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Abstract: With the rapid development of artificial intelligence (AI) and machine learning (ML), the medical field is experiencing significant 

advances that make it easier for doctors to monitor and personalize the hemodialysis process in pediatric patients. This case study focuses 

on the prediction of hydration in pediatric hemodialysis using hybrid ML models with hyperparameters for prediction accuracy. Data were 

collected from pediatric hemodialysis at the University Children's Hospital in Tiršova, and parameters such as weight, blood pressure, lean 

tissue index (LTI), fat tissue index (FTI), body mass index (BMI), total body water, extracellular water (ECW), adipose tissue mass, body 

cell mass, and bioimpedance were adjusted for training. The model was configured for each pediatric patient and retrained after each 

treatment to make individualized predictions with the highest accuracy. The proposed model uses measurable parameters to estimate 

hydration and provide better recommendations to the physician, leading to better results than commonly used state-of-the-art competing 

methods. The hybrid ML models with hyperparameters represent a novel, simplified, safe, and efficient method for predicting hydration in 

children, making it easier for doctors to monitor the hemodialysis process for children.  
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1. INTRODUCTION 

The kidneys are not only necessary to filter dangerous 
substances from the body, but also to regulate the body's acid-
base balance, electrolyte balance, and blood pressure. Kidney 
malfunction causes mild to fatal diseases, as well as 
dysfunctions in other organs of the body. This is why experts 
around the world are devoting their time to developing 
techniques for the precise diagnosis and treatment of renal 
problems. Machine learning (ML) techniques are 
increasingly being used in medicine for diagnosis and as an 
assessment tool for physicians to make better medical 
decisions [1], and this also applies to various types of kidney 
disease. 

The essence of hemodialysis therapy (HD) is to maintain a 
balanced fluid level in the body. It helps to prevent hypo- and 
hyperhydration, which can lead to long-term cardiovascular 
problems, reduced cardiac efficiency, and other problems. 
HD is a method of removing excess fluid from the body of 
a patient whose kidney function I s impaired or absent, and is 

often performed using ultrafiltration (UF). The introduction 

of the body composition monitor (BCM) based on 

bioimpedance spectroscopy (BIS) in recent years has 

provided an objective way to determine the fluid status of 

hemodialysis patients [2]. It is a promising approach to assess 

total body water in patients with pathologic hydration, to 

distinguish intracellular water (ICW) from extracellular water 

(ECW) and to estimate body composition in HD patients [3]. 

Age, body mass index (BMI), and body weight (BW) have 

been associated with overhydration (OH) even in healthy 

individuals [4]. Hemodialysis patients have difficulty 

maintaining sodium and water homeostasis, resulting in 

excess sodium and water, causing elevated blood pressure 

(BP) and weight gain [5]. The fat tissue index (FTI) and lean 

tissue index (LTI) can be affected by volume status, as 

polyglucose or hypertonic solutions are often used to treat 

fluid overload. A stable BW or BMI does not guarantee 

a stable body composition, as an increase in fat mass is 

usually associated with muscle wasting. Lower FTI at 
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baseline is associated with increased adiposity and/or 

a decrease in lean mass [6]. Therefore, hydration levels and 

factors related to fluid volume must be monitored during 

hemodialysis. Accurate estimation of hydration status in 

children is particularly difficult due to ongoing physiological 

development, individual variability, and sensitivity to fluid 

imbalances. Conventional methods are either invasive, 

unreliable, or impractical for continuous use. This case study 

addresses this clinical gap.  

The main contributions of this paper are: 

• Development of a non-invasive method to assess 

hydration levels in pediatric hemodialysis patients to 

improve quality of care and reduce discomfort with 

current invasive methods. 

• Improve the accuracy of hydration prediction by 

combining the existing ML models into hybrid models 

that allow better tradeoffs between the linear and 

nonlinear parts of the medical features. 

Given the complexity and variability of pediatric cases, 

there is a great need for personalized predictive systems 

tailored to individual patient profiles. This research does not 

aim to provide universally more advanced ML models for all 

disciplines. Instead, novel hybrid architectures are used and 

tested in a medically important and data-sensitive setting, 

where the accuracy of the model has a direct impact on the 

quality of therapy. 

The paper is organized as follows: Section 2 provides an 

overview of studies using artificial intelligence (AI) to predict 

different factors during hemodialysis. Section 3 presents the 

data used in this study and describes the existing and 

proposed methodology for predicting hydration in pediatric 

patients. Section 4 discusses the comparison of results 

between the existing and the proposed hybrid model, and 

Section 5 presents the conclusions. 

2. RELATED WORKS 

A. Typically used medical metrics and methods 

Conclusions regarding the medical characteristics to be 

included in the hydration prediction study were drawn from 

a comprehensive literature review. The amount of UF 

administered is based on pre-dialysis BP, with elevated BP 

assumed to be due to OH, also known as volume-dependent 

BP [7]. The main conclusion of Rymarz et al. [8] was that 

a decreasing LTI was associated with poorer survival in 

hemodialysis patients. According to Marcelli et al. [9], 

dialysis patients with an LTI and FTI within the 10th to 90th 

percentile (of the age- and sex-matched healthy population) 

