
MEASUREMENT SCIENCE REVIEW, 24, (2024), No. 6, 200-210 

DOI: 10.2478/msr-2024-0027  *Corresponding author: 244245@vut.cz (S.A. Kouakouo Nomvussi) 
  

200 

 

 

 

Enhanced Image Reconstruction in Electrical Impedance 

Tomography using Radial Basis Function Neural Networks 

Serge Ayme Kouakouo Nomvussi*, Jan Mikulka  

Department of Theoretical and Experimental Electrical Engineering, Brno University of Technology, Antonínská 548/1, 

60190, Brno, Czech Republic, 244245@vut.cz,  mikulka@vut.cz. 

Abstract: This paper presents a novel cascade algorithm for image reconstruction in electrical impedance tomography (EIT) using radial 

basis function neural networks. The first subnetwork applies a density-based algorithm and k-nearest neighbors (KNN) to determine the 

center and width of the radial basis function neural networks, with the aim of preventing ill-conditioned connection weights between the 

hidden and output layers. The second subnetwork is a generalized regression neural network dedicated to functional approximation. The 

combined subnetworks result in a reduced mean square error and achieve an accuracy of 89.54 % without noise and an accuracy between 

82.90 % and 89.53 % with noise levels ranging from 30 to 60 dB. In comparison, the original radial basis function neural networks (RBFNN) 

method achieves an accuracy of 85.44 % without noise and between 80.90 % and 85.31 % under similar noise conditions. The total variation 

(TV) method achieves 83.13 % without noise, with noise-influenced accuracy ranging from 34.28 % to 45.15 %. The Gauss-Newton method 

achieves 82.35 % accuracy without noise, with accuracy ranging from 33.21 % to 46.15 % in the presence of noise. The proposed method 

proves to be resilient to various types of noise, including white Gaussian noise, impulsive noise, and contact noise, and consistently delivers 

superior performance. It also outperforms the other methods in noise-free conditions. The reliability of the method in noisy environments 

supports its potential application in the development of new modular systems for electrical impedance tomography. 

Keywords: Artificial neural network, density-based algorithm, electrical impedance tomography, k-nearest neighbors, radial basis function 

neural networks, EIDORS framework. 

 

1. INTRODUCTION 

Electrical impedance tomography (EIT) is a versatile, non-
invasive imaging technique with many applications. It 
reconstructs the conductivity distributions within objects by 
measuring the electrical impedance on their surfaces and 
offers advantages such as radiation-free operation, cost-
effectiveness, portability, and real-time imaging. The 
versatile diagnostic and imaging solutions provided by EIT 
show great promise in various fields, such as medicine (lung 
ventilation and breast cancer detection) [1], [2], industry 
(process monitoring and material testing) [3], and geophysics 
(subsurface investigations) [4]. These advantages inspire 
researchers and professionals to explore and innovate in this 
exciting field. 

The main components of EIT include electrodes, 

acquisition electronics [5], and monitoring units. A low-

intensity alternating current is introduced via electrode pairs, 

and the potential differences across the other electrodes are 

measured. These boundary voltages are crucial for the 

reconstruction of the conductivity maps. However, this 

process is inherently challenging. Various algorithms have 

been used to address this issue. Although non-iterative 

methods are simple, they require higher accuracy due to linear 

approximations. On the other hand, iterative algorithms, 

while powerful, are susceptible to noise and measurement 

errors, emphasizing the need for precision in the EIT process 

[6]. Artificial neural networks (ANNs), especially deep 

Neural Networks (DNNs) with multilayer autoencoders [7], 

[8], have been shown to be superior in image reconstruction 

compared to traditional methods. Their practical applications 

in identifying complex patterns are particularly inspiring. 

Convolutional Neural Networks (CNNs) are used in noisy 

scenarios [9], [10], [11] and provide a practical solution for 

filtering noisy input data. Radial basis function neural 

networks (RBFNNs) approximate nonlinear functions and are 

enhanced by optimization algorithms such as hybrid particle 

swarm optimization (HPSO) [6]. They provide practical 

solutions for cases where the input and output data 

relationship is nonlinear and complex. Additionally, the 

RBFNN optimized by a colony of artificial bees (ABC-

RBFNN) [12] and the mechanism combining the RBFNN and 

CBAM-UNet subnetworks further improve image quality and 

edge sharpness [13], inspiring further practical applications 

in this field. 
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Despite the considerable promise of EIT, persistent 

challenges undermine its effectiveness, particularly in the 

accurate reconstruction of conductivity maps from boundary 

voltage measurements. A persistent obstacle lies in the ill-

conditioned connection weights within RBFNNs, which 

significantly impact prediction accuracy and image quality. 

There is an urgent need to revise traditional approaches to 

parameter determination in RBFNNs, which often rely on 

fixed-width and center parameters or on methods such as k-

nearest neighbors (KNN) and k-means clustering [6], [14]. 

