
MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 2, 93-99 

DOI: 10.2478/msr-2025-0012 *Corresponding author: k.rajalakshmiphd@gmail.com (Rajalakshmi K)   

93 

 

 

 

An Enhanced Measurement of Epicardial Fat Segmentation and 

Severity Classification using Modified U-Net and FOA-guided 

XGBoost 

Rajalakshmi K1*, Palanivel Rajan S2 

1Department of Artificial Intelligence and Data Science, Kamaraj College of Engineering and Technology, K. Vellakulam, 

625701, Tamil Nadu, India, k.rajalakshmiphdphd@gmail.com 
2Department of Electronics and Communication Engineering, Velammal College of Engineering and Technology, Madurai, 

625009, Tamil Nadu, India  

Abstract: The amount of epicardial fat around the heart has a significant impact on cardiovascular function and requires precise measurement 

for timely treatment. In this work, an improved U-Net architecture is proposed for accurate segmentation of epicardial fat in computer 

tomography (CT) images. The proposed method integrates a modified squeeze-and-excitation (MSE) block and a multi-scale dense (MS-D) 

convolutional neural network (CNN) to improve feature extraction. In addition, a metaheuristic optimization algorithm from falcon 

optimization algorithm (FOA) is used for efficient feature selection. The selected features are then classified using the XGBoost algorithm 

to determine the fat severity. Experimental evaluations on a CT image dataset show the superior segmentation performance of the proposed 

U-Net compared to existing architectures. It achieves a mean intersection over union (Mean IOU) of 89.5 %, a mean Dice score (MDS) of 

94.3 %, and a Pearson correlation coefficient (PCC) of 0.973. FOA-guided feature selection further increases the accuracy of severity 

classification. The overall classification accuracy of the model is 98 %. These results highlight the technological advancements and 

measurement accuracy of the proposed U-Net architecture. They also demonstrate the suitability of the model to improve cardiovascular risk 

assessment and management. 
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1. INTRODUCTION 

Cardiovascular diseases (CVDs) are the leading cause of 

death worldwide. Epicardial adipose tissue (EAT) is one of 

the most important risk factors for CVDs [1]-[3]. EAT is the 

fat deposit in the heart that is located between the myocardial 

surface and the visceral layer of the pericardium. The most 

important functions of EAT include protection against 

hypothermia, mechanical protection of the coronary 

circulation and energy supply to the myocardium. It also 

secretes adiponectin from the epicardial adipocytes. The 

volume and thickness of fat affect cardiovascular activity and 

is the main cause of obesity. Recently, the image processing-

based EAT approach has gained more attention due to its non-

invasiveness [4]. This technique assists healthcare providers 

in analyzing volume, density, spatial distribution, etc. These 

imaging techniques include various modalities such as 

computer tomography (CT), magnetic resonance imaging 

(MRI), and echocardiography for accurate quantification and 

visualization of EAT.  
This quantification supports risk stratification and disease 

prognosis. Recently, the use of machine learning (ML) and 

deep learning (DL) models in cardiovascular imaging has 
gained greater attention [5]. This model is used by clinicians 
to analyze complex data and extract meaningful information 
[6]. The well-known ML algorithms such as Ad Boost, 
Random Forests, and Decision Trees are used for image 
classification, segmentation, and feature extraction. The well-
known DL algorithm such as convolutional neural networks 
(CNNs) has gained importance due to its ability to 
automatically learn features from images. Recently, popular 
DL architectures such as U-Net, DenseNet, and ResNet are 
well suited for medical image analysis such as tumor 
detection, organ segmentation, and disease classification. 
This model’s ability to learn complex patterns from large 
datasets contributes to improved patient care.  

A medical image segmentation model using a feature 
compression pyramid network was developed [7]. An 
innovative interactive segmentation framework utilizing DL 
principles was presented [8]. An ensemble of U-Net 
architectures was developed for kidney tumor segmentation 
[9]. A segmentation model based on a 3-D CNN called 
HyperDenseNet has been proposed for medical image 
processing [10]. An attention mechanism-based model was 
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introduced for medical image segmentation [11]. DSI-Net, 
which includes a classification section, a coarse segmentation 
branch, and a fine segmentation branch, was introduced [12]. 
A smaller model called PocketNet was proposed for the 
combined segmentation and classification process [13]. 