had the highest survival rate. At the same time, a low FTI, 

a low LTI, or a combination of both were associated with 

higher mortality. Multiple-frequency bioimpedance analysis 

(MF-BIA) assesses TBW by exposing it to low and high 

frequency electrical currents at 50 different frequencies 

between 5 and 1000 kHz using bioelectrical impedance 

spectroscopy (BIS) [10]. BIS refines the approach by 

calculating the resistance at zero frequency (Re) and the 

resistance at infinite frequency (Rtot) using the Cole model 

[11]. The intracellular compartment resistance (Ri) is then 

estimated using Kirchoff's formula for parallel circuits [12] 

based on Re and Rtot. Re and Ri are the largest electrical 

correlates for ECW and ICW, respectively. Following this 

logic, the calculation techniques using body height, weight, 

and associated resistances as input variables, as well as 

constants defining body fluid resistivity, body form, and body 

density, are used to convert the resistance values into volumes 

of ECW, ICW, and TBW [13]. The OH calculation is based 

on a reference population of healthy age-, sex-, and weight-

matched control groups and includes an assessment of ECW, 

ICW, and BW [14]. 

 
𝑂𝐻 = 1.136 · 𝐸𝐶𝑊 − 0.430 · 𝐼𝐶𝑊 − 0.114 · 𝐵𝑊 (1) 

 

The above-described method is a non-invasive method that 

allows continuous monitoring and is highly accurate in 

determining fluid levels in the body, but requires a high level 

of expertise to interpret the results. Other hydration 

estimation methods during HD include lung ultrasound, 

echocardiography, blood volume monitoring and clinical 

score. Lung ultrasound [15] is used to assess the presence of 

fluid in the lungs. An increase in the number of B-lines on 

ultrasound may indicate more fluid, but it does not provide 

quantitative data on total body fluid. Echocardiography [16] 

is used to assess cardiac function and fluid volume. It is useful 

to estimate the size of the inferior vena cava (IVC) and blood 

volume, but it cannot be used continuously throughout the 

entire hemodialysis session. Blood volume monitoring [17] 

measures changes in blood volume during hemodialysis. 

These changes may indicate fluid excess or deficiency, but 

they can give false positive or negative results depending on 

the patient's condition. The clinical score [18] is a method in 

which physicians perform physical examinations, such as 

checking for edema and assessing the patient’s blood 

pressure, heart rate, and weight before and after dialysis. This 

method relies heavily on the physician’s personal experience. 

B. Use of machine learning in kidney-disease problems 

In recent years, the expansion of AI and ML has found its 

application in many scientific fields, including medicine. AI 

techniques help medical researchers manage large amounts of 

patient data and allow them to analyze and interpret raw data 

for patient treatment. These technologies help in diagnostic 

processes, such as high-speed body scans, and can create 3D 

mapping solutions for patients [19]. Kanada E. et al. [20] have 

developed a revolutionary system that analyzes hemodialysis 

patient data, categorizes patients based on their 

characteristics, and identifies patients at high risk of death 

using ML algorithms. The sparse Laplacian regularized 

random vector functional link (SLapRVFL) neural network 

model outperforms other methods in dry weight assessment 

with a low prediction error [21]. Next, artificial neural 

networks (ANN) can be used to predict OH in pediatric 

patients during the hemodialysis process [22]. Study [23] 

proposes the random forest (RF) algorithm as the most 

efficient ML algorithm for data processing with high 

accuracy. This study also measures the performance of ML 

models with and without tuning hyperparameters. 

A significant improvement in prediction accuracy is 

observed, highlighting the applicability of supervised ML 

algorithms in bioinformatics and their compatibility with the 

diagnosis of fatal diseases such as chronic kidney disease.  
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In the RENAAL, IDNT, and ALTITUDE trials, the feed-

forward neural network model predicted end-stage renal 

disease (ESRD) with satisfactory receiver-operator curve 

results [24]. The feed-forward neural network model used 

urine albumin to creatinine ratio, serum albumin, uric acid, 

and serum creatinine as significant predictors and achieved 

peak performance in predicting long-term ESRD. In the study 

[25], a robust ML model for early detection of chronic kidney 

disease (CKD) was developed, which achieved a high 

classification metric using the University of California Irvine 

(UCI) CKD dataset. The model's reliability and its potential 

for clinical application emphasize its importance in 

advancing the early diagnosis and management of CKD, 

a critical global health challenge. The SVM model was 

developed to accurately identify CKD in the CKD dataset, 

overcoming flaws and achieving a low false negative rate, 

demonstrating the potential for real-time diagnosis and 

reduced mortality rates [26]. In [27], the proposed auto-ML 

scheme achieved a very comprehensive model evaluation. 

Research [28] develops an efficient clinical diagnosis system 

using support vector machine (SVM) and logistic regression 

algorithms (LGR) for CKD. The system uses chi-square 

feature selection and hyperparameter tuning to increase the 

model's accuracy. The SVM model, which has high accuracy, 

helps physicians make early, accurate, and unambiguous 

clinical decisions. The system's usefulness is to reduce human 

losses by diagnosing this life-threatening renal disease. 

In a previous work [29], we established the framework for 

combining ML models that predict hydration during 

hemodialysis, resulting in hybrid models. In this work, we 

will use this framework to increase system performance. 

C. Hybrid machine learning models applied in 

hemodialysis setting 

A hybrid ML model refers to the integration of multiple 

ML techniques or models that combine the strengths of 

different methods to improve overall prediction performance, 

robustness, and/or efficiency. As mentioned in [29], we have 

used several ML models, including elastic net (EN), support 

vector regression (SVR), gradient boosting regression 

(GBR), Gaussian Naïve Bayes (GNB), LGR, etc. We will 

briefly review the existing literature on hybrid models and the 

CKD problem. 