The KNN method requires prior knowledge of the number of 

clusters and risks compromising accuracy. This study 

presents a novel algorithmic paradigm leveraging density-

based clustering algorithms (DBSCAN) [15], which 

dynamically adapt to different data densities without 

predefining cluster counts. By integrating DBSCAN into the 

parameter determination process, our proposed approach 

aims to circumvent the challenges posed by ill-conditioned 

weights in RBFNNs, thereby improving prediction accuracy 

and image quality in various EIT applications. This work 

complements the ongoing research work of the Department 

of Theoretical and Experimental Electrical Engineering to 

develop a new modular system [16] for EIT. 

While previous studies have mainly relied on datasets with 

constant-conductivity objects and white Gaussian noise, our 

research takes a different approach. We use a synthetic 

dataset generated using the EIDORS framework [17], a 

widely used software package for EIT, containing objects 

with different shapes (rectangular and circular) and distinct 

conductivities. We designed this dataset to mimic real-world 

scenarios, adding a layer of complexity to the research. 

Furthermore, our study extends its scope to include white 

Gaussian noise and non-Gaussian noise sources such as 

impulsive and contact noise. This departure from 

conventional constant conductivity targets and noise sources 

enriches our research with a more realistic and complex 

dataset, adding depth and nuance to our EIT investigations 

and covering a wider range of real-world noise scenarios. 

Using the EIDORS framework and including different noise 

sources in our dataset are crucial aspects of our research, as 

they allow us to simulate and study EIT in a more realistic 

and challenging environment, improving the robustness and 

applicability of our proposed algorithmic paradigm. Our 

work has practical implications as it provides a more accurate 

and comprehensive understanding of EIT under real-world 

conditions. 

2. MATERIALS AND METHODS 

In our study on the reconstruction of EIT images using 

ANNs, the dataset acquisition phase was of central 

importance. To this end, we generated a synthetic dataset 

using the well-established EIDORS framework. We chose 

EIDORS in our methodology for dataset creation because it 

effectively solves forward and inverse EIT problems and is 

highly practical. EIDORS enabled the generation of a diverse 

dataset with circular and rectangular targets with different 

conductivity levels and sizes in a water-filled vessel. The 

choice of a constant water conductivity of 0.04 S/m and an 

object conductivity ranging from 0.01 S/m to 0.12 S/m is 

significant as it represents a realistic range of conductivities 

in typical EIT applications. We chose these conductivity 

levels to mimic the range of conductivities in biological tissue 

so that our dataset is more representative of real-world 

scenarios. We use electrodes surrounding the container to 

inject current and measure the voltage, as shown in Fig. 1, 

following predetermined patterns. The container has a 

diameter of 100 mm. To adapt the newly proposed technique 

for different EIT applications, several key parameters need to 

be considered. The frequency of current injection, which 

ranges from 10 kHz to 200 kHz, should be adjusted based on 

the specific properties of the target medium, as different 

frequencies offer different sensitivity to conductivity 

changes. Higher frequencies often provide better resolution 

for fine structures. The number of electrodes, which is fixed 

at 16 in the current setup, may need to be adjusted depending 

on the spatial resolution requirements of the application. This 

is a crucial factor that emphasizes the significance of your 

role, as potential modifications can lead to higher accuracy or 

coverage if needed. In addition, the current injection and 

measurement patterns should be tailored to the specific 

imaging task to optimize sensitivity and image reconstruction 

quality. 

 

Fig. 1.  EIT system with electrodes. 

 

Fig. 2.  Vessel and object size. 
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In comparison, the circular targets have a diameter of 6 to 

10 mm, and the rectangular targets measure 5 mm in length 

and 2 to 5 mm in width, as shown in Fig. 2. This meticulous 

setup ensures a comprehensive dataset that is not only diverse 

but also representative of real-world scenarios. While we 

recognize the maturity of the EIDORS system, its integration 

into our methodology served a very specific purpose: to 

facilitate robust dataset preparation and allow us to focus on 

algorithm development and evaluation. Although the use of 

EIDORS is not a new aspect, its pragmatic incorporation 

underlines our methodological efficiency and research 

orientation. 

Our study explores two distinct injection and voltage 

measurement patterns: adjacent injection and measurement 

and another in which two electrodes separate the injection and 

measurement phases. 

The finite element model (FEM) integrated into the 

EIDORS framework is based on a homogeneous cylindrical 

object known as d2c, comprising 1024 pixels configured in a 

16-electrode pattern. Each dataset sample can have circular, 

rectangular, or both shapes for training, testing, and 

validation. The measured voltage and conductivity maps 

serve as input and output data for the novel RBFNN, 

respectively. The input voltage ranges from 0.43 to 

28.26 mV, while the conductivity values in the reconstructed 

images vary between 0.04 and 0.29 S/m. The input vector Ui 

comprises 208 measured voltages, while the output vector σ 

comprises 1024 conductivity values, as detailed in (1) and (2). 

