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Abstract: In this paper, a novel method for detecting of laryngeal pathologies using deep neural networks and time—frequency signal pro-
cessing techniques is presented. The proposed approach combines empirical mode decomposition (EMD) and wavelet analysis to extract
discriminative features from healthy and pathological voice recordings obtained from the Saarbriicken Voice Database (SVD). Each voice
signal is pre-processed and decomposed into intrinsic mode functions (IMFs), from which the most relevant IMF is selected based on a tem-
poral energy criterion. Two sets of features are derived from the selected IMF: Mel-frequency cepstral coefficients (MFCCs) and continuous
wavelet transform (CWT) coefficients. These features are converted into Mel-spectrogram and scalogram images, respectively, which serve
as inputs to the AlexNet convolutional neural network (AlexNet-CNN) for automatic binary classification. To the best of our knowledge, this
is the first study to incorporate scalogram representations with AlexNet-CNN in the context of pathological voice detection. The results show
that the proposed method achieves a classification accuracy of 85.66 % when using Mel-spectrograms and 86.4 % when using scalograms,
demonstrating its potential for effective and interpretable voice pathology screening.

Keywords: laryngeal pathology detection, voice signal processing, empirical mode decomposition, Mel-spectrogram, scalogram, AlexNet
convolutional neural network

1. INTRODUCTION logical voice detection, an approach that has received little to
no attention in the existing literature. The adopted process-
ing workflow is illustrated in the synoptic diagram (Fig. 1).
Once the relevant IMFs are extracted from each vocal sig-
nal, the signal is segmented, and the MFCCs are calculated
for each segment. In parallel, scalograms are generated using
continuous wavelet transform (CWT). These MFCC images
and scalograms are then used as input to the AlexNet-CNN
convolutional neural network for classification. This paper is
organized as follows: Section 2 presents the materials and re-
lated methods, detailing the methodology and the detection
process. Section 3 reports and discusses the results. Finally,
the paper concludes with a summary of the results and a com-
parison of recent studies on pathological voice classification.

Laryngeal pathologies are disorders that affect the larynx,
which houses the vocal folds, leading to various voice prob-
lems [1], [2], [3]. Early detection of these pathologies is
crucial to prevent permanent damage to the vocal folds and
to significantly improve the effectiveness of treatment. The
diagnosis of voice disorders usually requires invasive clini-
cal examinations such as laryngoscopy and videostroboscopy.
However, vocal signal analysis using the signal processing
techniques can be used to extract features that help distinguish
between healthy and pathological voices. Therefore, there
is a growing need to develop a non-invasive, automated ap-
proach based on deep learning to identify pathological voices.
A substantial body of related work exists in this domain [4],
(51, [6], [71, [8], [9], (101, [11], [12], [13], [14]. Many stud- 2. MATERIALS AND METHODS
ies focus on the extraction of signal processing features such
as MFCCs and Wavelet Packet Transform (WPT) [15], [16], A, Saarbriicken Voice Database (SVD)
[17], [18], [19], [20], as well as the use of deep learning for
voice pathology detection [21], [22], [23]. This paper focuses
on the detection of laryngeal pathologies using MFCC spec-
trograms and scalograms — time—frequency representations
— derived from the most relevant IMFs. These representa-
tions are used as inputs to the AlexNet convolutional neural
network (AlexNet-CNN) for automatic classification of nor-
mal and pathological voices. This study investigates the use
of scalogram representations with AlexNet-CNN for patho-

The vocal signals used in this study were obtained from the
publicly accessible Saarbriicken Voice Database (SVD) [24].
The SVD contains a diverse collection of voice recordings
from subjects with various laryngeal pathologies, including
both functional and organic disorders. The database contains
multiple recordings per speaker, featuring the sustained pro-
nunciation of the vowels /a/, /i/, and /u/ with different intona-
tions: normal, low, high, and low-high—low. This diversity
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contributes to improved model performance when utilized.
For this study, only the sustained /a/ vowels pronounced in
normal pitch were selected. This choice was motivated by
the fact that the sustained vowel /a/ is a common phonation
task found in many voice disorder datasets, and it provides a
consistent basis for analysis. All voice recordings in the SVD
are sampled at 50 KHz and 16-bit resolution. The subset used
in this work consists of 259 healthy voice samples and 50
pathological males samples diagnosed with laryngitis, all cor-
responding to the neutral vowel /a/. To increase the amount of
training data and better capture temporal variations, the most
relevant IMFs from the healthy and pathological voice sam-
ples were segmented into overlapping frames, thus increasing
the input to AlexNet-CNN.