Ren et al. [30] proposed a hybrid neural network model 

combining bidirectional long short-term memory (BiLSTM) 

and autoencoder networks to predict kidney damage in 

hypertensive patients. The proposed model outperforms SVM 

and strong neural baseline systems on a raw electronic health 

record (HER) data dataset. In [31], a fast hybrid model, i.e., 

RFP-SVM, is developed for CKD classification problems. 

This diagnostic approach has two main features: fast learning 

with high accuracy and identification of the most important 

CKD risk factors. Dey et al. [32] investigate the use of ML 

algorithms for early detection of kidney disease. Using 

different algorithms, a hybrid feature selection method (Chi2-

MI), focusing on correlation scores for predicting CKD was 

applied. The approach outperformed the other algorithms and 

resulted in higher accuracy scores. Study [33] used Pearson 

correlation feature selection and ML classifiers such as 

gradient boosting (GB), GNB, decision trees, and RF to 

develop a stacking algorithm that predicts CKD patient status 

with high accuracy. The corresponding GB technique for 

solving regression problems is GBR, which we will use in the 

current study. In [34], the authors used data from the UCI 

Repository to store 400 instances of 26 CKD features. The 

results show that the neural network ensemble with Lasso 

model achieved the highest accuracy (99.98 %). Ratnababu 

and Raghava Naidu [35] confirmed that CKD can be 

predicted using hybrid ML classifiers, specifically k-nearest 

neighbor (KNN) and logistic regression. The primary 

objective of [35] was to evaluate different ML algorithms 

based on their performance accuracy. By combining these 

two models, the F1 score was further improved and more 

accurate results were obtained. In the study [36], a hybrid 

technique for detecting important risk factors for people with 

Metabolic syndrome (MetS) and CKD with moderate renal 

insufficiency was developed using six ML methods: RF, 

LGR, multivariate adaptive regression splines (MARS), 

extreme GB (XGBoost), GB with categorical features support 

(CatBoost), and a light GB machine (LightGBM). Because 

our databases are small and the results of our research are 

intended for use in hospitals on computers with limited 

memory capacity, the XGBoost, CatBoost, and LightGBM 

algorithms were not used in this study. Instead, the GBR was 

used as it is suitable for smaller datasets and is less memory 

intensive. Finally, the hybrid ANN-SVM model was shown 

to perform better than ANN in predicting CKD and non-CKD 

patients in terms of mean absolute error (MAE), root mean 

square error (RMSE), relative absolute error (RAE), and root 

relative square error (RRSE) [37].  

As mentioned in Section 2. A, expertise is required to 

interpret BIS measurement results and to assess hydration in 

HD patients. As shown in [22], neural networks are good 

tools for hydration prediction. At the same time, [29] has 

shown that EN provides the most accurate estimates of fluid 

levels in the body compared to actual fluid levels. This raises 

the question of whether it is possible to further optimize EN 

as a linear model by creating hybrids with some nonlinear 

models to achieve even greater accuracy in predicting 

hydration. Based on the literature from Section 2. C, various 

combinations of existing models were tested, including 

combinations with models such as KNN or RF, but the results 

were inferior to the EN results. Since GBR and SVR as 

nonlinear models gave the next best results, it was our idea to 

create EN-GBR and EN-SVR hybrids to further improve the 

good EN results. These hybrid configurations will be applied 

and evaluated in a real clinical setting with pediatric patients 

undergoing hemodialysis, making this study a practical 

exploration of personalized hydration prediction. 

The aim of this research is to predict hydration in pediatric 

hemodialysis patients using novel hybrid combinations. In 

Section 3, we explain the dataset, the basic ML models and 

how the data flow for the hybrid models was constructed. 
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3. MEASURED PARAMETERS AND BASIC METHODS 

A. Experimental data: the description of measured 
parameters 

Our measurements are based on data collected by the 
University Children's Hospital in Tiršova. The data were 
collected from pediatric patients aged 0 to 16 years in May 

2022. The database consists of 𝑛 = 69 numerical medical 

input features  𝑥𝑖𝑗 , which have a direct influence on the 

numerical medical output feature 𝑦𝑖 , which represents 
hydration in liters (OH [l]). This dataset is represented as 

a matrix of size 𝑚 × (𝑛 + 1), see Fig. 1, where 𝑚 represents 
the total number of samples for a single patient over time. 

 

Fig. 1.  Matrix representation of a dataset with 𝑛 input parameters 

𝑥𝑖𝑗  (𝑗 = 1, … , 𝑛) and output parameter 𝑦𝑖, measured over 𝑚 time 

moments (𝑖 = 1, . . , 𝑚). 

Section 2. A. lists the necessary medical parameters 
(TBW, BP, ECW, ICW, Ri, Re, BIS, etc.) used to evaluate 
OH. All these parameters form 69 input variables in the 
database. The total number of measurements m depends on 
the duration of hemodialysis and the number of hemodialysis 
sessions of each patient. The databases contain between 200 
and 500 measurements per patient. The datasets are created 
individually for each patient, with the personalized datasets 
containing their specific measurements and characteristics. 
Hybrid ML models are then trained independently on these 
personalized datasets, enabling adaptation to each patient’s 
unique characteristics and data patterns. 

