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Abstract: Vibration is a common phenomenon in construction, military, manufacturing and other fields. Dangerous vibrations can directly
affect the service life and efficiency of equipment. Vibration analysis is the most important method to prevent the occurrence of these
equipment malfunctions. Vibration measurements are indispensable for vibration analysis. Currently, there is a great demand for vibration
measurement and detection in industrial systems, and the requirements for the accuracy of measurement results are increasing. Therefore,
we provide a brief literature review on the accurate measurement of the vibration, including the sensors, vibration sensor calibration

equipment and procedures.
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1. INTRODUCTION

Vibration is a common phenomenon in construction,
military, manufacturing and other fields [1]-[3]. The
generation of vibrations in equipment usually leads to a series
of reactions that are often undesirable. Many factors can
cause such undesirable mechanical mechanism vibrations,
e.g., gearing errors in gears, alignment errors, vortex
vibrations in gases and liquids, etc. [4]. As for the internal
mechanism, the vibrations can cause the materials to
experience repeated loading, resulting to fatigue stresses.
Over time, tiny cracks can form in the material, eventually
leading to material failure. The accumulation of fatigue
damage can significantly reduce the service life of the
machine. Vibration can also increase the relative motion
between components and increase wear. For example, in
contact surfaces such as bearings and gears, vibrations can
lead to greater friction and wear, which ultimately affects the
precision and performance of the components. The
alternating stresses caused by vibrations can accelerate the
growth of cracks, especially at weld seams or material
defects. This situation can lead to a reduction in structural
strength and a shortening of service life. Finally, vibrations
can cause fasteners (such as bolts and nuts) to loosen,
affecting the fit and stability of components. This loosening
can lead to breakdowns or accidents. For large machines such
as turbines and compressors, the monitoring and measuring
of vibrations is very important. Therefore, they have been
studied in detail in previous research [2], [5]-[9], as
dangerous vibrations can directly affect their service life and
efficiency [6]. Vibration analysis is one of the most important
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methods to prevent the occurrence of malfunction of these
devices. Lu et al. investigated the vibrations caused by
cavitation in centrifugal pumps using experimental and
numerical methods. In addition, a direct link between
cavitation and vibration was demonstrated [10]. As shown in
Fig. 1, as the cavitation margin (NPSHa) of the device
decreases, the maximum values of the amplitude of the
vibration signal gradually increase. The results show that
cavitation leads to a wide range of broadband vibrations. This
eventually leads to erosion damage on the flow path surface
and affects the efficiency of the centrifugal pump. Fig. 1(a)
and Fig. 1(b) show the power spectral density (PSD) of the
vibration signals in the sensor A and B, respectively.

CCPP gas turbines often cause vibrations due to
imbalance, friction, and flow fluctuations, which can lead to
equipment failure [12], [13]. In general, extreme mechanical
vibrations cause large cyclic stresses that lead to failure of the
turbine blades and associated accessories [14]. An example
of blade damage can be seen in Fig. 2.

In addition, severe vibration problems are of great
importance for turbomachinery [16]. Akhtar et al. obtained
data by installing eddy current probes on the turbine generator
system and investigated the high vibration problem in gas
turbines using bode, orbit, and shaft centerline plots [17].
Wang et al. applied the operational transfer path analysis
method (OTPA) to identify the causes of turbogenerator
vibrations, as shown in Fig. 3 [18]. In these published papers,
the vibrations and their sources could be determined. Based
on the high vibration amplitude, it is confirmed that there was
a problem with the generator. Through logical reasoning and
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detailed data analysis, it is finally determined that the
underlying cause of the generator malfunction is resonance.
In the specific case discussed in this article, the resonance
phenomenon can be avoided by adding mass to the location
determined by the shape of the working disturbance to
achieve a change in the natural frequency of the generator
housing.
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Fig. 1. Power spectral density (PSD) of vibration signals [11].

(b) Casing B-1

Fig. 2. Example of damage to the blade containment [15].

The installation diagram of the acceleration sensors can be
found in Fig. 3 in the reference.