B. Use of AlexNet-CNN with EMD-based scalograms for
pathological voice classification

In this study, we used AlexNet-CNN, a pre-trained convo-
lutional neural network (CNN), to detect laryngeal patholo-
gies from voice signals. AlexNet-CNN consists of eight lay-
ers — five convolutional layers followed by three fully con-
nected layers — and uses the ReLLU activation function to
improve non-linearity and accelerate training [25]. Scalo-
gram images obtained from the most relevant IMF followed
by the CWT were used as input to the network. These
time—frequency representations capture rich, multiscale fea-
tures that are highly relevant for vocal disorder characteriza-
tion. The model, originally trained on ImageNet, was either
fine-tuned for direct classification or used as a deep feature
extractor, with the outputs of the penultimate fully connected
layer fed into an external classifier, such as a support vector
machine (SVM) or Softmax layer. The dataset was split into
a training and a validation subsets, with 80 % of the images
used for training and the remaining 20 % for validation. The
choice of AlexNet-CNN was motivated by its computational
efficiency, fast convergence, and demonstrated effectiveness
in biomedical imaging tasks, particularly in scenarios with
limited datasets. The integration of AlexNet-CNN comple-
ments traditional acoustic features such as MFCCs and re-
sults in a hybrid, multimodal feature space that improves the
robustness and accuracy of pathological voice classification.

C. Voice signal pre-processing and feature extraction
pipeline

The overall process for detecting laryngeal pathologies
from vocal signals is summarized in the synoptic diagram
(Fig. 1). It comprises three main phases: signal pre-
processing, feature extraction, and classification. The first
phase begins with the formation of a matrix containing voice
signals from healthy and pathological male subjects (suffer-
ing from laryngitis), limited to the sustained neutral vowel /a/.
To simulate real-world acoustic conditions, Gaussian noise
with a signal-to-noise ratio of SNR = 0 dB and a standard de-
viation ¢ = 1 is added to each signal. Denoising is then ap-
plied using wavelet transform-based methods. Next, all sig-
nals are normalized and centered to create a zero-mean ma-
trix. To ensure uniformity, the signals are equalized to the
same length. Silence segments are removed to focus on the
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voiced regions, followed by low-pass filtering with a cut-off
frequency of 3400 Hz to retain only the relevant spectral con-
tent. A Hamming window corresponding to the length of each
signal segment is applied to reduce spectral leakage during
subsequent analysis.

In the second phase, each pre-processed signal undergoes
empirical mode decomposition (EMD) to extract its IMFs.
Among these, the IMF with the highest energy is selected as
the most relevant component for further analysis. This IMF is
then segmented using a sliding window of 23 ms with a 50 %
overlap (i.e., half the window length). Feature extraction is
performed for each segment to generate two types of repre-
sentations: Mel-spectrograms and scalograms, which serve
as time—frequency descriptors that capture both the spectral
and temporal dynamics of the voice signal. Finally, the clas-
sification phase is performed using the AlexNet-CNN. Two
separate classification paths are considered: one using MFCC
images and the other using scalogram images as input. In
both cases, the network outputs a binary decision indicating
whether the voice is healthy or pathological.