All measurements were taken with a BIS device, the body 
composition monitor (BCM). It can be used throughout the 
patient’s life cycle, from CKD stage 1 to renal replacement 
therapy and transplantation. The electrodes are attached to 
one hand and one foot on the same side of the body while the 
patient is in a supine position, the patient cable is connected, 
the patient's height and weight are entered, and the 
measurement is started. The data is transferred via the 
PatientCard to several Fresenius Medical Care software 
applications for further analysis, e.g. to the fluid management 
tool (FMT), therapy monitor (TMon) and PatientOnline 
(POL). All output parameters of the BCM have been 
validated against the gold standard reference methods in 
a number of studies with more than 500 patients and healthy 
controls. BCM devices are typically factory calibrated and do 
not require routine calibration by the end user. However, 
periodic accuracy checks are performed by the manufacturer 
or authorized service personnel to ensure measurement 
accuracy. 

B. Elastic net regression machine learning model for 

predicting hydration  

EN regression is a mixture of the two best shrinkage 

regression techniques: Ridge regression (𝑙2 penalty) for 

dealing with high-multicollinearity situations and least 

absolute shrinkage selection operator (LASSO) regression 

(𝑙1 penalty) for feature selection of the regression coefficients 

[38]. 

The EN regression model is constructed by adding 

a regularization term: 

𝜆1 ∑(|𝜔1| + ⋯ + |𝜔𝑛|) + 𝜆2 ∑(𝜔1
2 + ⋯ + 𝜔𝑛

2) 

to the multiple regression model, as in: 
 

𝑦𝑖 = 𝜔0 + 𝜔1𝑥𝑖1 + ⋯ + 𝜔𝑛𝑥𝑖𝑛 + 𝜀2

+ 𝜆1 ∑(|𝜔1| + ⋯ + |𝜔𝑛|)

+ 𝜆2 ∑(𝜔1
2 + ⋯ + 𝜔𝑛

2) 

(2) 

 

with 𝜆1, 𝜆2 > 0, ∑ |𝜔𝑘| ≤ 𝑞𝑛
𝑘=1 , ∑ 𝜔𝑖

2 ≤ 𝑝𝑛
𝑖=1 , 

where 𝑞 and 𝑝 are the shrinkage amount for the 𝑙1 and 𝑙2 

penalties, successively. The 𝑙1 penalty is used to construct 

a sparse model, and the 𝑙2 penalty is used to stabilize the 

regularization of the 𝑙1 penalty. 𝜆1 and 𝜆2 are tuning 

parameters that determine the regularization intensity and 

predictor variable selection.  

The regularization term introduces a penalty into the 

combined regression models and reduces the sum of square 

errors (SSE). Consequently, the SSE is written as follows, 

 

    𝜀2 = (𝑦𝑗 − 𝑦̂𝑗) + 𝜆1 ∑(|𝜔1| + ⋯ + |𝜔𝑛|)

+ 𝜆2 ∑(𝜔1
2 + ⋯ + 𝜔𝑛

2) 
(3) 

 

Here, 𝑦̂𝑗 denotes the predicted value of the target variable 

𝑦𝑗 computed using the estimated coefficients 𝜔. 

EN is an effective regression model for predicting 

hydration because it performs feature selection by shrinking 

some coefficients to zero. This can be beneficial for many 

features as it helps to reduce noise and focus on the most 

important predictors. EN's regularization can help prevent 

overfitting, especially when many correlated features are 

present. It strikes a balance between Ridge and Lasso 

regularization and provides a good compromise between bias 

and variance. We found that Ridge regression alone performs 

less well than most other methods. 

C. Gradient boosting regressor machine learning model for 

predicting hydration  

GBR is a powerful ensemble learning method that can be 

particularly effective in scenarios where there are complex 

relationships between features and the output parameter. It 

works by sequentially fitting multiple decision trees, with 

each tree correcting the errors of the previous ones. GBR is 

known for its ability to capture nonlinear relationships and 

interactions between features, making it well-suited for 

datasets with complicated patterns. This ML approach makes 

predictions by "boosting" an ensemble of weak prediction 
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models, either decision trees or linear models, to create 

a more robust model [39]. The "boosting" technique reduces 

overfitting by focusing on the errors of previous models, 

while automatic feature selection identifies the key factors. 

GBR is robust to outliers and extremely flexible, allowing it 

to be adapted to different data types and tasks. A GBR is 

defined as a set of sequential approximations of 𝑦𝑖  [40], 

where the initial 𝑦𝑖  value is calculated as: 

 

(y𝑖)𝑡=0 = 𝐹0(𝐱𝑖) = argmin
𝜌

∑ 𝐿(𝑦𝑖 , 𝜌 )

𝑛

𝑖=1

 (4) 

 

where 𝐿(𝑦𝑖 , (𝑦𝑖)𝑡) = (𝑦 − (𝑦𝑖)𝑡)2 is a loss function. 𝑦𝑖  is 

further improved in T successive calculations (with T trees for 

𝑡 = 1, … , 𝑇): 

 

(𝑦𝑖)𝑡 = 𝐹𝑡(𝐱𝒊) = 𝐹𝑡−1(𝐱𝑖) + 𝜌𝑡ℎ𝑡(𝐱𝑖; 𝐚𝑡) (5) 