Fig. 3. Lumped mass model of the bladed disk assembly [18].
ko, kc and kq are the stiffness of the blades, the stiffness of the
connections between adjacent sectors, and the stiffness of the disk,
respectively. mp and mq are the mass of the blade and the disk.

g

Due to the high risks and safety requirements in the
aeronautical field, the distinctiveness of sources of danger
should also be emphasized. It has been established that one of
the most important sources of vibration and noise comes from
the engine [19]. The dynamic processes such as the fuel, air
supply and combustion dynamics under different conditions
can lead to different vibration acceleration characteristics, as
shown in Fig. 4. The mechanical vibrations in the aircraft
engine could reflect the operating condition of the power
system.

Vibration velocity - axis X - Engine

t/s

Fig. 4. The time history of the vibration speed in the X-direction
[20].

Therefore, effective analysis of vibration problems is
essential. Vibration measurements are indispensable for the
study of vibration problems. Mechanical vibrations can be
described by measuring the displacement, velocity and
acceleration of the measured object. At the same time, these
parameters can be converted by a simple calculus
relationship. At present, there is a great demand for vibration
measurement and detection in industrial systems, and the
requirements for the accuracy of measurement results are
increasing. The development of vibration measurement is
also related to intelligence and networking to meet the
requirements of the times [21].

It has been shown that vibration measurement is necessary
and important to prevent, detect and correct equipment
malfunctions. The working conditions and the environment
of the equipment determine the harshness of the working

123


https://www.sciencedirect.com/topics/engineering/lumped-mass-model

MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 122-133

environment of the vibration sensor. A prerequisite to ensure
the accuracy of measurements in different operating
environments is the prior calibration of the sensors, which
provides correction factors within the exact range. In this
article, the working principles and current research status of
different vibration sensors are discussed, and the current
vibration sensor calibration devices and methods and
improvement strategies in various aspects are examined.

2. VIBRATION SENSORS

Due to the urgent need for engineering applications and the
constant updating of technology, the vibration sensor field is
developing rapidly. According to the different application
principles, they can be divided into two categories: fiber
optics and electric vibration acceleration sensors. The
summaries of some typical research papers on acceleration
sensor with detailed information can be found in Table 1.

Table 1. Summaries of some typical research work on acceleration sensors with detail information.

Type Sensitivity Frequency range  Temperature Range Relative error Nonlinearity Response time Refs
Piezoelectric 5.9 pClg <350 Hz 1000 °C [24]
Piezoelectric 0.001 Hz to 2 GHz 120 °C several ns [25]
Piezoelectric 80 to 130 Hz 0.041 % [30]
Piezoelectric 1000 pC/MPa > 200 kHz -20-180 °C <05% [31]
(linear error)
Resistance 10-100 °C [34]
Resistance  2.56-5.67/kPa <30 ms [35]
Capacitive  0.24 V/g 0.29 % [43]
Capacitive 18 mV/g 100 g 3% [44]
Capacitive +160 g 1% [51]
Capacitive +4 g 1% [49]
Capacitive 0-80 °C +10 g forx,y 0.34 %, 0.28 %, [106]
+12/-7.5 g for z 0.41 %
Fiber 450 pm/g [56]
Fiber 19 pm/g 1 kHz 0.1-15¢g [64]
Fiber 1296 pm/g 0to 25 Hz 20-115°C  0.5to55¢ 2% [66]
Fiber 41.2/34.5 pm/g 20 to 800 Hz [67]
Fiber 2430 pm/g 0to 20 Hz [107]
Fiber 19 pm/g 10 to 1000 Hz [65]

A. Electric vibration acceleration sensors

Piezoelectric acceleration sensor

The piezoelectric effect, which was discovered by the
Curie brothers in 1880, is the main principle of the
piezoelectric accelerometer, as shown in Fig. 5. The material
that can generate the piezoelectric effect is called
piezoelectric material. The selection and improvement of
piezoelectric material is also the focus of the piezoelectric
sensor design. Common piezoelectric materials are quartz
crystals, piezoelectric ceramics, piezoelectric polymers, etc.
Among them, polyvinylidene fluoride (PVDF) film can be
used in a variety of harsh scenarios due to its strong and stable
chemical structure, which is of great development and
application value.

Tensile / Compressive Stress

I —— Shear Stress

Piezoelectric Material — |~ - - o

Electrical Output

-

Fig. 5. Piezoelectric accelerometer schematic [22].