Formation of a matrix containing healthy . EMD (IMFs)

vocal signals followed laryngitis voice

signals (Males (neutral vowel /a/) . I
Choice of IMF relevant
l (Having maximum energy)
Addition of Gaussian noise to each voice l

signal to simulate real-world conditions

(SNR = 0dB, o = 1) Framming of IMF relevant

with length_window = 23 ms,
l and overlop =50 %

Denoising of each voice signal l

l

Normalization and centering
of each voice signal (centered matrix)

Features extraction
MFCC — Mel-spectrograms
Wavelet Coefficients _, Scalograms

Equalization to the same length : : l -
of the voice signals (centered matrix) Classification using AlexNet
l 1. Input: Mel-spectrograms
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Output
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Low pass filtering,
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Hamming w1ndqw of equal length Pathological
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Fig. 1. Synoptic representation of the proposed method: voice
signals first undergo signal processing, followed by EMD to ex-
tract IMFs. The most energetic IMF is selected to compute Mel-
spectrograms and scalograms, which are then fed into a pretrained
AlexNet-CNN model for voice pathology classification.

D. Wavelet-based denoising method

We applied a denoising technique based on the wavelet
transform, which involves decomposing the vocal signal into
wavelet coefficients at multiple frequency scales using the
Daubechies wavelet of order 4(db4). Stein’s unbiased risk
estimate (SURE) method was used to determine the opti-
mal thershold for noise suppression. A hard thresholding ap-
proach was applied: coefficients with magnitudes below the
estimated threshold were completely discarded (set to zero),
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while those above the threshold were kept unchanged. This
technique effectively removes the noise while preserving the
significant components of the vocal signal. The denoised sig-
nal was then reconstructed using the inverse wavelet trans-
form applied to the modified coefficients. To evaluate the
effectiveness of the wavelet denoising approach, clean vo-
cal signals were artificially contaminated with Gaussian noise
(standard deviation ¢ = 1, signal-to-noise ratio SNR =0dB) .
The results showed that wavelet-based denoising significantly
improved signal clarity and preserved diagnostically relevant
acoustic features, even under severe noise conditions. To an-
alyze the time—frequency characteristics of the relevant IMF,
the CWT was also applied. The CWT of a signal x(t) is cal-
culated by integrating the signal with a family of scaled and
shifted wavelets, and is mathematically defined as:

CWT,(a,b) = \[/ ( ab)dt (1)

where y* denotes the complex conjugate, the wavelet
v (%) is obtained by scaling (dilating) and shifting (trans-
lating) the mother wavelet y(¢). Here, t denotes time, a > 0
is the scale parameter that controls the frequency resolution, b
is the translation parameter that represents the time shift, and
y*(t) is the complex conjugate of the mother wavelet y(z).
This representation captures both the spectral and temporal
variations of the signal and is therefore highly suitable for an-
alyzing and classifying pathological voice signals.

E. Normalization and equalization of voice signal lengths

To ensure the consistency of all samples and to enable uni-
form processing, each voice signal was subjected to normal-
ization and length equalization. Normalization is a critical
pre-processing step in which the data are transformed to a
standard scale. In this study, we used a combination of two
normalization techniques:

e 7Z-score normalization, defined as x;, = %, where U is
the mean and o is the standard deviation of the signal.
This method centers the signal around zero with a unit
variance, effectively removing the DC offset and scaling
the amplitude distribution.

e Peak amplitude normalization, defined as Xj,
W, where each sample is divided by the maximum
absolute amplitude value to ensure that all signals are
within the range [-1, 1].

here, Xj, denotes the final normalized signal, N is the signal
length, and the standard deviation is calculated as:

5 2
ﬁ;(xi—li)

After normalization, all signals were adjusted to a uni-
form length by truncating longer sequences or applying zero-
padding to shorter ones. This equalization ensures compati-
bility with the subsequent stages, particularly during feature
extraction and classification using convolutional neural net-
works (CNNs), which require a fixed-size of the input dimen-
sions.

E  Silence removal using energy thresholding

To improve the signal quality and reduce computational
complexity, silent regions were removed from the voice
recordings prior to feature extraction. This pre-processing
step is particularly important in pathological voice analysis,
as non-phonated segments do not contain diagnostically rele-
vant features related to vocal fold behavior. In this study, si-
lence detection was performed using short-term energy anal-
ysis. A frame was considered silent when its energy fell
below 2 % of the maximum signal energy. This threshold ef-
fectively identified low-activity regions while preserving the
meaningful voiced segments. Detected silent frames were
discarded, which improved the signal-to-noise ratio and en-
sured that only diagnostically useful components were re-
tained for reliable feature extraction and classification.