 

where ℎ𝑡(𝐱; 𝐚𝑡) is the decision tree function and the GBR 

method calculates the gradient and other GBR coefficients as 

in: 

 

∆𝑦̃𝑖 = − [
𝜕𝐿(𝑦𝑖 , 𝐹(𝐱𝑖))

𝜕𝐹(𝐱𝑖)
]

𝐹(𝐱𝑖)=𝐹𝑡−1(𝐱𝑖)

, 𝑖 = 1, … , 𝑛 

𝐚𝑡 = argmin
𝐚,𝛽

∑[∆𝑦̃𝑖 − 𝛽ℎ𝑡(𝐱𝑖; 𝐚)]
2

)

𝑛

𝑖=1

 

    𝛒𝑡 = argmin
𝜌

∑ 𝐿(𝑦𝑖 , (𝑦𝑖)𝑡)

𝑛

𝑖=1

. 

 

The GBR model used in this study is based on the GBR 

approach from Scikit-learn [41]. 

D. Support vector regression machine learning model for 

hydration prediction 

SVR is a powerful technique for regression tasks that 

particularly suitable for datasets with complex relationships 

and nonlinear patterns. SVR finds the hyperplane that best fits 

the data within a certain margin of tolerance (𝜀) while 

minimizing the complexity of the model (controlled by the 

regularization parameter). 

In SVR, the goal is to find a function 𝑓(𝑥) that has at most 

𝜀 deviation from the obtained targets 𝑦𝑖  for all training data. 

SVR as a kernel-based learning method uses implicit 

mapping 𝜑 of the input data into a high-dimensional feature 

and kernel function 𝐾 that returns the inner product 

〈𝜑(𝐱𝑙), 𝜑(𝐱𝑘)〉, 𝑙, 𝑘 = 1, … , 𝑚. The SVR function for 

calculating 𝑦𝑖 can therefore be defined as [42]: 

 

(𝑦𝑖)𝑡 = 𝐹𝑡(𝐱𝒊) = 𝐹𝑡−1(𝐱𝑖) + 𝜌𝑡ℎ𝑡(𝐱𝑖; 𝐚𝑡), (6) 

 

where we aim for solutions with small 𝝎  by minimizing the 

objective function:  

 min
𝜔,𝑏

1

2
‖𝝎‖2 

subjected to |𝑦𝑖 − 𝑓(𝐱𝒊)| ≤ 𝜀. 

Nevertheless, it is possible that solution does not exist 
under these conditions or that better results can be achieved 
if outliers are allowed. For this reason, we introduce slack 

variables 𝜉+ and 𝜉− so that: 
 

𝜉𝑖
+ = 𝑓(𝐱𝒊) − 𝑦𝑖 > 𝜀 

𝜉𝑖
− = 𝑦𝑖 − 𝑓(𝐱𝑖) > 𝜀 

 

so that the objective function and the constraints for SVR are 
finally stated as: 
 

min
𝜔,𝑏

1

2
‖𝛚‖2 + 𝐶

1

2
∑ (𝜉𝑖

+ + 𝜉𝑖
−)

𝑛

𝑖=1
 

 

subjected to {

𝑦𝑖 − 𝑓(𝐱𝒊) ≤ 𝜀 + 𝜉𝑖
+    

𝑓(𝐱𝒊) − 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
−    

𝜉𝑖
+, 𝜉𝑖

− ≥ 0, 𝑖 = 1, … , 𝑛

  (7) 

 

where 𝐶 is a trade-off parameter between model complexity 
and training error. 

SVR efficiently models nonlinear relationships between 
variables using Kernel functions, which enables better 
predictions in complex datasets. In addition, SVR can handle 
many variables by optimizing the margins to reduce error and 
increase accuracy. SVR is robust and can effectively manage 
outliers in the data and minimize their impact on the final 
predictions. The flexibility of SVR allows it to adapt to 
different types of data and tasks, making it an excellent choice 
for analyzing and predicting complex relationships in 
datasets. 

4. HYBRID METHODS FOR IMPROVED PREDICTION 

A. Case-specific model: elastic boosting 

In this case study, we investigate a hybrid approach that 
combines EN and GBR to improve hydration prediction in 
pediatric hemodialysis patients. 

EN is effective for datasets that can be approximated by 
linear functions. EN can reduce overfitting by shrinking 
irrelevant coefficients and handling correlated features. On 
the other hand, GBR is known for its ability to capture 
complex relationships and nonlinear patterns in the data. By 
combining these two techniques, the hybrid model can 
leverage EN's feature selection and regularization capabilities 
while benefiting from the descriptive power of GBR. The EN 
component can help filter out noise and focus on the most 
relevant features, which are then used as input to the GBR 
model for further refinement. This hybrid approach can be 
beneficial when working with datasets with many features, 
some of which may be indirectly or inversely correlated. 

The mathematical model for the EN-GBR class can be 
described as a combination of EN and GBR models. First, 
these models are initialized with the corresponding 
parameters (α and λ for EN, and ν for GBR). The EN model is 
then fitted to the input data to obtain predictions. The EN 
residuals are calculated as the difference between the actual 
values and the predictions of the EN model. The GBR model 
is then fitted to the input data and these residuals. The final 
prediction is obtained by adding the EN prediction to the 
prediction of the residuals.  