Two configurations are commonly used for piezoelectric
accelerometers: one in which a compressive force is applied
to the piezoelectric element and the other in which a shear
force is applied to the piezoelectric element. Due to the
special properties of piezoelectric materials, the force applied
to them can be reflected in equal parts in the electrical output.
Newton's second law states that force = mass X acceleration,
and so the target acceleration can be calculated.

Audrain et al. presented a structural intensity control
system based on PVDF strain sensors, and the technical
specifications of the system were determined experimentally
[23]. Kim et al. reported a new high-temperature piezoelectric
accelerometer based on YcaO (BO) single crystals (YCOB)
and they experimentally confirmed that the accelerometer
still exhibited high stability even at 1000°C [24]. Shirinov et
al. reported the design and fabrication method of a PVDF
thin-film pressure sensor and investigated its cross-sensitivity
to temperature and humidity and aging characteristic curves
[25]. Yu et al. reported a simple fabrication method of
a piezoelectric thin-film sensor and tested the performance of
the sensor [26]. Han et al. presented a method for coupled
modal analysis of piezoelectric PVDF materials and the
simulation results of ANSYS software showed that the
method could solve the coupling problem [27]. Lin et al.
presented a preparation method to integrate silicon substrate
and PVDF nanofibers into pressure sensor application, and
obtained a sensitivity of the sensor up to 2214.4 Mv/MPa
through experiments [28]. Zhou et al. proposed a new low-
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frequency piezoelectric thin-film accelerometer constructed
with sensitive PVDF elements and discussed the
mathematical model and characteristics of the new sensor
[29]. Zha et al. reported a new vibration sensor with energy
harvesting capability based on the aid of a piezoelectric
energy harvesting device (PZEHD), and it was
experimentally confirmed that the measurement frequency
range of the sensor was 80 ~ 130 Hz [30]. Wang et al.
designed a new piezoelectric shock wave pressure sensor
based on the acceleration compensation mechanism. The
device was simulated and optimized by software [31]. Ai et
al. designed a high-sensitivity acceleration sensor using
a piezoelectric  metal-oxide-semiconductor  field-effect
transistor (MOSFET) and a silicon cantilever beam with
Pt/ZnO/Pt/Ti multilayer structure. They experimentally
measured the voltage sensitivity of the sensor to be 2.05 V/g
[32]. Lee et al. optimized the piezoelectric acceleration sensor
design by numerical simulation with metamodeling and
determined the optimal piezoelectric sensor design in the
resonant frequency range (25-47.5 kHz) [33].

Resistance sensor

Due to the rapid development of semiconductor materials
with piezoresistive effect, there are more possibilities to
improve the performance of the resistance sensor. The basic
principle of resistance accelerometers is that the conductor
resistance is proportional to the length of the conductor and
inversely proportional to the area, as shown in Fig. 6. The
strain of the measured object changes the resistance element
in the sensor, which affects the output voltage.

Acceleration

Elastomer

/ Elastomer

\F
/ Strain
:l D\E Strain gauges

\ Resistance changes

Strain gauges

Output circuit
‘ F Voltage

Fig. 6. Schematic of a resistance accelerometer.

Pan et al. designed a new type of piezoresistive sensor with
an elastic, microstructured, conductive polymer thin film that
has ultra-high sensitivity and can detect pressures of less than
1 Pa [34]. Chen et al. reported a resistive pressure sensor
based on cellulose paper and indicated the application range
of the sensor [35]. Na et al. proposed a vertical graphene (VG)
resistive strain sensor (RSS) to overcome the problem of
severe performance degradation due to structural deformation
and verified the feasibility of VG [36]. Igra et al. developed
a flexible piezoresistive strain sensor. They fabricated the
sensor with laser-cut graphene oxide on polydimethyl-
siloxane (PDMS) and tested its performance [37]. Nakamura

et al. proposed a piezoresistive graphene strain sensor that
could be used for millimeter-scale strain detection. They
fabricated the sensor using hollow tubing graphene fibers
(TGFs) and PDMS coating and conducted a feasibility study
[38]. Wei et al. proposed a flexible bio-based piezoresistive
sensor that showed high sensitivity (5.8 kpa™) [39]. Pan et al.
reported a TPU/CNTSs-ILs sandwich-resistive sensor. They
used coating and 3D printing to fabricate the sensor and
experimentally determined the resistance curve [40].