G. Low-pass filtering of voice signals

To eliminate high-frequency noise components that are not
relevant for speech production, a low-pass filter was applied
to all vocal signals. This filtering stage is crucial for pre-
serving the frequency band that is most informative for voice
analysis, particularly for pathology detection. We used a low-
pass filter with a cut-off frequency of 3400 Hz. This value is
typically used in speech processing applications, as the ma-
jority of voice energy is below this threshold. Frequencies
above 3400 Hz typically contain ambient noise or artifacts ir-
relevant to the phonatory process. The filtering process con-
tributes to improving the signal-to-noise ratio and increases
the reliability of subsequent feature extraction steps, includ-
ing Mel-spectrograms and scalograms.

H. Windowing of frames using the Hamming function

A Hamming window was applied to each pre-processed
voice signal to reduce spectral leakage by truncating the sig-
nal at its edges (Fig. 2).
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Fig. 2. Voice signals after pre-processing, including noise filtering,
amplitude normalization, and segmentation into fixed-length frames.
These enhanced signals serve as input for subsequent EMD-based
decomposition and feature extraction (e.g., MFCCs and scalograms)
to distinguish pathological from healthy voice patterns.
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I EMD algorithm

EMD, introduced by Huang et al. [26], is an adaptive
and fully data-driven method designed for analyzing non-
linear and non-stationary signals.The EMD method can self-
adaptively decompose a complicated multicomponent signal
into a finite set of components known as IMFs without any a
priori assumptions (Fig. 3). Due to its adaptive nature, EMD
is particularly well-suited for the analysis of biomedical and
voice signals. It enables for the isolation of the most infor-
mative oscillatory modes and thus the extraction of relevant
features — such as MFCCs or scalograms — from the most
energetically significant IMF. We used a Huang’s Empirical
Mode Decomposition for the signal analysis. The EMD al-
gorithm is explained next [26], [27], [28]. Let x(¢) be a real-
valued, non-linear and non-stationary signal. EMD expresses
x(t) as the sum of N IMFs and a final residual component

r(t):

N

x(t) = ;(IMF,-(I) +7r(t))

where IMF;(¢) is the i-th IMF, r(¢) is the final residual and and
N is the total number of extracted IMFs. We have calculated
the temporal energy for each of the IMFs obtained from the
EMD analysis of the voice signal, and only the IMF with the
highest energy value is chosen as relevant one, according to
the following equation:

2

K
E =Y (IMFi(n))*

i=1
where E, K and IMF;(n) are the temporal energy, the length
of the IMF and the i-th IMF digitized signal, respectively.

3)

Algorithm 1 EMD algorithm (Huang et al.)

Require: Signal x(r)
Ensure: A set of intrinsic mode functions
{IMF\(t),IMF,(t),...
r(t) « x(t)
i1
while r() has more than two extrema do
h(t) < r(t)
repeat
Identify all local maxima and minima of A(r)
Interpolate maxima to obtain upper envelope
€upper (t )
Interpolate minima to obtain lower envelope
€lower ([ )
Compute mean envelope: m(t) <
Update proto-IMF: A(t) < h(t) —m(t)
until 4(z) satisfies IMF conditions:
— Number of extrema and zero crossings differ
by at most one
— Mean envelope is approximately zero

(IMFs)
,IMFy(t)} and a residual r(z)

NN R RN

€upper (t)+elowcr (1)

12: IMF;(t) < h(r)

13: r(t) « r(t) —IMF(t)
14: i—i+1

15: end while

return {IMF,(t),IMF;(t),...

r(t)

JIMF;_(t)} and residual
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Fig. 3. The voice signal is decomposed into IMFs using EMD. Each
IMF represents a distinct oscillatory mode, ordered from high to low
frequency content, capturing features relevant to voice characteris-
tics. The most energetic IMF (highlighted) is selected for further
analysis, including MFCC-based and scalogram image generation,
to support the classification between pathological and healthy voice
signals.