Transformer networks use self-attention mechanisms and 
are able to capture global dependencies within images. 
A spatio-temporal transformer network has been proposed for 
medical image processing [14]. Traditional pixel-wise 
classifiers in deep learning do not take into account the output 
structure and the inter-dependence. To address this, a new 
training approach was introduced [15]. A new deep learning 
model was developed for the epicardial fat segmentation and 
classification in non-contrast CT images [16]. The dual U-Net 
concept was proposed for epicardial fat detection [17]. 

In light of these advancements, this work aims to 
contribute to the evolving model of cardiovascular research 
by proposing a novel approach for accurate EAT assessment 
and severity classification. The proposed model integrates 
DL models with architectural modifications and optimization 
frameworks for accessing EAT severity. The contributions of 
the proposed work are as follows: 

• Performing a modified U-Net based segmentation to 
obtain strong features; 

• Applying an optimization algorithm to select the best 
features; 

• Developing an XGBoost classification model for EAT 
severity classification; 

• The proposed approach is compared with other models. 
The rest of the work is organized as follows: Section 2 

discusses the proposed model for EAT segmentation and 
classification. This is followed by a results and discussion 
section in Section 3. Section 4 discusses a conclusion.  

2. PROPOSED MODEL 

This section first describes the proposed U-Net model for 

EAT segmentation and XGBoost model-based severity 

classification. First, the EAT regions of the image are 

segmented using the proposed modified squeeze-and-

excitation gated recurrent unit U-Net (MSE-GRU-U-Net). 

This architecture includes a MSE and multi-scale dense (MS-

D) network for accurate EAT segmentation. Then the ML 

model of XGBoost is applied to calculate the severity based 

on the trained features extracted from the EAT regions. The 

entire workflow is shown in Fig. 1. 

MSE-GRU U-Net 

The proposed MSE-GRU-U-Net architecture comprises a 
symmetric structure with two core segments: the encoder and 
the decoder, as shown in Fig. 2. The encoder segment focuses 
on feature extraction and the decoder component is used for 
precise feature positioning. This architecture includes 
residual blocks, pooling layers, MSEs, MS-D, and 4 up-
sampling blocks for the 512 × 512 × 1 input images. 

The residual learning strategy is applied by integrating 
shortcut connections into conventional U-Nets. These 
connections make the model suitable for deeper training and 
prevent degradation. Throughout the model, features undergo 
a series of operations including convolutions, feature 
extraction, and pooling. The size of the final binary 
segmented image is 512 × 512 × 1.  

 

Fig. 1.  Workflow of the proposed model. 

 
                     MSE     Up sample    Max pool   Concatenation     MSD 

Fig. 2.  The proposed model. 

To solve the vanishing gradient problem, batch 

normalization and rectified linear unit (ReLU) activation 

units are used in each convolution operation. In addition, the 

MS integrates a bi-directional gated recurrent unit (BiGRU) 

layer to adaptively extract image features. In the U-Net, the 

BiGRU layer is used for channel attention and effective 

segmentation. 

In addition, the MS-D network is used as a transition layer 

after the encoder and at the output of the decoder. The 

insertion of the MS-D network into the U-Net improves the 

model’s ability to learn multi-scale contextual information 

[18]. It also effectively solves the resolution reduction 

problem caused by multiple down-sampling operations. The 

dilated convolutions allow the network to gather contextual 

information without over down-sampling the feature maps. 
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Modified squeeze-and-excitation  

In CNN, the squeeze-and-excitation (SE) block is inserted 

to increase the representational power of the model. It is used 

to focus on relevant features and eliminate irrelevant features 

[19]. The SE block works by learning channel-wise feature 

recalibration weights to adaptively focus on essential 

features. This process involves two fundamental operations: 

squeezing and excitement. The squeezing step aggregates 

channel-wise information to capture global statistics and the 

excitement step performs feature re-weighting based on the 

learned parameters. In the MSE block, the additional layers 

are introduced to improve feature representation and the 

learning capabilities of the neural networks. The GRU layers 

are added in the conventional SE block to better capture 

spatial and temporal information in the images. The MSE 

block includes global pooling, fully connected layers, ReLU 

activation, BiGRU layers, and a final sigmoid activation. 