 

𝑃𝑟𝑒𝑑𝐸𝑁−𝐺𝐵𝑅 = 𝑃𝑟𝑒𝑑𝐸𝑁 + 𝑅𝑒𝑠𝑃𝑟𝑒𝑑𝐺𝐵𝑅 (8) 
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B. Case-specific model: elastic support regressor 

Similar to EN-GBR, elastic support regression (EN-SVR) 

uses an EN to fit the linear data part, and its residuals are 

predicted by SVR, as in: 
 

𝑃𝑟𝑒𝑑𝐸𝑁−𝑆𝑉𝑅 = 𝑃𝑟𝑒𝑑𝐸𝑁   + 𝑅𝑒𝑠𝑃𝑟𝑒𝑑𝑆𝑉𝑅  (9) 
 

SVR has more nonlinear Kernel functions than GBR and 

is particularly useful for datasets with high dimensionality 

and complex patterns - it can handle a large number of 

features and is less sensitive to outliers. This hybrid approach 

can achieve high accuracy in predictive modeling tasks and is 

particularly useful due to its lower memory footprint and 

faster training, especially when dealing with complex 

datasets. 

5. RESULTS AND DISCUSSION 

In this study, 70 medical features, including OH, were 

recorded during pediatric hemodialysis at the University 

Children's Hospital in Tiršova. All these medical features are 

sorted into a growing database, which is updated with new 

measurements every 15 minutes during each hemodialysis 

session. This creates a comprehensive picture of a patient's 

health status. 

A. Experimental environment 

The optimization and regression were performed in 

Anaconda’s Spyder [43] on a computer with Intel Core i5 – 

10400F, 2.90 GHz, 16 GB RAM, nVidia GTX1650 4 GB 

DDR6, and Windows 10 operating system. The algorithm 

was trained by dividing the data 80-20 (80 % for training and 

20 % for testing). Cross-validation is a statistical technique 

for evaluating the performance of a ML model in which the 

dataset is divided into subsets, the model is trained on some 

of these subsets and evaluated on the remaining subsets [44]. 

To overcome the overfitting limitation in standard Grid 

search, k-fold cross-validation is used, where the samples are 

randomly divided into k-folds.  

Hastie et al. [48] suggested that EN can converge for 

0 ≤ 𝛼 ≤ 1 and 0 ≤ 𝜆 ≤ 1, while GBR converges for 

0 < 𝜈 < 1. Adjusting the parameters 𝛼 and 𝜆  in the EN part 

of the model can help to control the complexity and select 

relevant variables. On the other hand, the parameter ν in the 

GBR part of the model can be explored to achieve optimal 

convergence speed and model generalization in different 

patients. Adjusting the ν parameter can affect how GBR uses 

information from previous iterations to update hydration 

predictions, which can be crucial for good performance. 

As suggested by [49], the model parameters for SVR are 

as assumed to be 0 < 𝜖 ≤ 1 and 1 ≤ 𝐶 ≤ 100. The 

adjustment of the 𝜖 and C parameters in the SVR part of the 

model controls the complexity and the variable selection. The 

exploration of the 𝜖 and C parameters in the SVR part of the 

model aims to achieve optimal generalization for each patient 

and performance, which affects the adjustment of the 

hyperplane for prediction. 

When searching for the optimal parameters for hybrid 

models, optimizing the parameters for both components 

combined (EN and GBR, or EN and SVR) is a crucial but 

complex step. However, it leads to a model that combines the 

advantages of both techniques and provides better 

performance than using either technique individually. To find 

the optimal parameters of both EN-GBR and EN-SVR 

models, the GridSearchCV algorithm from Scikit-learn [45] 

is used. The optimization process is patient-specific, 

reflecting the individual nature of pediatric care and allowing 

real-time adaptation to each patient's fluid balance trajectory. 

B. Performance metrics 

If 𝑌̅ represents the mean of 𝑚 samples of real hydration 

values over time and 𝑌𝑖 and 𝑌𝑖̂ are actual and estimated 

hydration values, respectively, we evaluate hybrid models 

using the RMSE, the mean absolute percentage error 

(MAPE), and the coefficient of determination (𝑅2), [46], 

[47], see Table 1: 
 

Table 1.  Performance metrics. 

𝑅2 RMSE MAPE 

1 −
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𝑖=1
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1
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1

𝑚
 ∑ |

𝑌𝑖 − 𝑌𝑖̂

𝑌𝑖

|

𝑚

𝑖=1

⋅ 100 

C. Predicted hydration using hybrid models 

Fig. 2 and Fig. 3 show the performance of two hybrid 

models in terms of deviation from the real hydration values 

of a single pediatric patient.  

 

Fig. 2.  EN-GBR hybrid model hydration predictions vs. real 

hydration values. 

 

Fig. 3.  EN-SVR hybrid model hydration predictions vs. real 

hydration values. 

Comparing the two hybrid models, elastic boosting (EN-

GBR) and elastic support regressor (EN-SVR), it can be seen 

that both models provide satisfactory prediction results. The 
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results of the EN-SVR are quite good (Fig. 3), with the most 

significant deviations occurring at the hydration peaks.  

The EN-GBR model is characterized by its better 

performance at the peak prediction values. This advantage of 

the EN-GBR model can be attributed to its ability to better 

capture nonlinearities in the data through the combination of 

linear regression and a powerful nonlinear model such as the 

GBR. 