J.  Extracted features

Mel-spectrogram images

Once the relevant IMF was selected, it was segmented
into overlapping frames for Mel-frequency cepstral coeffi-
cient (MFCC) extraction. Each IMF was divided into frames
of 23 ms duration, with a 50 % overlap between consecu-
tive frames to ensure smooth temporal continuity and to cap-
ture transitional acoustic features. For each windowed frame,
MFCCs were calculated by transforming the power spectrum
into the Mel scale using a bank of triangular filters spaced ac-
cording to the Mel frequency warping function. This process
resulted in a time—frequency representation of the relevant
IMF in the perceptually motivated Mel scale. The MFCCs
were then aggregated into Mel-spectrogram images, which
were subsequently used as inputs for the classification stage
(Fig. 4).

Scalogram representation of the relevant IMF using CWT

A scalogram is a two-dimensional time—frequency repre-
sentation that visually shows how the spectral content of a
signal evolves over time. It is particularly well suited for ana-
lyzing non-stationary signals such as the human voice, where
spectral characteristics change dynamically during phonation.
In addition to the MFCC extraction, each frame of the se-
lected relevant IMF was processed using the Morlet CWT fil-
ter bank to generate scalograms. This technique enables the
identification of localized spectral variations over time, which
are crucial for the detection of subtle irregularities associated
with vocal fold pathologies. For each frame, the CWT gen-
erates a matrix of wavelet coefficients representing the sig-
nal’s energy distribution over time and frequency. These ma-
trices were then visualized as scalogram images, resized to
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MFCC Coefficients

Frames

Fig. 4. Example of a Mel spectrogram generated from the most
energetic IMF of a pre-processed voice signal. The representation
emphasizes perceptually meaningful spectral patterns used to dis-
criminate between healthy and pathological voices in classification
tasks.

224 x 224 pixels, and converted to RGB format to comply
with the input specifications of the AlexNet-CNN used in
the classification stage (Fig. 5). This frame-level approach
not only captures fine-grained, time-localized acoustic fea-
tures relevant for pathology detection, but also significantly
increases the number of training samples. As a result, the
combination of scalogram-based representations and MFCCs
enriches the feature space and improves the model’s robust-
ness in discriminating between healthy and pathological voice
signals.

Frequency (Hz)

Fig. 5. Scalogram example derived from the most energetic IMF of
a pre-processed voice signal using CWT. The representation high-
lights relevant time-frequency patterns for the subsequent classifica-
tion of healthy and pathological voices.

3. RESULTS

The effectiveness of the proposed approach was evalu-
ated by training and validating the AlexNet-CNN on two dis-
tinct types of input representations: MFCC-based images and
CWT-derived scalograms. Each representation was gener-
ated from the most relevant IMF extracted from voice sig-
nal frames, as described in the previous sections. Classifi-
cation performance was evaluated using accuracy as the pri-
mary metric in the validation datasets. The classifier achieved
an accuracy of 85.66 % when using MFCC images, and a
slightly higher accuracy of 86.4 % when using scalogram
images (Fig. 6). These results suggest that both representa-
tions are effective in capturing discriminative features rele-
vant to pathological voice detection. However, the superior
performance of scalograms highlights their ability to encode
rich time—frequency information that complements, and in
some cases, surpasses, conventional cepstral features. The
improved performance of the scalograms can be attributed to
their fine-grained temporal and spectral resolution, which al-
lows the model to detect subtle irregularities associated with
vocal fold dysfunctions. These results confirm the suitability
of combining EMD with CWT-based scalograms for robust
and accurate voice pathology classification.
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n
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txd N
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Fig. 6. Confusion matrix showing the performance of AlexNet-
CNN on scalograms of the most energetic IMFs obtained with EMD
and CWT.

4. DISCUSSION AND COMPARISON WITH PREVIOUS
STUDIES

In this section, we compare the performance of our pro-
posed method with several recent studies on pathological
voice classification using different datasets, features, and
classification models. Table 1 summarizes the key character-
istics and classification accuracies reported in the literature.
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Table 1. Comparison of our method with recent studies on pathological voice detection.