Regarding dataset sizes, it is essential to note that the 

extensive dataset comprises 10647 samples in the training 

dataset and 3561 samples each in the validation and test 

datasets. While the numbers 10647 and 3561 have no 

particular significance beyond indicating the scale of the 

dataset, they do indicate the sample sizes in each partition. 

This clarification ensures transparency regarding the 

composition and distribution of the dataset and provides a 

comprehensive overview of our experimental setup. 

It is important to emphasize that noise was intentionally 

introduced during the voltage measurement process to 

replicate real-world scenarios. This noise, with a typical 

signal-to-noise ratio (SNR) between 30 and 60 dB, includes 

both white Gaussian noise and non-Gaussian noise sources, 

such as impulsive and contact noise. It is important to note 

that contact noise is caused by poor contact between the 

electrode and the skin or by the electrode movement. This 

noise leads to electrode impedance variations that 

significantly affect the signal quality. The deliberate 

inclusion of different types of noise reinforces the robustness 

of the ANN model and guarantees its effectiveness in practice 

in noisy environments. 

Fig. 3 shows the process of generating and using synthetic 

data for training ANNs. The process begins with a known 

current I and an initial conductivity σbefore solving the 

forward problem. The electrical distribution ф is then 

determined, which is then used to measure the boundary 

voltage Ui. The final step is to solve the inverse problem to 

reconstruct the sample conductivity maps σ after. This 

process is not a one-time event, but an iterative process that 

is repeated through numerous simulations to generate a 

substantial dataset. The boundary voltages and the initial 

conductivity σbefore serve as input and output parameters for 

the new method. Different types of noise are intentionally 

introduced into the boundary voltage Ui to serve as input for 

the ANN during model training. 

 𝑈 = (𝑈1, 𝑈2, … , 𝑈𝑖)          𝑤𝑖𝑡ℎ 𝑖 = 1,2, … 128, (1) 

 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑗)            𝑤𝑖𝑡ℎ 𝑗 = 1,2, … 1024. (2) 

The SNR of the different noises is determined using the 

following equation: 

     𝑆𝑁𝑅 = 20log10 (
𝑈

𝑉𝑛
), (3) 

where  𝑈 is the boundary voltage without noise and 𝑉𝑛 is the 

noise voltage. 

 

Fig. 3.  Synthetic data generation for ANN training. 
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To evaluate the performance of the proposed method, we 

compare it with three widely used algorithms: the original 

RBFNN, the total variation (TV), and the Gauss-Newton 

(GN) method. Below is a brief description of each algorithm: 

The original method is a neural network model that uses 

radial basis functions as activation units to approximate 

complex nonlinear mappings between input and output data. 

In the context of EIT, it models the relationship between 

boundary voltage measurements and the internal conductivity 

distribution. Typically, the centers of the radial basis 

functions are determined using clustering techniques, while 

their widths are calculated based on the distance between the 

centers. The RBFNN is known for its ability to effectively 

handle nonlinearities and generalize across different datasets, 

making it a strong candidate for image reconstruction tasks 

[12]. 

Total variation, a well-established technique for solving 

inverse problems such as EIT, is particularly effective in 

preserving edges and reducing noise. It aims to minimize the 

TV of the reconstructed image, promoting piecewise constant 

solutions. This unique feature makes it ideal for improving 

spatial resolution in EIT images. TV regularization solves a 

constrained optimization problem that balances the data 

fidelity and regularization terms and provides a robust 

solution for ill-posed problems [18].  

The GN method, a widely used iterative optimization 

algorithm for nonlinear least-squares problems, is particularly 

effective in solving the inverse problem in EIT. The forward 

model is linearized and the difference between the measured 

and predicted boundary voltages is minimized. At each 

iteration, a linear approximation of the problem is solved to 

update the conductivity estimate. However, the GN method 

is known for its computational intensity and sensitivity to 

noise in the data, which can potentially affect the 

reconstruction quality [19]. 

The proposed method, which is based on a cascaded 

RBFNN, uses DBSCAN to calculate the centers and KNN to 

determine the widths of the radial basis functions, providing 

substantial benefits for image reconstruction in EIT. By 

effectively capturing the nonlinear relationships between 

boundary measurements and internal conductivity 

distributions, this approach increases spatial resolution and 

improves robustness to noise. The localized nature of RBFs, 

combined with faster convergence and a simplified training 

process, facilitates real-time applications. In addition, the 

ability of the method to effectively generalize and interpolate 

missing data further improves reconstruction accuracy, 

making it a highly efficient and accurate solution for EIT 

image reconstruction. The implementation begins with 

DBSCAN, which clusters the input data and determines the 

centers of the radial basis functions. KNN is then used to 

calculate the appropriate widths for these functions. Finally, 

the optimized cascaded RBFNN is used to map the boundary 

measurements to the internal conductivity distribution to 

complete the image reconstruction task. This cascaded 

structure improves the ability of the method to capture 

complex, nonlinear relationships and provides improved 

accuracy and robustness in the reconstruction process, 

resulting in an accurate solution for image reconstruction. 