D. Clinical relevance and case-specific interpretation 

Accurate assessment of hydration in children on dialysis is 

a major clinical challenge due to their increased susceptibility 

to fluid loss or retention. Miscalculations of only a few 

deciliters can lead to serious complications, including 

hypotension, cramps, nausea, or fluid retention with edema.  

The models developed in this study allow for personalized 

prediction of hydration status based on parameters routinely 

measured during each dialysis treatment. Each model is 

trained using the patient's personal measurements and 

adapted to their specific characteristics. This allows the 

physician to assess in real time whether the planned UF will 

result in excessive fluid loss or insufficient fluid removal.  

For example, in patient A, an adolescent with a stable BW 

of 64 kg, significant oscillations in OH values were observed 

— from mild hyperhydration (+0.2 L) to severe dehydration 

(-5.6 L). Such a range may indicate a clinically unstable status 

in terms of fluid balance. Using the EN-GBR and EN-SVR 

models, predictions of OH values were on average within an 

error of less than 0.1 liters, even at the extreme points. This 

accuracy would give the clinical team additional confidence 

in assessing optimal UF during dialysis, reducing the 

likelihood of episodes of hypotension or residual 

hyperhydration.  

Such an approach may lead to better therapeutic results, but 

also to a reduced need for invasive methods of hydration 

assessment. The introduction of such models into practice 

allows for continuous and automated monitoring of the 

patient's condition, which is particularly important in 

pediatrics, where tolerance limits are much narrower than in 

adult patients. 

E. Comparison of hydration prediction of various models 

In Table 2, we present the evaluation metrics of two 

pediatric patients with two different personalized datasets. 

The analysis of hybrid ML models for hydration level 

assessment in hemodialysis patients shows their superiority 

over individual models. The combined EN-GBR model 

achieves an exceptionally high coefficient of determination 

(𝑅2) of 0.99960 for patient A, and 0.99919 for patient B, with 

minimal MAPE values of 0.16218 and 0.10223 for both 

patients and RMSE of 0.007 and 0.011. The RMSE improves 

by over 60 % and the MAPE by approximately 70 %. These 

results indicate a greatly improved agreement between 

predicted and actual hydration values. The EN-SVR also 

performed well with a high 𝑅2 of 0.98259 and 0.96178, 

respectively and very low RMSE and MAPE values. The 

improvement in RMSE and MAPE is 20 % and 26 %, 

respectively. 

Table 2.  Model comparisons. 

 Model 𝑅2 RMSE MAPE 

P
at

ie
n

t 
A

 

EN 0.97770 0.33319 0.103 

GBR 0.99969 0.50409 0.012 

SVR 0.92285 0.53131 0.095 

EN-GBR 0.99960 0.16218 0.007 

EN-SVR 0.98259 0.30489 0.092 

Ridge regression 0.91005 0.44157 0.243 

Kernel Ridge 0.90765 0.43811 0.257 

Bayesian Ridge 0.89345 0.45118 0.256 

RF 0.68556 0.46803 0.433 

LSTM 0.95325 0.38197 0.136 

P
at

ie
n

t 
B

 

EN 0.97998 0.28097 0.055 

GBR 0.99802 0.27370 0.015 

SVR 0.97227 0.54102 0.141 

EN-GBR 0.99919 0.10223 0.011 

EN-SVR 0.96178 0.37549 0.053 

Ridge regression 0.97089 0.34216 0.062 

Kernel Ridge 0.96991 0.34059 0.063 

Bayesian Ridge 0.89360 0.46269 0.055 

RF 0.93517 0.35403 0.789 

LSTM 0.84637 0.32715 0.408 

 

Alternative models, including Ridge regression, Kernel 

Ridge, Bayesian Ridge, RF, and LSTM, showed significantly 

lower performance compared to the hybrid approaches. In 

particular, RF had the lowest coefficient of determination 

(R² = 0.68556 for Patient A) and the highest MAPE value (up 

to 0.789 for Patient B) for both patients, while Ridge and 

Kernel Ridge models achieved slightly better accuracy but 

remained inferior to hybrid models such as EN-GBR and EN-

SVR, which consistently had the lowest error values and the 

highest R² coefficients. 

 

Fig. 4.  Comparison between the models’ metrics. 
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These results underline the advantage of using hybrid 

models, which combine the strengths of different ML 

algorithms, over individual models. Hybrid models exhibit 

higher accuracy and precision in predicting hydration levels, 

making them tools of choice for improving clinical practice 

in the monitoring and treatment of hemodialysis patients. 

Fig. 4 illustrates the metrics of the models. 

A patient’s sensitivity to the volume of fluid removed 

during dialysis can result in dehydration if the amount 

removed exceeds the optimal level, or fluid overload 

(edematous state) if the amount removed is insufficient. 

These changes are expressed quantitatively in decimal values. 

For example, if 2.9 liters of fluid are removed from a patient 

when  the  optimal  amount was  estimated at  2.1 liters, such 

a discrepancy can lead to dehydration. Variations in OH are 

thus reflected in subtle decimal changes. The algorithm used 

in this context is based on a regression approach that aims to 

predict continuous values rather than categorical results. 

To complete this analysis, we present in Table 3, Fig. 5 and 

Fig. 6 part of the hydration regression results of the EN, GBR, 

SVR, EN-GBR, and EN-SVR models on an unseen dataset. 

Table 3 shows that EN and GBR achieve satisfactory 

results on their own, with EN-GBR hybrid as their 

combination showing similar or even better results than each 

individual model. The SVR model has the least accurate 

predictions, but the hybrid model obtained by combining the 

EN and SVR models EN-GBR improves on this, but still 

performs worse than EN-GBR.  