Global pooling layer: 

The input feature maps are globally pooled to summarize 

the spatial information into a single vector for each channel. 

The output of the pooling layer is expressed as follows: 

 

𝑌 = 𝐺𝑙𝑜𝑏𝑎𝑙𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑋) (1) 

Fully connected layer 1: 

The pooled features are passed through a fully connected 

layer FC1 that facilitates transformation to a higher-level 

feature representation. 

 

𝑍1 = 𝐹𝐶1(𝑌) (2) 

ReLU activation: 

Following the fully connected layer, a ReLU activation 

function introduces non-linearity into the network. 

 

𝐴1 = 𝑅𝑒𝐿𝑈(𝑍1) (3) 

BiGRU layer 1: 

The ReLU-activated features are passed through the first 

BiGRU layer, BiGRU1, which allows the network to capture 

sequential information bidirectionally. 

 

𝐻1 = 𝐵𝑖𝐺𝑅𝑈1(𝐴1) (4) 

BiGRU layer 2: 

The output of the first BiGRU layer is further processed by 

a second BiGRU layer, BiGRU2 to capture more complicated 

sequential patterns. 

 

𝐻2 = 𝐵𝑖𝐺𝑅𝑈2(𝐻1) (5) 

Fully connected layer 2: 

Another fully connected layer FC2 is used to perform 

additional feature transformations. 

 

𝑍2 = 𝐹𝐶2(𝐻2) (6) 

Sigmoid activation: 

Finally, a sigmoid activation function is applied to generate 

the output probabilities by considering the important features 

and suppressing the less relevant ones. 
 

𝑂 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑍2) (7) 
 

where Y represents the global pooled features, Z1 represents 

the output of the first fully connected layer, A1 represents the 

output after ReLU activation, H1 and H2 represent the 

outputs of the first and second BiGRU layers, respectively, 

Z2 represents the features after the last fully connected layer, 

and O represents the output after sigmoid activation, 

emphasizing important features based on the learned weights. 

First, the input feature maps are subjected to global pooling 

operations to summarize the spatial information, allowing the 

extraction of global statistics for each channel. The addition 

of multiple layers enables hierarchical feature learning, 

allowing the model to extract complex representations of the 

fat image. This hierarchical feature learning helps to capture 

both spatial and temporal patterns. 

The excitation operation involves feature learning based on 

channel-wise weights. In addition, the network’s adaptability 

allows it to dynamically focus its attention on different 

aspects of the pixels. The MSE block improves the standard 

SE by integrating multi-scale feature aggregation and 

frequency-aware attention. It improves contextual 

understanding and reduces computational effort. 

MS-D network 

The MS-D network architecture is an innovative approach 

in DL for image processing. This network combines mixed-

scale dilated convolutions with dense connections to improve 

feature extraction and information flow between layers. This 

architecture comprises multiple layers of feature maps, each 

derived from a consistent set of operations. A sequential 

process of operations to generate feature maps is referred to 

as follows: 

𝑔𝑖𝑗({𝑧0, … . 𝑧𝑖−1}) = ∑ ∑ 𝐷ℎ𝑖𝑗𝑘𝑙,𝑠𝑖𝑗

𝑐𝑙−1

𝑘=0

𝑧𝑙
𝑘

𝑖−1

𝑙=0

 (8) 

 

where 𝑔𝑖𝑗  is the output feature map at position i, j derived 

from the previous feature maps {𝑧0, … . 𝑧𝑖−1},  𝐷ℎ𝑖𝑗𝑘𝑙,𝑠𝑖𝑗
  

represents  the weight parameter for the dilated convolution 

operation, 𝑧𝑙
𝑘 represents the previous feature maps (z) indexed 

by k at position l, D denotes the total number of channels in 

the feature maps, and ℎ𝑖𝑗𝑘𝑙,𝑠𝑖𝑗 denotes  the parameters 

controlling the dilation and convolution operation. This 

equation represents the calculation for a specific position i, j 

within a feature map in the MS-D network architecture. It 

takes into account the input or previous feature maps, the 

convolutional weights, and the dilation parameters to 

generate the output feature map at that spatial position. 

