolute percentage error
(MAPE), and the coefficient of determination (R?), [46],
[47], see Table 1:

Table 1. Performance metrics.

R? RMSE
m m P

1 oz 1 Y, -1,

w2 =) EZ| v | 100
i=1 i=1 t

C. Predicted hydration using hybrid models

MAPE

—~ 2
A0
[CEAE

1

Fig. 2 and Fig. 3 show the performance of two hybrid
models in terms of deviation from the real hydration values
of a single pediatric patient.

Values
b

5 —— Predicted hydration values
-- Real hydration values

0 5 10 15 20 il 30 35 40
Sample

Fig. 2. EN-GBR hybrid model hydration predictions vs. real
hydration values.

Values
i

s —— Predicted hydration values
i -=-- Real hydration values

0 5 10 15 20 r=] 0 33 40
Sample

Fig. 3. EN-SVR hybrid model hydration predictions vs. real
hydration values.

Comparing the two hybrid models, elastic boosting (EN-
GBR) and elastic support regressor (EN-SVR), it can be seen
that both models provide satisfactory prediction results. The
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results of the EN-SVR are quite good (Fig. 3), with the most
significant deviations occurring at the hydration peaks.

The EN-GBR model is characterized by its better
performance at the peak prediction values. This advantage of
the EN-GBR model can be attributed to its ability to better
capture nonlinearities in the data through the combination of
linear regression and a powerful nonlinear model such as the
GBR.

D. Clinical relevance and case-specific interpretation

Accurate assessment of hydration in children on dialysis is
a major clinical challenge due to their increased susceptibility
to fluid loss or retention. Miscalculations of only a few
deciliters can lead to serious complications, including
hypotension, cramps, nausea, or fluid retention with edema.

The models developed in this study allow for personalized
prediction of hydration status based on parameters routinely
measured during each dialysis treatment. Each model is
trained using the patient's personal measurements and
adapted to their specific characteristics. This allows the
physician to assess in real time whether the planned UF will
result in excessive fluid loss or insufficient fluid removal.

For example, in patient A, an adolescent with a stable BW
of 64 kg, significant oscillations in OH values were observed
— from mild hyperhydration (+0.2 L) to severe dehydration
(-5.6 L). Such arange may indicate a clinically unstable status
in terms of fluid balance. Using the EN-GBR and EN-SVR
models, predictions of OH values were on average within an
error of less than 0.1 liters, even at the extreme points. This
accuracy would give the clinical team additional confidence
in assessing optimal UF during dialysis, reducing the
likelihood of episodes of hypotension or residual
hyperhydration.

Such an approach may lead to better therapeutic results, but
also to a reduced need for invasive methods of hydration
assessment. The introduction of such models into practice
allows for continuous and automated monitoring of the
patient's condition, which is particularly important in
pediatrics, where tolerance limits are much narrower than in
adult patients.

E. Comparison of hydration prediction of various models

In Table 2, we present the evaluation metrics of two
pediatric patients with two different personalized datasets.
The analysis of hybrid ML models for hydration level
assessment in hemodialysis patients shows their superiority
over individual models. The combined EN-GBR model
achieves an exceptionally high coefficient of determination
(R?) of 0.99960 for patient A, and 0.99919 for patient B, with
minimal MAPE values of 0.16218 and 0.10223 for both
patients and RMSE of 0.007 and 0.011. The RMSE improves
by over 60 % and the MAPE by approximately 70 %. These
results indicate a greatly improved agreement between
predicted and actual hydration values. The EN-SVR also
performed well with a high R? of 0.98259 and 0.96178,
respectively and very low RMSE and MAPE values. The
improvement in RMSE and MAPE is 20 % and 26 %,
respectively.

Table 2. Model comparisons.