Capacitive acceleration sensor

Capacitive accelerometers use various capacitors as
sensitive elements, and capacitive elements are susceptible to
temperature changes. The development of this accelerometer
is based on advances in micromachining technology. Fig. 7
shows the basic structure of capacitive acceleration sensors.
The core components of capacitive sensors are various types
of capacitors that can reflect the change in the measured
physical quantity as a change in capacitance through the
converter.
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Fig. 7. Basic structure of a capacitive accelerometer [41].

Chen et al. report a self-calibrating MEMS accelerometer
in which the scale factor of capacitive accelerometers can be
flexibly adjusted. The bias stability of the accelerometer was
experimentally reduced to 31 mg [42]. Zhou et al. designed
a new MEMS capacitive acceleration sensor with a double-
sided H-shaped beam structure, and the sensitivity of the
sensor was experimentally calibrated to 0.24 V/g [43].
Tahmasebipour et al. gave a design and fabrication method
for the MEMS accelerometer using the micro-wire electrical
discharge machining (WWEDM) method. The sensitivity of
this accelerometer was experimentally measured to be
18 mV/g [44]. Meijerink et al. integrated a capacitive sensor
on a low-temperature co-fired ceramic (LTCC) substrate,
which can be used for stress analysis in solid media [45].

Zhang et al. reported a sawtooth MEMS capacitive strain
sensor. The cantilever beams with sawtooth fingers of the
sensor can improve the strain sensitivity [46]. Bakhoum et al.
reported a miniaturized triaxial variable capacitive
accelerometer made of a variable ultracapacitor with
a sensitivity of up to 75 Nf/g [47]. Utz et al. reported on
a MEMS capacitive accelerometer with a bandwidth of more
than 5kHz. The accelerometer could be used for high
frequency measurements [48]. Langfelder et al. designed
anovel MEMS accelerometer based on fringe field
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capacitance and optimized the sensor by FEM simulation
[49]. Kumar et al. reported the design of a new secondary
mass-spring assembly to improve the sensitivity of capacitive
devices. They verified the feasibility of the design through
experiments [50]. Maspero et al. reported a new 3D process
that can be used for the fabrication of silicon capacitive
accelerometers [51]. Jeong et al. designed a wide bandwidth
capacitive accelerometer in wafer-level packaging. The
sensor is characterized by low noise and high operating
bandwidth [52].

B. Fiber Bragg grating vibration sensor

Compared to electrical vibration sensors, fiber Bragg
grating vibration sensors are temperature-independent and
resistant to electromagnetic interference and are increasingly
used in industrial and military applications. They have been
widely studied by scientists. The fiber grating acceleration
sensor is equipped with a cantilever beam structure in which
the fiber grating is fixed on the surface of the elastic beam.
As shown in Fig. 8, its basic principle is to transmit the
mechanical vibration transmitted from the vibration
excitation equipment to the elastic beam through the mass
block, causing the elastic beam and the fiber grating on its
surface to react together with strain, and finally make the
wavelength of the grating to drift.

Mass block
FBGI FBG2
NN
Steel tube
Elastic steel sheet 1 Elastic steel sheet 2
Base

Fig. 8. Schematic diagram of a fiber Bragg grating vibration sensor
[53].

Zhou et al. designed a new grating accelerometer by
attaching an optical fiber Bragg grating to the side of a right-
angle triangular cantilever beam in an oblique direction and
deforming it by applying vertical acceleration to the
cantilever beam. They achieved a high sensitivity of
0.679 nm/g in the experiment [54]. Davies et al. developed
and fabricated five MEMS accelerometers with different
mechanical amplification factors and created mechanical
behavior models for verification [55]. Basumallick et al.
reported a new fiber Bragg grating vibration sensor in which
the effective distance between the sensor and the neutral axis
of the cantilever beam is adjusted using a patch. They
experimentally compared the dynamic characteristics of this
sensor and the conventional PZT acceleration sensor and
proved that the improvement could effectively increase the
sensitivity. The highest sensitivity of the experiment was
450 pm/g [56]. Wang et al. reported a demodulation scheme
to generate carrier waves by the laser emission frequency
modulation phase and applied this scheme to the fiber F-P
accelerometer for experimental verification. The results
showed that the scheme could effectively reduce the phase
sensitivity deviation of the accelerometer [57]. Wang et al.
reported a fiber-optic accelerometer using a bare macro-