The operations include Dilated Convolutions, Pixel-wise 

Summation and Bias Addition. Using 3 × 3 pixel filters with 

channel-specific dilation, convolutions are applied to all 

previous feature maps, capturing the multi-scale information 

important for nuanced feature extraction. The resulting 

images from the convolutions are summed pixel by pixel, 
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enabling the integration of different spatial information 

across multiple scales. A constant bias is added to each pixel, 

which helps in introducing learnable parameters to fine-tune 

the feature representations. This sequential operation 

generates a series of feature maps to refine and extract 

hierarchical features from the input image.  

Feature selection using falcon optimization algorithm  

Feature selection is an important task to achieve higher 

accuracy and reduce computation time. The performance of 

classification mainly depends on the feature selection 

process. In this work, falcon optimization algorithm (FOA) is 

used to select the optimal features extracted from the 

modified U-Net architecture. The falcons represent potential 

solutions that navigate through the solution space. This 

population-based algorithm uses a set of N falcons as search 

agents in the challenge space. Optimal solutions are 

represented by the falcons' positions referred to as gbest. Each 

falcon updates its position based on (4). 

The convergence rate decreases linearly from 1 to 2 over 

the iterations and increases the probability of reaching 

a global solution. Each falcon updates its position based on 

only one gbest, which promotes a comprehensive utilization of 

potential solutions. 

The features selected by FOA are normalized and filtered 

based on the mean and standard deviation to determine the 

best subset of features: 
 

𝑁𝑍𝑖 =
𝐾𝑖 − 𝜇

𝑆
 (9) 

where 𝐾𝑖 denotes the selected features, μ is the mean, S is the 

standard deviation, and 𝑁𝑍𝑖 is the normalized feature vector. 

The final selection is determined by the comparison between 

the selected features and the best vector derived by FOA 

using a quadratic fitness function evaluated by the mean 

square error rate. 

Pseudocode: FOA Feature Selection and XGBoost Optimization 

# *Initialize XGBoost parameters* 

xgb_params = { 

    'learning_rate': 0.1, 

    'max_depth': 5, 

    'n_estimators': 100, 

    # *Other parameters...* 

} 
 

# *Feature selection using FOA* 

def FOA_feature_selection(feature_set, labels): 

    # *Implement FOA for feature selection* 

    # *Initialize population* 

    initialize_population() 

    # *Evaluate fitness of each individual* 

    evaluate_fitness(feature_set, labels) 

    # *Repeat iterations* 

    while not stopping_criteria_met(): 

        # *Apply selection, crossover, and mutation* 

        apply_selection_crossover_mutation() 

        # *Evaluate fitness of new individuals* 

        evaluate_fitness(feature_set, labels) 

    # *Return selected features from the best individual* 

    return best_individual_features 
 

# *Optimize XGBoost parameters with FOA* 

def FOA_optimize_xgb(xgb_params, selected_features, labels): 

    best_params = xgb_params.copy() 

    # *Define FOA iterations for parameter optimization* 

    for iteration in range(max_iterations): 

        # *Perform optimization on XGBoost parameters using FOA* 

        for param in xgb_params: 

            # *Set range for the parameter* 

            param_range = define_parameter_range(param) 

            # *Apply FOA to optimize the parameter* 

            updated_param_value = optimize_parameter(param_range) 

            # *Update XGBoost parameters with optimized value* 

            best_params[param] = updated_param_value 

        # *Train XGBoost model with updated parameters* 

        trained_model = train_xgboost_model(best_params, selected_features, labels) 

        # *Evaluate model performance and update best_params if needed* 

        if model_performance_improved(trained_model): 

            best_params = updated_params 

    return best_params 
 

# *Run feature selection and XGBoost optimization* 

selected_features = FOA_feature_selection(feature_set, labels) 

best_xgb_params = FOA_optimize_xgb(xgb_params, selected_features, labels 
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XGBoost based classification  

XGBoost is a ML model that works on the basis of gradient 

boosting algorithms. To achieve an objective function, it 

sequentially constructs a decision tree. The algorithm updates 

the tree weights to minimize the loss function by gradient 

descent optimization. The result of this boosting method is an 

ensemble of trees, whose predictions are combined using 

weighted averaging. The number of trees, the tree depth, the 

learning rate, and the regularization terms are the four most 

important hyperparameters of the XGBoost model.  