The algorithm proposed in Fig. 4 comprises two 

subnetworks:  

1. The first subnetwork, which is suitable for regression 

and classification tasks, uses an RBFNN with explicit 

control of the architecture, where the DBSCAN and 

KNN algorithms are used to calculate the center and 

width of the radial basis function (RBF). These 

algorithms play an essential role in determining the 

optimal center and width of the RBF, thus improving 

network performance and adaptability.  

2. The second subnetwork developed for generalized 

regression also uses an RBFNN, which is known for its 

simplicity and non-parametric nature. This enables it to 

approximate continuous functions and predict numerical 

values with a dynamically determined hidden layer 

width.  

This dual-subnetwork approach leverages the strengths and 

adaptability of the RBFNN for robust, adaptable, data-driven 

modeling suitable for a wide range of problem domains. 

 

Fig. 4.  Architecture of the proposed method. 
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DBSCAN is a clustering algorithm used in data analysis 

and machine learning to recognize clusters of different shapes 

and sizes and efficiently manage noise. It classifies points as 

core points that have a minimum number of neighbors within 

a specified radius, and then expands the clusters from these 

core points by iteratively collecting density-reachable points. 

We refer to points that are not reachable from any core point 

as noise. DBSCAN does not need to specify the number of 

clusters in advance and is therefore more flexible than other 

algorithms. However, the KNN algorithm is used for both 

classification and regression tasks. It identifies the k-nearest 

data points for a given input in the feature space and makes 

predictions based on these neighbors. In classification, KNN 

assigns the most common class among the neighbors, while 

in regression their values are averaged. The KNN algorithm 

is non-parametric, makes no assumptions about the data 

distribution, and is versatile in various applications. 

The first subnetwork of the input layer in our novel 

algorithm comprises 208 neurons. Each input neuron 

processes a voltage measured according to (1). The hidden 

layer 1 consists of radial neurons whose centers and widths 

are determined by DBSCAN and KNN algorithms, 

respectively. 

DBSCAN, a density-based clustering algorithm, identifies 

clusters within the data to determine the centers 𝑐𝑗 of the RBF 

neurons in the first subnetwork. The cluster assignment 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑢𝑖) for each point 𝑢𝑖 is determined as follows: 

𝐶𝑙𝑢𝑠𝑡𝑒𝑟(𝑢𝑖) {

𝑐1    
𝑐2    

1. . . ..  
𝑁𝑜𝑖𝑠𝑒 

𝑖𝑓 𝑢𝑖  𝑖𝑠 𝑎 𝑐𝑜𝑟𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐1       
𝑖𝑓 𝑢𝑖  𝑖𝑠 𝑎 𝑐𝑜𝑟𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐2       

1. . .
𝑖𝑓 𝑢𝑖  𝑖𝑠 𝑎 𝑐𝑜𝑟𝑒 𝑝𝑜𝑖𝑛𝑡 𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑛𝑜𝑖𝑠𝑒

1
1

 𝑖 =  1. . .208.
1

 

  (4) 

The Euclidean distance 𝑑𝑖𝑠𝑡(𝑢𝑖 , 𝑐𝑖  ) between each data 

point 𝑢𝑖 and the center 𝑐𝑖 is calculated according to (5). 

 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑢𝑖 , 𝑐𝑖  ) = 𝑑𝑖𝑠𝑡(𝑢𝑖 , 𝑐𝑖);      𝑖 = 1 … 208. (5) 

The KNN algorithm is then used to determine the width of 

the RBF neurons. The mathematical expression for 

identifying the nearest neighbors of 𝑢𝑖 among the core points 

is given by: 

 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠(𝑢𝑖) = {𝑐1 , 𝑐2 , … . 𝑐𝑖} . (6) 

The width 𝑠𝑝 of the RBF neurons is determined using (7): 

 𝑠𝑝(𝑢𝑖) = 𝑚𝑎𝑥(𝑑𝑖𝑠𝑡(𝑢𝑖, 𝑐1), 𝑑𝑖𝑠𝑡(𝑢𝑖 , 𝑐2), 𝑑𝑖𝑠𝑡(𝑢𝑖 , 𝑐𝑘)). (7) 

The radial neurons in the hidden layer 1 of the first 

subnetwork are activated according to (8): 

 
ℎ(𝑢𝑖) = 𝑒𝑥𝑝

(−‖𝑢𝑖−𝐶𝑖‖2∗(
1

𝑠𝑝(𝑢𝑖)
)) 

;       𝑖 = 1 …  208.
 (8) 

where ‖𝑢𝑖 − 𝑐𝑖‖ represents the Euclidean distance from the 

input vector 𝑢𝑖 to the center vector 𝑐𝑖. The output of the first 

subnetwork f(𝑢𝑖) is calculated as follows: 

 𝑓(𝑢𝑖) = 𝑊𝑗 ∗ 𝑔(𝑢𝑖) + 𝑏 ;    𝑖 = 1 … 208; 

 𝑗 = 1 … 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑒𝑐𝑡𝑜𝑟𝑠, (9) 

where 𝑊𝑗 is the weight assigned to the jth RBF neuron and 𝑏 

is the bias term. 