Model R? RMSE MAPE
EN 0.97770  0.33319 0.103
GBR 0.99969  0.50409 0.012
SVR 0.92285 0.53131 0.095
<« EN-GBR 0.99960 0.16218  0.007
£ EN-SVR 0.98259  0.30489  0.092
= Ridge regression  0.91005  0.44157  0.243
o Kernel Ridge 0.90765 0.43811 0.257
Bayesian Ridge  0.89345  0.45118 0.256
RF 0.68556  0.46803  0.433
LSTM 0.95325 0.38197 0.136
EN 0.97998  0.28097  0.055
GBR 0.99802 0.27370 0.015
SVR 0.97227 0.54102 0.141
m EN-GBR 0.99919  0.10223 0.011
£ EN-SVR 0.96178  0.37549  0.053
= Ridge regression  0.97089 0.34216  0.062
& Kernel Ridge 0.96991  0.34059  0.063
Bayesian Ridge  0.89360  0.46269  0.055
RF 0.93517 0.35403 0.789
LSTM 0.84637  0.32715  0.408

Alternative models, including Ridge regression, Kernel
Ridge, Bayesian Ridge, RF, and LSTM, showed significantly
lower performance compared to the hybrid approaches. In
particular, RF had the lowest coefficient of determination
(R?=0.68556 for Patient A) and the highest MAPE value (up
to 0.789 for Patient B) for both patients, while Ridge and
Kernel Ridge models achieved slightly better accuracy but
remained inferior to hybrid models such as EN-GBR and EN-
SVR, which consistently had the lowest error values and the
highest R? coefficients.

R? Scores per Model

RMSE Values per Model

MAPE Scores per Model

&
Lo2
. L]
o i _H__
& & & & & & é‘é\
& &

Fig. 4. Comparison between the models’ metrics.
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These results underline the advantage of using hybrid
models, which combine the strengths of different ML
algorithms, over individual models. Hybrid models exhibit
higher accuracy and precision in predicting hydration levels,
making them tools of choice for improving clinical practice
in the monitoring and treatment of hemodialysis patients.
Fig. 4 illustrates the metrics of the models.

A patient’s sensitivity to the volume of fluid removed
during dialysis can result in dehydration if the amount
removed exceeds the optimal level, or fluid overload
(edematous state) if the amount removed is insufficient.
These changes are expressed quantitatively in decimal values.
For example, if 2.9 liters of fluid are removed from a patient
when the optimal amount was estimated at 2.1 liters, such

a discrepancy can lead to dehydration. Variations in OH are
thus reflected in subtle decimal changes. The algorithm used
in this context is based on a regression approach that aims to
predict continuous values rather than categorical results.

To complete this analysis, we present in Table 3, Fig. 5and
Fig. 6 part of the hydration regression results of the EN, GBR,
SVR, EN-GBR, and EN-SVR models on an unseen dataset.

Table 3 shows that EN and GBR achieve satisfactory
results on their own, with EN-GBR hybrid as their
combination showing similar or even better results than each
individual model. The SVR model has the least accurate
predictions, but the hybrid model obtained by combining the
EN and SVR models EN-GBR improves on this, but still
performs worse than EN-GBR.

Table 3. Results achieved with the EN, GBR, SVR, hybrid EN-GBR and hybrid EN-SVR models.

Real values  EN values GBR values SVR values EN-GBR values ~ EN-SVR values
-0.3 -0.48129796 -0.18628015 -0.81704017  -0.3527895 -0.46503815
-0.8 -0.91890762 -0.80598051 -1.27369152  -0.80427712 -0.90426637
0.2 0.50873695 0.23782386 0.39220703 0.20545681 0.46932447
< -1.2 -1.11180823 -1.16581552 -1.27910948 -1.18921171 -1.13263351
I -2.1 -2.2058463 -2.09972043 -1.83435081  -2.09690962 -2.19735346
= -2.2 -2.30081989 -2.18690249 -1.91096666  -2.1958786, -2.30016087
o -5.6 -5.05723497 -5.59310215 -3.86500347  -5.59597978 -5.12703839
-2.8 -2.83149824 -2.79700751 -2.38790569  -2.79852713 -2.84700099
-3.1 -3.28661257 -3.10436425 -2.90010456  -3.08728966 -3.21576016
1.1 1.13724622 1.08674662 0.91430495 1.08914686 1.13514346
2.3 2.05498245 2.30474957 2.07372147 2.30325372 2.32446905
0.6 0.67973341 0.62278249 0.72046415 0.61362807 0.70735133
-1.1 -0.98525658 -1.16755784 -1.07055426  -1.10503825 -1.14305158
m -1.3 -1.19201570 -1.40885596 -1.32889134  -1.32276658 -1.37031130
% -1.8 -1.72955661 -1.73768376 -1.84493265  -1.80881611 -1.86989233
= -1.7 -1.66446912 -1.69278792 -1.80055228  -1.73364828 -1.81502659
o 0.9 0.85001765 0.93925670 0.88927059 0.91509444 0.92993130
-3.8 -3.84511421 -3.89311761 -3.89983185  -3.79272144 -3.84172986
-4.7 -4.97572847 -4.68874558 -4.75482693  -4.72968422 -4.79968123
-2.2 -2.16571580 -2.17217104 -2.26907722  -2.20450492 -2.20647985
Predicted vs Real Values Predicted vs Real Values
2 «  Elastic Net 21 e Elastic Net .
Gradient Boosting Regressor . R Support Vestor Regression g
1 Elastic Boosting 1 @ Elastic Support Regressor L]
o '
- L
% -1 --,35" % -1 ..00.1.'
E i P % ) “o‘