FOA is used in this work to determine the ideal 

hyperparameters of the XGBoost model. To find the ideal set 

of hyperparameters, FOA is used to optimize a subset of these 

values. FOA provides effective assistance. The pseudocode 

for the proposed feature selection and tuning of the XGBoost 

model is presented above. 

The first function, FOA_feature_selection (), focuses on 

using FOA to iteratively select the most relevant features 

from a given set. Through population initialization, fitness 

evaluation, and iterative refinement, which includes updating 

the best positions, generating new locations, and updating the 

falcon locations, this process identifies the optimal set of 

features that are critical for EAT segmentation and severity 

analysis. Next, the FOA_optimize_xgb () function uses FOA 

to optimize the parameters within the XGBoost model. It 

iterates through the defined parameter space and optimizes 

parameters such as the learning rate, max depth, and other 

parameters relevant to XGBoost to improve the model's 

efficiency in classifying the EAT severity levels. FOA 

increases the computational complexity due to fractional-

order calculations that require memory-intensive recursive 

operations. It improves feature sensitivity but requires 

efficient GPU acceleration to maintain practical training 

times. 

3. RESULTS AND DISCUSSION 

The experimental datasets used in this work are taken from 

the website (http://visual.ic.uff.br/en/cardio/ctfat/index.php). 

These datasets consist of features extracted from 200 patients. 

The validity and repeatability of the proposed method was 

assessed by conducting ten-fold cross-validation experiments 

with the collected dataset. In each cross-validation, the 

dataset was divided into 70 % for training and 30 % for 

validation. In this dataset, segmentation faces challenges such 

as low contrast and artifacts. To overcome this, adaptive 

weighting and post-processing are performed. The 

performance of the proposed segmentation architecture is 

compared with other segmentation models in terms of mean 

intersection over union (Mean IOU), mean Dice score (MDS), 

and Pearson correlation coefficient (PCC). 

Mean IOU evaluates the intersection between the predicted 

segmentation and the ground truth (GT) segmentation for 

multiple classes or instances. It is calculated as the 

intersection divided by the union of the predicted and GT 

masks as follows: 

 

𝐼𝑂𝑈 =
Area of Overlap 

Area of Union 
 (10) 

 

The Mean IOU is calculated as follows: 

 

𝑀𝑒𝑎𝑛 𝐼𝑂𝑈 =
1

𝑁
∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑁

𝑖=1

 (11) 

 

where N is the number of classes or instances, 𝑇𝑃𝑖  is the true 

positive for class i, 𝐹𝑃𝑖  is the false positive for class i, 𝐹𝑁𝑖 is 

the false negative for class i. 

The Dice score (also known as F1 score) is used to evaluate 

the similarity between two samples. In segmentation, it 

measures the overlap between the predicted and GT 

segmentation as follows: 

 

𝐷𝑖𝑐𝑒 𝑠𝑐𝑜𝑟𝑒 =
2 × Area of Overlap

Area of Predicted + Area of GT 
 (12) 

 

The MDS is calculated as follows: 

 

𝑀𝐷𝑆 =
1

𝑁
∑

2 × 𝑇𝑃𝑖

2 × 𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑁

𝑖=1

 (13) 

 

𝑀𝐷𝑆 =
1

𝑁
∑

2 × 𝑇𝑃𝑖

2 × 𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖

𝑁

𝑖=1

 

 

The PCC estimates the linear correlation between two sets 

of data. It is used to analyze the relationship between 

predicted and GT pixel values. It can be calculated as follows: 

 

𝑃𝐶𝐶 =
∑(𝑥 − 𝑥′) + (𝑦 − 𝑦′)

√∑(𝑥 − 𝑥′)2 × √∑(𝑦 − 𝑦′)2
 (14) 

 

where x and y are the predicted and GT values for the pixels, 

and 𝑥′ and 𝑦′ are their respective means. 

