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Abstract: Wireless Sensor Networks (WSNs) are the backbone of Internet of Things (IoT) ecosystems, but they remain constrained by limited 
energy, dynamic topologies, and increasing security threats. Conventional metaheuristic-based routing protocols typically optimize either 
energy efficiency or security, but rarely achieve both in a scalable manner. To address this research gap, we propose a trust-aware Software 
Defined Wireless Sensor Network (SDWSN) framework that integrates the Coati Optimization Algorithm (COA) for multi-objective routing 

with a hyperelliptic curve (HEC)-based blind signcryption scheme for lightweight yet robust data security. The novelty of this work lies in 
the joint optimization of energy, delay, trust, and hop count while simultaneously ensuring confidentiality, integrity, and anonymity through 
blind signcryption. Unlike traditional ECC and RSA, the proposed HEC-based scheme reduces computational complexity, making it suitable 
for resource-constrained IoT devices. The architecture leverages software-defined networking (SDN) programmability and the OpenFlow 
protocol to dynamically adapt routes based on real-time trust and energy metrics. Simulation results in NS-3 show that the proposed COA-
HEC model significantly outperforms existing schemes (SEHR, IBFA, ESMR, GMPSO) by improving throughput (18.8 %–59.4 %), packet 
delivery ratio (by 4.8 %–12.4 %), and reducing average delay (up to 61 %) and energy consumption. The proposed framework establishes 
a scalable and secure routing paradigm for real-time IoT applications such as industrial automation, healthcare monitoring, and smart cities, 
thus advancing the state of the art in trust-aware SDWSNs. 
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1. INTRODUCTION 

The exponential growth of the Internet of Things (IoT) has 

transformed conventional communication paradigms by 

interconnecting billions of smart devices for real-time 

monitoring [2], data processing, and control across various 

domains, such as smart homes, healthcare, and industrial 

automation. [3]. However, this proliferation introduces 

significant challenges regarding energy efficiency, trust, and 

security in Wireless Sensor Networks (WSNs), which form 

the foundational infrastructure of IoT ecosystems [11]. These 

challenges are further magnified by limited energy resources, 

node heterogeneity, and susceptibility to malicious attacks 

[4]. To address these issues, software-defined networking 

(SDN) has emerged as a promising paradigm, decoupling the 

control and data planes to enhance programmability and 

centralized network management in WSNs, thus forming 

Software-Defined Wireless Sensor Networks (SDWSNs) [1]. 

Trust-aware SDWSNs integrate trust evaluation mechanisms 

into  the SDN architecture to ensure that data are transmitted 

through reliable nodes, thereby mitigating the risks associated 

with node compromise and untrusted behaviors [17]. 

Moreover, the OpenFlow protocol has been widely adopted 

in SDWSNs to dynamically manage routing paths based on 

real-time network conditions, significantly improving 

network adaptability and performance. Among various 

intelligent optimization techniques, the Coati Optimization 

Algorithm (COA), inspired by the cooperative foraging 

behavior of coatis, offers a biologically inspired method for 
achieving energy-aware and trust-based routing decisions. 

The algorithm efficiently balances exploration and 

exploitation in selecting optimal routes by minimizing energy 

consumption, while maximizing trust scores among 

participating nodes. The COA has shown promise in 

enhancing reliability, reducing latency, and supporting 

scalability in dynamic IoT environments. Especially in time-

sensitive applications, such as smart cities and industrial 

control systems, COA can ensure robust performance by 

dynamically adjusting routes based on changing network and 

trust metrics. To further strengthen the security of transmitted 
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data, Blind Signcryption, an amalgamation of digital 

signature and encryption, is integrated within the SDWSN 

architecture. This mechanism not only ensures data 

confidentiality and integrity, but also provides anonymity by 

concealing the sender’s identity, thus meeting the stringent 

privacy requirements of IoT communication. The use of 

hyperelliptic curve (HEC) cryptography in blind signcryption 

improves computational efficiency and strengthens security, 

especially for resource-constrained IoT devices [6]. Despite 

advancements in optimization and security protocols for 
WSNs, three critical gaps remain: 1) Partial optimization – 

most approaches optimize only energy or delay while 

neglecting trust and security; 2) Security limitations – 

cryptographic mechanisms like ECC and RSA introduce high 

computational overhead unsuitable for IoT; 3) Scalability 

issues – traditional metaheuristics struggle to adapt in large 

heterogeneous SDWSNs. 