-5 —4 o 1 2

-3 -2 -1
Predicted Hydration Values

Fig. 5. Comparison between the EN, GBR, and EN-GBR hydration
prediction vs. real hydration values.

-5 —4 o 1 2

-3 -2 -1
Predicted Hydration Values

Fig. 6. Comparison between the EN, SVR, and EN-SVR hydration
prediction vs. real hydration values.
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Fig. 5 shows scatter plots of real vs. predicted hydration
results for EN, GBR and EN-GBR hybrid. In Fig. 6 we also
show a scatter plot with EN, SVR and EN-SVR. In both cases,
the hybrid models improved the hydration predictions of the
individual models.

In terms of computational efficiency, the EN-GBR hybrid
model requires approximately 78000 ms for training, with an
estimated memory usage of 51 % and CPU utilization of
approximately 20 %. In comparison, the EN-SVR model
completes training in approximately 17000 ms, utilizing
about 50 % of memory and 12 % of CPU resources. The latest
versions of the Raspberry Pi 4 have 8 GB of RAM memory
and a Broadcom BCM2711 SoC with a 1.5 GHz CPU, which
is quite satisfactory for hybrids. Since the interval between
two measurements during the HD is 15 minutes, the hybrids
have enough time for retraining.

6. CONCLUSION

Accurate prediction of hydration status is critical to
improving the quality of care for hemodialysis patients.
Proper hydration management can prevent complications and
improve overall patient health. This paper presents a non-
invasive solution for assessing hydration levels in pediatric
hemodialysis patients. The development and application of
hybrid models such as EN-GBR and EN-SVR show
promising results in this field. These models utilize the
strengths of both linear and nonlinear regression techniques
and offer a more comprehensive approach to data analysis
and prediction. In the case of EN-GBR, we achieve
improvements of over 60 % and 70 % for RMSE and MAPE,
respectively, compared to individual models. For EN-SVR,
the corresponding improvements are 20 % for RMSE and
26 % for MAPE compared to individual models. The success
of these hybrid models suggests that they can be valuable
tools in the clinical setting, providing healthcare
professionals with reliable and accurate predictions for
tailoring treatments and interventions. This case study
demonstrates that hybrid models, when applied to real clinical
data from pediatric hemodialysis patients, can significantly
improve hydration management. The individualized
methodology ensures that each prediction is tailored to the
patient’s evolving condition, making this method highly
applicable in clinical practice.

To fully exploit its potential, further improvements and
adjustments are needed to explore its performance with more
extensive and diverse datasets and to enable its
generalizability across different patient populations and
extended medical feature sets. We would also like to reduce
the execution time of the EN-GBR model. One of the
requirements in clinical practice is to run these algorithms on
versatile mobile platforms such as the Raspberry Pi to enable
portability and a personalized device per pediatric patient that
allows constant monitoring of certain medical parameters,
even outside of the clinical room. This option could generate
notifications and alerts for both patients and hospitals to
improve the quality of healthcare.
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