The segmentation results are shown in Fig. 3. The 

segmentation results correspond well with the GT images. 

The red color represents the epicardial fat, the green color 

represents the mediastinal fat, and the blue color represents 

the gap between the epicardial and mediastinal fat. The 

training and validation loss of the proposed model over 

epochs is shown in Fig. 4.  

 

Fig. 3.  Segmentation result (epicardial and mediastinal fats). 

http://visual.ic.uff.br/en/cardio/ctfat/index.php
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Fig. 4.  Training and validation loss of the proposed model over 

epochs. 

Table 1.  Performance analysis. 

Model Mean IOU [%] MDS [%] PCC 

FCN 68.92 73.5 0.789 

U-Net 71.5 79.7 0.8721 

Seg-Net  76.7 85.42 0.8905 

Attention U-Net  80.2 88.54 0.932 

SAR-U-Net 86.78 92.6 0.954 

MSE-GRU-U-Net 89.5 94.3 0.973 

 
The performance of the proposed and existing 

segmentation models is given in Table 1. The fully 
convolutional network (FCN) model shows a Mean IOU of 
68.92 % and a MDS of 73.5 %, indicating reasonable but 
comparatively lower segmentation accuracy. The U-Net 
shows improvements with a Mean IOU of 71.5 % and a MDS 
of 79.7 %, indicating improved segmentation ability. Seg-Net 
further improves performance, achieving a Mean IOU of 
76.7 % and a MDS of 85.42 %, indicating significant 
improvements in image region delineation. The Attention U-
Net shows a Mean IOU of 80.2 % and a MDS of 88.54 %, 
which represents a remarkable progress in segmentation 
accuracy. The SAR-U-Net achieved a Mean IOU of 86.78 % 
and a MDS of 92.6 %, indicating exceptional precision in the 
accurate segmentation of image structures. The correlation 
coefficient between these models is between 0.789 and 0.954. 
The proposed MSE-GRU-U-Net models show better 
performance in terms of Mean IOU, MDS and PCC with 
values of 89.5, 94.3 and 0.973, respectively. The results are 
shown graphically in Fig. 5. 

The features extracted from the segmentation model are 
used to train the XGBoost classifier with labels of low, high 
and medium severity levels. For a fair comparison, the FOA-
XGBoost model is compared with the other FOA-optimized 
models from ID3 and naive bayes (NB). The measured values 
for accuracy, specificity, precision and recall are shown in 
Table 2. The FOA-ID3 model shows 92 % accuracy, 91 % 
specificity, 90% precision, and 94 % recall rates. The FOA-
NB model has 95 % accuracy, 95 % specificity, 94 % 
precision, and 94 % recall rates. The FOA-XGBoost model 
stands out with the highest performance values, achieving 
97 % accuracy, 96 % specificity, 97 % precision, and 98 % 
recall rates demonstrating exceptional accuracy in 
categorizing severity levels.  

 

Fig. 5.  Performance analysis. 

Table 2.  Performance analysis. 

Model FOA-ID3  

[%] 

FOA-NB  

[%] 

FOA-XGBoost  

[%] 

Accuracy 92 95 97 

Specificity 91 95 96 

Precision 90 94 97 

Recall 94 94 98 

4. CONCLUSION 

In this work, a new approach to EAT segmentation is 

proposed. The new architecture integrates MSE with MS-Ds 

for accurate segmentation of fat regions. The MSE-GRU-U-

Net achieves a Mean IOU value of 89.5 % and a MDS of 

94.3 % for segmentation. It also has a strong correlation 

coefficient of 0.973, indicating a highly reliable relationship 

between the predicted and GT values. For classification, the 

FOA-XGBoost model achieves the highest accuracy of 97 %. 

The proposed model is fully automated and can be an accurate 

diagnostic tool for advanced clinical practice. 
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