bending single-mode fiber and a corresponding measurement
system, which was experimentally verified to measure
frequencies up to 2 kHz [58]. Zhang et al. designed a new
sensing element and applied it to fiber optic accelerometers
and increased the sensor sensitivity to 0.751 rad/g [59]. Yin
et al. designed an ordinary fiber optic sensor with F-P
configuration that can measure both pressure and
temperature. They determined the pressure and temperature
sensitivities  through experiments [60]. Ren et al.
experimentally verified a novel demodulation technique that
enabled F-P sensors to measure both dynamic and static
parameters [61]. Li et al. validated a high-temperature fiber-
optic F-P pressure sensor with a high-temperature resistant
silicon chip sensing head, which experimentally exhibited
a pressure sensitivity of 3.25 um/MPa at 800°C [62]. Guo et
al. improved the ductility of the optical fiber by copper
plating and used metal packaging to avoid aging problems
caused by viscose packaging, and developed a new fiber
Bragg grating accelerometer with a sensitivity of 84 mV/g
[63]. Stefani et al. proposed a new polymer fiber grating
accelerometer that was more than four times as sensitive as
the silica fiber grating accelerometer, and the sensitivity of
the accelerometer was experimentally demonstrated to be as
high as 19 pm/g [64]. Fender et al. reported a temperature-
insensitive accelerometer that used AWG to convert the
wavelength drift of the grating into a change in light intensity,
and showed that the frequency response of the sensor could
be adjusted by changing the length and mass of the cantilever
end [65]. Zhang et al. reported a dual-optical grating
accelerometer with an organic double-semicircle cantilever
structure, which was found to be sensitive up to 1296 pm/g
by low-frequency vibration measurements and effectively
avoided the undesirable chirp effect of the grating [66]. Song
et al. created a theoretical model of a two-dimensional fiber
Bragg grating vibration sensor based on an orthogonal flexure
hinge structure. The sensor had a sensitivity of 41.2 pm/g and
34.5 pm/g in the X/Y directions, respectively [67]. Li et al.
designed a dual-axis fiber Bragg grating acceleration sensor
that could only measure acceleration in the vertical plane
[68]. Weng et al. proposed an optical fiber Bragg grating
vibration sensor consisting of a flat diaphragm and two L-
shaped rigid cantilever beams. The frequency response range
of the sensor was obtained by experimental calibration from
0 to 120 Hz with a sensitivity factor up to 100 pm/g [69]. Li
et al. proposed a pasted type distributed two-dimensional
fiber Bragg grating vibration sensor. The sensitivity of the
sensor in the X and Y directions was 32.84 pm/g and
451.3 pm/g, respectively, and the sensor could be used for
distributed two-dimensional vibration measurement [70].
Morikawa et al. proposed and tested a triaxial fiber grating
acceleration sensor and experimentally compared the
response of piezoelectric accelerometers and fiber grating
accelerometers. It was finally shown that the amplitude
response of the fiber grating accelerometer exhibited good
linear variation [71]. Nan et al. proposed a method to
compensate for errors caused by the fluctuation of the light
source and experimentally validated the method with a new
three-dimensional  high-frequency  fiber-optic  grating
accelerometer they had developed [72]. Xiong et al. designed
a triaxial fiber Bragg grating vibration sensor based on

126



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 122-133

a composite structure of the cross-beam-type elastomer with
low cross-coupling and the ability of self-temperature
compensation [73]. Le et al. proposed a new cantilever beam
model for measuring low-frequency vibration signals, and the
experimentally measured accelerometer sensitivity range was
6.74 pm/g~26.64 pm/g [74]. Parid et al. designed a novel
accelerometer based on a double-L cantilever with fiber
Bragg grating, which has high sensitivity and self-
temperature compensation. They experimentally determined
a sensitivity of 406.7 pm/g and a temperature sensitivity of
0.016 pm/°C [75].