Table 3.  Results achieved with the EN, GBR, SVR, hybrid EN-GBR and hybrid EN-SVR models. 

 Real values EN values GBR values SVR values EN-GBR values EN-SVR values  

P
at

ie
n

t 
A

 

-0.3 -0.48129796 -0.18628015 -0.81704017 -0.3527895 -0.46503815 

-0.8 -0.91890762 -0.80598051 -1.27369152 -0.80427712 -0.90426637 

0.2 0.50873695 0.23782386 0.39220703 0.20545681 0.46932447 

-1.2 -1.11180823 -1.16581552 -1.27910948 -1.18921171 -1.13263351 

-2.1 -2.2058463 -2.09972043 -1.83435081 -2.09690962 -2.19735346 

-2.2 -2.30081989 -2.18690249 -1.91096666 -2.1958786, -2.30016087 

-5.6 -5.05723497 -5.59310215 -3.86500347 -5.59597978 -5.12703839 

-2.8 -2.83149824 -2.79700751 -2.38790569 -2.79852713 -2.84700099 

-3.1 -3.28661257 -3.10436425 -2.90010456 -3.08728966 -3.21576016 

1.1 1.13724622 1.08674662 0.91430495 1.08914686 1.13514346 

P
at

ie
n

t 
B

 

2.3 2.05498245 2.30474957 2.07372147 2.30325372 2.32446905 

0.6 0.67973341 0.62278249 0.72046415 0.61362807 0.70735133 

-1.1 -0.98525658 -1.16755784 -1.07055426 -1.10503825 -1.14305158 

-1.3 -1.19201570 -1.40885596 -1.32889134 -1.32276658 -1.37031130 

-1.8 -1.72955661 -1.73768376 -1.84493265 -1.80881611 -1.86989233 

-1.7 -1.66446912 -1.69278792 -1.80055228 -1.73364828 -1.81502659 

0.9 0.85001765 0.93925670 0.88927059 0.91509444 0.92993130 

-3.8 -3.84511421 -3.89311761 -3.89983185 -3.79272144 -3.84172986 

-4.7 -4.97572847 -4.68874558 -4.75482693 -4.72968422 -4.79968123 

-2.2 -2.16571580 -2.17217104 -2.26907722 -2.20450492 -2.20647985 

 

 

Fig. 5.  Comparison between the EN, GBR, and EN-GBR hydration 

prediction vs. real hydration values. 

 

Fig. 6.  Comparison between the EN, SVR, and EN-SVR hydration 

prediction vs. real hydration values. 
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Fig. 5 shows scatter plots of real vs. predicted hydration 

results for EN, GBR and EN-GBR hybrid. In Fig. 6 we also 

show a scatter plot with EN, SVR and EN-SVR. In both cases, 

the hybrid models improved the hydration predictions of the 

individual models.  

In terms of computational efficiency, the EN-GBR hybrid 

model requires approximately 78000 ms for training, with an 

estimated memory usage of 51 % and CPU utilization of 

approximately 20 %. In comparison, the EN-SVR model 

completes training in approximately 17000 ms, utilizing 

about 50 % of memory and 12 % of CPU resources. The latest 

versions of the Raspberry Pi 4 have 8 GB of RAM memory 

and a Broadcom BCM2711 SoC with a 1.5 GHz CPU, which 

is quite satisfactory for hybrids. Since the interval between 

two measurements during the HD is 15 minutes, the hybrids 

have enough time for retraining. 

6. CONCLUSION 

Accurate prediction of hydration status is critical to 

improving the quality of care for hemodialysis patients. 

Proper hydration management can prevent complications and 

improve overall patient health. This paper presents a non-

invasive solution for assessing hydration levels in pediatric 

hemodialysis patients. The development and application of 

hybrid models such as EN-GBR and EN-SVR show 

promising results in this field. These models utilize the 

strengths of both linear and nonlinear regression techniques 

and offer a more comprehensive approach to data analysis 

and prediction. In the case of EN-GBR, we achieve 

improvements of over 60 % and 70 % for RMSE and MAPE, 

respectively, compared to individual models. For EN-SVR, 

the corresponding improvements are 20 % for RMSE and 

26 % for MAPE compared to individual models. The success 

of these hybrid models suggests that they can be valuable 

tools in the clinical setting, providing healthcare 

professionals with reliable and accurate predictions for 

tailoring treatments and interventions. This case study 

demonstrates that hybrid models, when applied to real clinical 

data from pediatric hemodialysis patients, can significantly 

improve hydration management. The individualized 

methodology ensures that each prediction is tailored to the 

patient’s evolving condition, making this method highly 

applicable in clinical practice. 

To fully exploit its potential, further improvements and 

adjustments are needed to explore its performance with more 

extensive and diverse datasets and to enable its 

generalizability across different patient populations and 

extended medical feature sets. We would also like to reduce 

the execution time of the EN-GBR model. One of the 

requirements in clinical practice is to run these algorithms on 

versatile mobile platforms such as the Raspberry Pi to enable 

portability and a personalized device per pediatric patient that 

allows constant monitoring of certain medical parameters, 

even outside of the clinical room. This option could generate 

notifications and alerts for both patients and hospitals to 

improve the quality of healthcare. 
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