2. RELATED WORKS 

Recent research on WSN optimization has highlighted 

various meta-heuristic approaches to improve energy 

efficiency and security. Amir et al. [5] introduced Ex-GWO 

and I-GWO protocols that prioritize energy conservation by 

considering residual energy, distance, and traffic load in route 

selection. Similarly, Singh et al. [8] developed a fuzzy Gray 

Wolf Optimizer (GWO) with opportunistic routing to 

minimize power expenditure, and GirijaVani et al. [7] 

proposed the SEAMHR protocol, which enhances security 

through meta-heuristic analysis and counter mode 

cryptography. Mauro Conti et al. [13] further contributed 

with SARP, a scalable and secure IoT routing protocol that 
prevents insider attacks while maintaining energy efficiency. 

Khalid Haseeb et al. [9] designed the Secure and Energy-

Aware Heuristic-Based Routing (SEHR) protocol to optimize 

energy and resource routing decisions while protecting 

against unauthorized malicious attacks. In another study, 

Haseeb et al. [10] presented an energy-efficient and secure 

multi-hop routing protocol (ESMR). Majid Alotaibi [12] 

implemented the Improved Blowfish Algorithm (IBFA) in 

conjunction with the Crossover Mutated Marriage in Honey 

Bee (CM-MH) model for encryption, decryption, optimal 

route determination, and encoding processes.  
 

Table 1.  Summary of key related works and their limitations. 

Method / Protocol Optimization  

technique 

Security 

mechanism 

Parameters  

considered 

Limitations 

Ex-GWO, I-GWO [5] GWO variants None Energy, distance,  

traffic load 

Poor adaptability in dynamic 

networks, high complexity 

Fuzzy-GWO [8] Hybrid fuzzy + GWO None Energy efficiency Performance degradation  

in heterogeneous networks 

SEAMHR [7] Metaheuristic analysis Counter-mode 

cryptography 

Delay, energy, security Security issues due to CTR reuse, 

high overhead 

SEHR [9] Heuristic-based routing Lightweight 

cryptography 

Energy-aware routing Integrity flaws,  

limited energy optimization 
ESMR [10] Secret sharing Key sharing + 

multi-hop 

Energy, security No mobility support,  

ignores QoS metrics 

IBFA [12] Blowfish with CM-MH Symmetric 

encryption 

Energy, security No authentication, high 

complexity, vulnerable patterns 

GMPSO [16] Genetic mutation PSO None Energy efficiency, 

throughput 

High controller overhead,  

ignores trust, longer flow times 

BOA-ACO [15] BOA + ACO None Cluster-head routing, 

energy 

No built-in security,  

limited scalability 

IEE-LEACH [20] Improved LEACH 

hybrid routing 

None Energy Focuses only on lifespan,  

no security 

HPSO-ILEACH [18] PSO + Improved 

LEACH 

None Energy aggregation Lacks robust trust/security 

PSOGA [14] PSO + GA hybrid None Energy,  

packet transmission 

Limited scalability,  

no lightweight security 

 

Yao et al. [19] proposed an adaptive particle swarm 

optimization ensemble and genetic mutation-based routing 

for selecting control nodes in IoT-enabled software-defined 

WSNs. Prachi et al. [15] developed the Butterfly Opti-

mization Algorithm (BOA) to select optimal cluster heads 

from sets of nodes. Yang Liu et al. [20] presented IEE-

LEACH to address the energy consumption challenges of the 

LEACH protocol in WSNs. Sharmin et al. [18] introduced an 

approach to enhance energy efficiency and network longevity 
in WSNs by developing a solution using HPSO and ILEACH 

for Cluster Head selection during data aggregation. Mukesh 

Mishra et al. [14] proposed a multi-objective optimization 

method to ensure efficient packet transmission from source to 

sink or base station. This approach [21] uses a novel hybrid 

algorithm, PSOGA, which combines particle swarm 

optimization and genetic algorithms to determine optimal 

data transmission paths. Esau Taiwo et al. [6] proposed a new 

Wireless Sensor Network model using multicore WS 

clustering to reduce power consumption. Table 1 compares 

existing approaches with the proposed COA-HEC 
framework. In contrast, the proposed COA-HEC framework 

integrates the exploration–exploitation efficiency of COA, 
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a Bayesian trust model for node reliability, and HEC-based 

blind signcryption [22] for lightweight secure communication 

[23]. This unique integration ensures not only efficient and 

adaptive routing, but also robust confidentiality, integrity, 

and anonymity, making it particularly suitable for large-scale, 

dynamic IoT environments [24] and smart city infra-

structures. 