Study Dataset Features and model Accuracy [%]
[29] SVD Multipeak, Gaussian mixture model (GMM) 91.83

[30] SVD + HUPA MFCCs, SVM 71.45-76.19
[31] MEEI voice disorders MFCC (500 ms frames, 5 ms shift), SVM 66.4-75.1
[32] SVD + HUPA wav2vec, SVM 68.55-83.11
[33] SVD + HUPA Mel-spectrogram, SVM 69.45-75
[34] VOICED wav2vec 2.0, SVM / KNN 98

[35] UA-speech + TORGO MFCCs, SVM 63.13-89.22
This work  SVD EMD-IMF, Mel-spectrogram + scalogram, AlexNet-CNN 85.66/ 86.4

To evaluate the effectiveness of our proposed method,
we compared its performance with several recent studies on
pathological voice detection using different datasets, features,
and machine learning models (see Table 1). Our approach,
based on EMD-derived Mel-spectrograms and scalograms as
inputs to the AlexNet-CNN, achieved an accuracy of 85.66 %
and 86.4 %, respectively. In comparison, Eskidere et al. [29]
achieved a slightly higher accuracy of 91.83 % using a GMM
with multipeak features on the same SVD dataset. However,
their method did not use deep learning or time—frequency
representations, which could limit the generalization. Sim-
ilarly, Kadiri et al. [30] used MFCCs and SVM on a com-
bined dataset (SVD and HUPA), reporting accuracies rang-
ing from 71.45 % to 76.19 %. More recent studies have
explored deep representations, such as wav2vec features in
combination with SVM classifiers and achieved accuracies
randing from 68.55 % to 83.11 % [32]. Other approaches,
including Mel-spectrogram features with SVM [33], and clas-
sical MFCC-based systems [31], [35], have generally shown
lower or more variable performance, especially when applied
to small or heterogeneous datasets. The highest reported ac-
curacy in the literature (98 %) was obtained by Cai et al. [34]
using the VOICED database and wav2vec 2.0 features in con-
bination with SVM and KNN classifiers. While promising,
this result is based on a different dataset and may not be di-
rectly comparable due to variations in recording conditions,
subject demographics, and pathology types.

Our method offers a competitive and robust alternative,
particularly because it:

* operates effectively on a publicly available and widely
used dataset (SVD),

* integrates the EMD to isolate the most informative IMF
component,

* extracts both MFCC images and scalograms, and

e utilizies deep learning through AlexNet-CNN, a well-
established architecture for small to medium-sized
datasets.

Overall, these results suggest that our hybrid approach,
which combines classical signal processing with deep learn-
ing, delivers performance that is not only competitive with

state-of-the-art methods, but also interpretable and adaptable
for non-invasive clinical screening of voice disorders.
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5. CONCLUSION

This study proposed an effective framework for automatic
detection of laryngeal pathologies by combining advanced
signal processing and deep learning techniques. The voice
recordings were pre-processed and decomposed using EMD,
and the most relevant IMFs were selected based on temporal
energy. From each frame of this IMF, MFCC images and
scalograms based on CWT were extracted to capture both
spectral and temporal information.

Using a deep CNN, namely AlexNet, we classified the
extracted features and achieved promising results: 85.66 %
accuracy with MFCC-based spectrograms and 86.4 % with
scalograms. These results show the potential of the proposed
method to extract and analyze diagnostically relevant infor-
mation from voice signals for non-invasive and early-stage
detection of laryngeal pathologies.

The proposed method provides a novel combination of
signal decomposition and time—frequency feature representa-
tion that complements recent advances in deep learning-based
voice pathology detection. Compared to existing approaches,
our framework proves to be not only effective but also inter-
pretable and well-suited for small-scale datasets. Therefore,
the method is suitable for an initial screening of pathological
voice conditions and can serve as a valuable diagnostic aid.
However, further research and large-scale clinical validation
are essential to improve its robustness and generalizability for
real-world applications.
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