During the training process, we initialize the neural 

subnetwork architecture with an empty RBF layer and 

simulate the subnetwork. The input vector with the highest 

prediction error is identified and a new RBF neuron with 

weights initialized to this vector is added to the subnetwork. 

We then adjust the weights of the linear output layer using a 

learning algorithm to minimize the errors. This iterative 

process continues until the mean square error (MSE) falls 

below a specified target.  

The output vector of the first subnetwork serves as input 

for the second subnetwork and consists of 1024 elements, as 

defined in (10):  

 𝑢𝑟 = (𝑢𝑟1, 𝑢𝑟2, … , 𝑢𝑟𝑘)   𝑤𝑖𝑡ℎ 𝑘 = 1,2, … 1024. (10) 

The hidden layer 2 of the second subnetwork contains 

radial basis neurons that are activated with the Gaussian 

radial basis function described by (11): 

𝑔(𝑢𝑟𝑖) = 𝑒𝑥𝑝
(−‖𝑢𝑟𝑖−𝐶𝑟𝑖‖2∗(

√0.5

S1
)) 

;    𝑖 = 1 …  1024.   (11) 

The activation of the RBF neuron, denoted as g(𝑢𝑟𝑖), 

depends on the input vector 𝑢𝑟𝑖. Throughout the training 

process, we define the center vector of the RBF as 𝑐𝑟𝑖  and the 

width parameter 𝑠1. The Euclidean distance  ‖𝑢𝑟𝑖 − 𝑐𝑟𝑖‖  

quantifies the distance between the input vector 𝑢𝑟𝑖 and the 

center vector 𝑐𝑟𝑖 . 

The output of the second subnetwork y(𝑢𝑟𝑖) is a linear 

combination of the activations of the RBF neuron, weighted 

by the output weights 𝑊𝑗: 

𝑦(𝑢𝑟𝑖) = 𝑊𝑗 ∗ 𝑔(𝑢𝑟𝑖);   𝑖 = 1 …  1024 ;  𝑗 = 1 … 1024.  (12) 

We calculate the mean square error (MSE) of the proposed 

algorithm using (13), where 𝑇𝑖  is the target value, 𝑌𝑖 is the 

network prediction, 𝑀 is the total number of responses in 𝑌, 

and 𝑁 is the total number of observations in 𝑌: 

  𝑀𝑆𝐸 =
1

2𝑁
∑ (𝑌𝑖

𝑀
𝑖=1 −  𝑇𝑖);     𝑖 = 1 … 1024. (13) 

Image reconstruction is a complex process that involves 

the generation of a high-quality image from a set of raw data. 

In this process, a comprehensive set of metrics, including 

correlation coefficient, structural similarity index, peak 

signal-to-noise ratio, and accuracy, are used to assess the 

quality of the reconstructed image. These metrics play a 

crucial role in quantitatively assessing various aspects of the 

fidelity and overall quality of the reconstructed image, 

ensuring that the final image is as close to the original as 

possible. 

The correlation coefficient cor, which is calculated in (14), 

is a central component of our evaluation process. It helps us 

to assess the degree of correlation between the recovered 

image 𝑌𝑚𝑛
∗  and the original image 𝑌𝑚𝑛. The larger the value 

of the correlation coefficient, the stronger the correlation and 

the higher the quality of the reconstructed conductivity map. 

𝑌𝑚𝑛
∗̅̅ ̅̅ ̅ and  𝑌𝑚𝑛

̅̅ ̅̅ ̅ are the mean values of the recovered image and 

the original image, respectively. 
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 𝑐𝑜𝑟 =  
∑ ∑ (𝑌𝑚𝑛

∗
𝑛𝑚 − 𝑌𝑚𝑛

∗  ̅̅ ̅̅ ̅̅ ̅)(𝑌𝑚𝑛− 𝑌𝑚𝑛̅̅ ̅̅ ̅̅ )

√(∑ ∑ (𝑌𝑚𝑛
∗

𝑛𝑚 − 𝑌𝑚𝑛
∗̅̅ ̅̅ ̅̅ )2)(∑ ∑ (𝑌𝑚𝑛𝑛𝑚 −𝑌𝑚𝑛̅̅ ̅̅ ̅̅ )2)

. (14) 

The structural similarity index ss(x,y) used in (15) 

measures the quality of the reconstructed image. A structural 

similarity value equal to 1 indicates that the reconstructed 

image and the original image are identical. A value less than 

1 indicates that the quality of the reconstructed image differs 

from that of the original image. 