3. VIBRATION SENSOR CALIBRATION

A. Calibration systems and equipment

Based on the existing calibration methods, the
experimenter improved the equipment or calibration system
to achieve higher calibration accuracy or to create better
calibration conditions from the perspective of the calibrated
instrument. Villarroel et al. developed a low-cost sensor
calibration system. They confirmed the feasibility of the
system by comparing measurement data from a standard
measurement and a low-cost sensor calibration system [76].
Yan et al. proposed a closed-loop calibration system with
higher calibration accuracy, which can effectively reduce
active jamming caused by manually adjusting the excitation
in the open-loop system [77]. Ran et al. proposed a phase-
locked resonance tracking control method to generate high-
acceleration vibration for the calibration of vibration sensors
under high acceleration, and established a high-acceleration
vibration calibration system [78]. Ferreira et al. reported
a vibration sensor system for laser vibrometry calibration
using the stripe counting method. The system originated from
the Inmetro Vibration Laboratory [79]. He et al. reported an
ultralow-frequency vibration exciter system. The system
utilized a displacement feedback control technique that could
effectively reduce the ultralow-frequency vibration
calibration time [80]. Prato et al. reported a calibration
method for evaluating the sensitivity of triaxial
accelerometers by uniaxial vibration excitation in an inclined
plane. The feasibility of the method was verified at INRIM
[81]. Payne et al. reported on an improved accelerometer
calibration system. The system measured vibration
frequencies between 1 Hz and 20 kHz and the calibration
results were more accurate [82]. Kokuyama et al. designed
a multi-point primary vibration calibration system. The
system provides better positioning repeatability using
a biaxial positioning stage. They used the system to
successfully measure deformation [83]. Liu et al. investigated
the improved control of a linear motor to achieve higher
accuracy in vibration measurements. They used the
controlled motor for MEMS accelerometer calibration and
verified the stability and effectiveness of the motor [84]. Ohm
et al. proposed a new low-frequency vibration generator. This
device can effectively overcome the problems of performance
degradation and total harmonic distortion of conventional
shakers at low frequencies (<10 Hz) [85]. Garg et al. reported
a new system for vibration calibration using zero-difference
laser interferometry, which was experimentally validated
against the main vibration calibration standards of the Indian

NPL [86]. Garg and Chauhan presented a detailed system for
implementing secondary vibration calibration at the CSIR in
India and evaluated the uncertainty of the system [87].

B. Calibration method

In highly developed fields, engineers demand higher
calibration accuracy. However, there are a large number of
technical examples where extremely high accuracy is not
required. Therefore, calibration methods for general accuracy
are just as important as those for high accuracy. Researchers
have improved vibration calibration methods and calibration
algorithms to reduce the uncertainty of the data and have also
proposed simple, technically applicable sensor calibration
methods.

Van Kann et al. proposed a simple absolute calibration
method that could be used to determine the effective
suspended mass of a sensor and verified the feasibility of the
method by experiment [88]. Cheng et al. proposed a new
angle measurement method that was more economical and
applicable. This method, combined with a visual encoder and
a telecentric vision system, could achieve accurate static and
dynamic angle measurements of amplitudes [89]. Link et al.
reported a measurement method for estimating amplitude and
phase angle by applying least squares to the phase sequence.
This method was able to calibrate accelerometers in the
frequency range from 1 kHz to 50 kHz by using the outlier
sine approximation method [90]. Shimoda et al. proposed
a signal processing method that could suppress line noise and
common noise, and experimentally demonstrated that the
method could reduce the uncertainty of micro-vibration
calibration by two orders of magnitude [91]. Kumar et al.
proposed a novel calibration method for vibration
measurements on large structures. This method was based on
the 3D digital image correlation technique and the feasibility
was verified by field experiments [92]. Ripper et al. derived
some correction methods for low frequency accelerometer
calibration through experiments [93]. Cai et al. proposed
a multi-position calibration equation based on the nonlinear
scale factor of accelerometers for accelerometer calibration.
They improved the accuracy of the calibration method by
adding more parameters to the model and optimizing the
algorithm [94]. Won et al. proposed a new method for
calibrating triaxial accelerometers based on a mathematical
model with six calibration parameters. They verified the
feasibility of the method by simulation and indicated the error
sources for the experiment [95]. Gietzelt et al. reported on
a non-iterative calibration algorithm for accelerometers. They
concluded that the algorithm has higher calibration quality
and lower execution time compared to general algorithms
[96]. Sipos et al. reported and compared three triaxial
acceleration calibration algorithms. Based on this, they
proposed and validated a calibration procedure [97]. Beravas
et al. reported an automatic online calibration method for
triaxial accelerometers that provided accurate parameter
estimates after a small number of iterations. Simulation
experiments confirmed that calibrations using this method
improved the parameter estimation accuracy in less than 100
iterations [98]. Gao et al. reported a triaxial accelerometer
self-calibration method that provides accurate calibration of
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accelerometer nonlinear errors. This method was used to
calibrate the accelerometer nonlinear error to further improve
the calibration accuracy [99]. Olsson et al. developed
a method for triaxial accelerometer calibration using a triaxial
gyroscope, which combines the data from both instruments to
achieve optimal calibration results [100]. Sarkkd et al.
reported an improved multi-position calibration method that
successfully calibrates in multi-position calibration modes by
using only known net rotations. This calibration procedure
can be performed in the field with simple tools [101].
Manzaneque et al. reported a method for estimating the
accuracy of closed-loop resonant sensors based on the open-
loop characterization of resonators, and compared the
resonator accuracy obtained from open-loop measurements