 𝑠𝑠(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦+ 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2  + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 , (15) 

where 𝜇𝑥, 𝜇𝑦, 𝜎𝑥, 𝜎𝑦 and 𝜎𝑥𝑦 are the local means, standard 

deviations, and cross-covariances for images 𝑥, 𝑦. The small 

constants 𝐶1 and 𝐶2 are used to prevent division by zero when 

calculating the structural similarity index. 

The peak signal-to-noise ratio (psnr) calculated using (16) 

is essential for the assessment of image quality. It clearly 

indicates the fidelity of a reconstructed image compared to 

the original. A higher 𝑝𝑠𝑛𝑟 indicates better image quality. 

 𝑝𝑠𝑛𝑟 = 10 𝑙𝑜𝑔(𝑝𝑒𝑎𝑘𝑣𝑎𝑙2 𝑀𝑆𝐸⁄ ), (16) 

where peakval is the maximum possible pixel value of the 

image data type and MSE is the mean square error between 

the recovered image and the original image. 

The accuracy acc between the number of correct 

predictions and the total number of predictions was 

determined using (17): 

 𝑎𝑐𝑐 =
1

𝑛𝑝
∑ 𝑐𝑜𝑛𝑑(|𝑛𝑐𝑝 −  𝑡𝑛𝑝|  ≤  𝑡𝑜𝑙), (17) 

where 𝑛𝑐𝑝, 𝑡𝑛𝑝, and 𝑛𝑝 are the number of correct predictions, 

the total number of predictions, and the number of 

predictions, respectively. The variable 𝑡𝑜𝑙 is the tolerance 

value used to determine whether the prediction is considered 

correct. The indicator function 𝑐𝑜𝑛𝑑 is evaluated as 1 if the 

included condition is True and as 0 if it is False. 

3. RESULTS 

This study presents a novel approach to image recon-

struction and meticulously compares it with existing 

algorithms in the field, including TV, the Gauss-Newton 

method, and the original RBFNN. The evaluation process is 

comprehensive and includes different types of noise, such as 

white Gaussian noise, impulsive noise, and contact noise, to 

ensure the robustness of the new method under diverse 

conditions. This meticulous comparison instills confidence in 

the thoroughness of our research. 

The ablation study, performed with optimal parameters, 

highlighted the individual and collective contributions of 

each subnetwork to the overall system performance. When 

trained with the training dataset, the first subnetwork 

achieved an MSE of 0.0046. Under the same conditions, the 

second subnetwork achieved an MSE of 0.0202. These results 

were obtained using the exact optimal values for the width of 

the radial basis neurons in the second subnetwork, which was 

set to 0.4. This significant reduction in error emphasizes the 

synergistic effects achieved by integrating the predictions of 

the two subnetworks. Although each subnetwork has 

different predictive capabilities, their combined model 

utilizes complementary strengths to improve prediction 

accuracy. These results highlight the fundamental importance 

of considering the entire architecture of the network and 

optimizing the parameters for better performance. 

Table 1 shows the reconstructed conductivity maps using 

the TV, the Gauss-Newton method, and the newly proposed 

method. All three methods reconstruct the conductivity maps 

effectively when the input data is noise-free. However, in the 

presence of noise, the traditional algorithms struggle to 

produce accurate reconstructions, while the proposed method 

shows superior performance even in challenging conditions. 

Table 2 provides quantitative evaluation metrics for the 

reconstructions in Table 1, including the correlation 

coefficient (cor), structural similarity index (ss), and psnr. 

The proposed method consistently yields higher values for 

these metrics than the TV and Gauss-Newton methods, 

regardless of noise presence, indicating superior 

reconstruction quality. The only exception is position 4A, 

where the traditional algorithms outperform the proposed 

method. 

Table 3 shows that both the proposed and original methods 

can reconstruct images from data with or without noise. 

Table 4 compares the correlation coefficient, structural 

similarity index, and peak signal-to-noise ratio between the 

proposed and original methods for the reconstructions in 

Table 3. The proposed method outperforms the original 

method in all metrics when the input data is noise-free or 

when the noise levels are between 30 and 60 dB. 

Fig. 5 summarizes the accuracy results with a tolerance of 

1e-6 and gives an insight into the performance of the 

proposed method under different conditions. In noise-free 

scenarios, the proposed method achieved an impressive 

accuracy of 89.54 % on the test dataset, while the training 

data accuracy was even higher at 90.95 %. 

When evaluating the performance of the method in the 

presence of noise, particularly at SNRs ranging from 30 to 

60 dB, the proposed method maintained robust accuracy 

levels, ranging from 82.90 % to 89.53 % for the validation 

dataset and from 84.28 % to 89.55 % for the test dataset. 

Notably, the accuracy of the validation and test datasets for 

the proposed method is almost identical, demonstrating its 

robustness under different conditions.  

In comparison, the original method achieved an accuracy 

of 84.31 % on the validation dataset and 85.44 % on the test 

dataset without noise. Under noisy conditions (30 to 60 dB), 

its accuracy ranged from 80.90 % to 84.30 % for the 

validation dataset and from 81.17 % to 85.61 % for the test 

dataset. 

The TV method, without noise, achieved an accuracy of 

83.13 % on the validation dataset and 81.54 % on the test 

dataset. However, its performance declined significantly in 

noisy environments, with accuracy ranging from 33.53 % to 

43.25 % for the validation dataset and from 36.17 % to 

45.15 % for the test dataset. 
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Table 1.  Comparison of reconstructed images between the new proposed method and traditional methods. 

Position; Noise Simulation model Total variation Gauss-Newton Proposed method 

1A 

 
    

2A 

    

3A 

    

4A 

    

5A 

    

6A; 30 dB 

    

7A; 40 dB 

    

8A; 60 dB 

    

Table 2.  Comparison of metrics between the new proposed method and traditional methods. 

Position; Noise Metrics Total variation Gauss-Newton Proposed method 

1A cor 0.627 0.703 0.846 

 ss 0.964 0.929 0.978 

 psnr 17.869 21.622 22.546 

2A cor 0.883 0.903 0.904 

 ss 0.921 0.911 0.962 

 psnr 19.231 19.114 20.327 

3A cor 0.836 0.831 0.867 

 ss 0.986 0.960 0.981 

 psnr 21.650 25.118 24.451 

4A cor 0.958 0.828 0.722 

 ss 0.978 0.943 0.922 

 psnr 23.001 23.535 20.102 

5A cor 0.814 0.831 0.958 

 ss 0.955 0.925 0.995 

 psnr 18.701 21.861 26.216 

6A; 30 dB cor - 0.534 0.066 0.680 

 ss 0.832 0.837 0.977 

 psnr 14.057 14.912 20.918 

7A; 40 dB cor 0.165 - 0.087 0.691 

 ss 0.829 0.830 0.970 

 psnr 13.330 14.147 19.658 

8A; 60 dB cor 0.139 0.012 0.745 

 ss 0.830 0.834 0.976 

 psnr 13.429 14.815 22.142 
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Table 3.  Comparison reconstructed images between the intelligent methods (original method and new proposed method). 

Position 

Noise 

Simulation 

model 

Without noise White Gaussian noise Non-Gaussian noise 

(Impulsive noise) 

Non-Gaussian noise 

(Contact noise) 

  Original 

method 

Proposed 

method 

Original 

method 

Proposed 

method 

Original 

method 

Proposed 

method 

Original 

method 

Proposed 

method 

1B 

30 dB 
         

2B 

40 dB 
         

3B 

50 dB 
         

4B 

60 dB 
         

5B 

50 dB 
         

6B 

30 dB 
         

7B 

40 dB 
         

8B 

60 dB 
         

Table 4.  Comparison metrics between the intelligent methods (original method and new proposed method). 

Position 

Noise 

Metrics Without noise White Gaussian noise Non-Gaussian noise 

(Impulsive noise) 

Non-Gaussian noise 

(Contact noise) 