with the closed-loop data to verify the feasibility of the
method [102]. Wang et al. proposed a method for angular
vibration calibration using an interferometric fiber optic
gyroscope and evaluated the ability of the method to calibrate
vibration with a standard angular vibration system [103].
Shimoda et al. designed a noise suppression system for
calibration systems of micro-vibration measurements. The
reliability of the micro-vibration measurement system was
improved [104]. Gou et al. proposed a new self-calibration
method for angular displacement sensors that is suitable for
harsh calibration environments. They experimentally
determined that the calibration accuracy of this method can
be better than + 650" [105]. Conclusions have been made in
Table 2 on the accuracy of the reported calibration methods.

Table 2. The accuracy of the calibration methods in the previous literature.

Description

Accuracy Refs

10 % cost of reference (DAQ NI 9775)
A closed loop calibration system

A phase-locked resonance tracking control method based on the
phase resonance principle

Rapid vibration-level-adjustment for ultralow-frequency vibration
exciters

Improved control of the linear motor

A simple but powerful method is presented
Introducing the accelerometer nonlinear scale factor

A low-frequency vibration generator that overcome small accele-
ration amplitudes and a high level of total harmonic distortion

Vibration measurement system was working adequately [76]
U, Uz, and Sz do not need to be measured again; the standard [77]
deviation of sensitivity is 0.0003 mV/ms™2

Acceleration stability control index of less than 0.5 % and a
resonance tracking time of less than 0.1 s

Requires less vibration-level-adjustment time and improves the [80]
adjustment efficiency

Maintaining amplitude stability over the frequency range from [84]
0.1 to 160 Hz; the standard deviation is less than 0.01 mV/ms2
Accurate absolute calibrations with an error of 0.1 %
Calibration methods outperform the traditional calibration
methods without high-precision orientation control

Relative expanded uncertainty is 2.6 % at a confidence level of [85]
95 %

[78]

(88]
[94]

Note: U; and U, are the output of the standard sensor 1 and sensor 2, respectively. The sensitivity of sensor 2 is calculated as: S, = U, - S,/Uj;.

4, CONCLUSIONS

Monitoring and measuring vibrations is very important for
large machines such as turbines and compressors, as
dangerous vibrations can directly affect their service life and
efficiency. Accurate measurement of vibration is a challenge
in both academic and industrial fields. This paper presents
recent advances in the accurate vibration measurement. To
date, significant breakthroughs and advances have been made
in manufacturing processes, processing techniques, material
selection, calibration methods, and structural design for
various types of vibration sensors. Currently, research in the
field of sensors is striving to reduce costs, improve accuracy,
sensitivity, lifespan, repeatability, and adaptability to specific
environments. However, there is still a certain distance
between scientific research and the industrial application of
vibration sensors. Some advanced methods used in scientific
research, such as MEMS technology and special high-end
materials, still have significant cost issues. The ability to
transfer scientific research results to industry still requires
innovation in various areas, especially in materials and
processes. According to previous research, although there are
natural technical differences between different types of
sensors, considering the technical level, research goals, and
cost control of different research groups, the performance

differences of different types of sensors are not significant.
From an industry perspective, piezoelectric acceleration
sensors still have a cost advantage and are very competitive
in relatively conventional scenarios. In fields with high space
and accuracy requirements, capacitive and resistance
acceleration sensors have high priority at higher costs. In the
field of scientific research, the fiber Bragg grating vibration
sensor with its high sensitivity and anti-interference
advantages will continue to be the focus of scientific research.
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