  Original 

method 

Proposed 

method 

Original 

method 

Proposed 

method 

Original 

method 

Proposed 

method 

Original 

method 

Proposed 

method 

1B; 30 dB cor 0.709 0.846 0.742 0.853 0.703 0.861 0.712 0.862 
 ss 0.945 0.978 0.945 0.981 0.941 0.980 0.940 0.979 
 psnr 19.414 22.546 21.087 22.532 19.683 22.856 20.183 23.392 
2B; 40 dB cor 0.902 0.904 0.899 0.912 0.886 0.893 0.904 0.912 
 ss 0.913 0.962 0.905 0.954 0.902 0.957 0.912 0.962 
 psnr 18.379 20.327 17.507 18.797 17.746 18.557 18.736 20.135 
3B; 50 dB cor 0.752 0.867 0.752 0.873 0.747 0.873 0.747 0.856 
 ss 0.951 0.981 0.951 0.981 0.950 0.981 0.951 0.982 
 psnr 21.773 24.451 21.906 24.768 21.676 24.820 21.906 24.205 
4B; 60 dB cor 0.663 0.722 0.663 0.722 0.663 0.722 0.663 0.723 
 ss 0.881 0.922 0.881 0.922 0.881 0.922 0.881 0.922 
 psnr 18.934 20.102 18.925 20.082 18.928 20.045 18.925 20.106 
5B; 50 dB cor 0.814 0.958 0.811 0.958 0.811 0.957 0.812 0.958 
 ss 0.928 0.995 0.928 0.995 0.928 0.995 0.928 0.994 
 psnr 20.979 26.216 20.875 26.212 20.881 26.208 20.875 26.208 
6B; 30 dB cor 0.611 0.717 0.579 0.680 0.550 0.773 0.580 0.663 
 ss 0.943 0.978 0.928 0.977 0.913 0.983 0.932 0.970 
 psnr 20.137 21.688 19.409 20.918 19.150 23.150 19.150 19.569 
7B; 40 dB cor 0.565 0.710 0.543 0.691 0.559 0.716 0.562 0.702 
 ss 0.922 0.971 0.919 0.970 0.922 0.972 0.918 0.970 
 psnr 18.046 19.904 17.971 19.658 18.102 20.087 18.102 19.749 
8B; 60 dB cor 0.674 0.745 0.674 0.745 0.674 0.745 0.674 0.746 
 ss 0.948 0.976 0.948 0.976 0.948 0.976 0.948 0.977 
 psnr 20.950 22.154 20.997 22.142 20.972 22.125 20.972 22.134 
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Fig 5.  Accuracy comparison between the proposed method and other methods. 

Similarly, the Gauss-Newton method achieved an accuracy 

of 82.35 % in the validation dataset and 81.14 % in the test 

dataset without noise. In the presence of noise, its accuracy 

varied between 33.21 % and 44.17 % for the validation 

dataset and 35.17 % and 46.15 % for the test dataset. 

These results highlight the superior accuracy of the 

proposed method, particularly under noisy conditions, 

compared to the other evaluated methods. 

4. DISCUSSION  

The results of this study provide significant insights into 

the performance of the proposed method in comparison to 

established techniques, including TV, the Gauss-Newton 

method, and the original method. The proposed method 

shows a clear advantage over traditional approaches, 

especially for noisy data. It shows exceptional capabilities in 

reconstructing images from noisy datasets, which is a 

challenge that conventional methods often struggle to 

address. This shows that the proposed method is robust and 

well suited for real-world applications where data quality 

may be compromised. 

Another notable strength of the proposed approach is its 

effectiveness in dealing with different types of noise, 

including impulsive and contact noise. This robustness 

emphasizes its utility in scenarios where data is inherently 

noisy or affected by external factors. The proposed method 

consistently outperforms the original algorithm even under 

noise-free conditions, indicating its high effectiveness when 

data quality is optimal. 

Specifically, the proposed method achieves an accuracy of 

89.54 % without noise and maintains an accuracy between 

82.90 % and 89.53 % at noise levels ranging from 30 to 

60 dB. In comparison, the original method achieves an 

accuracy of 85.44 % without noise and an accuracy between 

80.90 % and 85.31 % at similar noise levels. The TV method 

achieves 83.13 % without noise, with noise-influenced 

accuracy between 34.28 % and 45.15 %. The Gauss-Newton 

method has an accuracy of 82.35 % without noise, with noise-

related accuracy ranging from 33.21 % to 46.15 %. These 

results emphasize the robustness of the proposed method, 

even in noisy environments. 

However, the metrics of the proposed method indicate 

poorer reconstruction performance at position 4A in Table 2, 

especially for two rectangular targets. This can be attributed 

to the sharp edges and corners of the rectangles, which may 

challenge the smooth interpolation capabilities of the method. 

In addition, spatial interactions such as overlap, or proximity 

can complicate the reconstruction process when two 

rectangles are present. Boundary effects and sensitivity to 

abrupt transitions near the edges of the rectangles may also 

contribute to the lower performance in this region. 

Furthermore, while this study focused on noise levels within 

the range of 30 to 60 dB, we recognize the importance of 

evaluating the performance of the proposed method under 
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lower SNR conditions in future research. This will further 

improve our understanding of the robustness and applicability 

of the method in real-world scenarios where data quality may 

be compromised. 

The promising performance of the proposed method has 

significant implications for a wide range of fields. Its 

robustness, accuracy, and adaptability make it an ideal 

candidate for integration into the new modular system 

currently under development [16]. The potential for better 

results with noisy or imperfect data opens up new possibilities 

for the application of the method. 

5. CONCLUSION  

In conclusion, this study shows that the proposed method 

significantly advances image reconstruction tasks in EIT. Its 

consistently superior performance, robustness to noise, and 

adaptability to various conditions make it a valuable tool for 

multiple applications. 

Further research and practical implementation are crucial 

to fully exploit the advantages of this method and eliminate 

potential limitations that may occur in real-world scenarios. 

The integration of this approach into modular systems has the 

potential to significantly improve the effectiveness and 

reliability of EIT applications. 
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