The methodological innovations of this work are based on 

the integration of three key components:  

• A COA-based multi-objective routing mechanism,  

• A Bayesian trust model that combines interaction and 

efficiency trust, and  

• A HEC-based blind signcryption scheme for light-

weight, secure communication.  

The motivation for these choices arises from the limitations 

identified in existing approaches, where optimization is often 

only partial (energy- or delay-centric), cryptographic tech-

niques such as ECC and RSA result in high computational 

costs, and scalability in large, heterogeneous SDWSNs 

remains a persistent challenge. 

3. PROPOSED FRAMEWORK 

The framework establishes a separation between control 

management logic and data, comprising three layers: 

application, control, and information. The application layer 

contains definitions, objectives, services, and network 
operations, while the control layer handles administration, 

configuration, and forwarding node selection. Fig. 1 shows 

the system architecture of the proposed model, with nodes 

featuring three modules and a controller with three primary 

modules.  

 

Fig. 1.  Proposed system model overview. 

The proposed algorithm, shown in Fig. 2, defines an 

objective function to enable diverse, trust-based routing. The 

proposed system includes three node modules and three 

principal controller modules. The data plane incorporates 

discovery modules for the BS, adjacent nodes, and the 

controller, while the controller contains modules for topology 
discovery, link discovery, and virtual routing. 

A. Discovery modules in data plane  

The proposed methodology combines neighbor discovery, 

base station (BS) identification, and controller recognition 

into a unified module using a singular broadcast message 

disseminated by the controller. This broadcast communi-

cation includes the sender's identification, remaining energy 
levels, and hop count to the base station. Neighboring nodes 

use this information to populate their respective tables and 

build a three-dimensional array (TDA[n][n][2]) that records 

the proximity, energy metrics, and hop counts of neighbors. 

This strategy effectively reduces communication overhead 

and energy consumption compared to traditional multi-

message approaches. 

B. Link discovery module  

This module efficiently identifies and monitors node 

interconnections. Instead of transmitting comprehensive 

neighbor lists, nodes share information only about neighbors 

with lower identification numbers. This data, stored in the 

same TDA array, avoids redundancy and allows the controller 

to determine the existence of links. The architecture supports 

bidirectional link configuration. 

Appliation Layer 

 

Fig. 2.  Proposed system architecture for SDWSN. 

C. Topology discovery module  

Leveraging the global perspective gained from the 
preceding modules, the controller systematically constructs 

and maintains the network topology by clustering nodes and 

identifying common nodes within clusters. Since the nodes 

are static, the topology remains stable until the energy of the 

nodes is depleted. 

D. Routing module  

This module determines optimal routing pathways based 

on application-specific quality of service (QoS) requirements. 

The controller selects the next hop by evaluating node trust, 

proximity to the base station, and residual energy levels to 

ensure efficient and reliable data transmission. 
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E. Trust calculation 

Trust estimation is essential for maintaining secure and 

reliable communication in SDWSN. The proposed trust 

model evaluates node behavior using two key components: 

interaction trust and efficiency trust, each tailored for both 

control and data traffic. By employing a lightweight Bayesian 
approach, the model accurately quantifies trust, enabling the 

identification and exclusion of malicious nodes and thereby 

enhancing network security. This is modeled by the 

expectation of the beta distribution: 
 

𝑇𝑖𝑗
int =

𝑠𝑖𝑗 + 1

𝑠𝑖𝑗 + 𝑓𝑖𝑗 + 2
 (1) 

 

where 𝑇𝑖𝑗
int is the interaction trust value, ranging from 0 to 1. 

If  𝑛𝑖𝑗
forw denotes the number of packets correctly forwarded 

by neighbor 𝑗, and 𝑛𝑖𝑗
recv is the total number of packets sent to 

𝑗, efficiency trust is calculated as: 
 

𝑇𝑖𝑗
eff =

𝑛𝑖𝑗
forw

𝑛𝑖𝑗
recv  (2) 

 

To capture both behavioral aspects, the combined regional 

trust 𝑇𝑖𝑗  for routing purposes is given by a weighted sum: 

 

𝑇𝑖𝑗 = 𝛼𝑇𝑖𝑗
int + (1 − 𝛼) 𝑇𝑖𝑗

eff (3) 

 

where 0 ≤ 𝛼 ≤ 1 balances the importance of interaction and 

efficiency trust. The energy consumed in transmitting 𝐽 bits 

over a distance 𝑑 follows the LEACH model: 
 

𝐸𝑡𝑥 = {
𝐽 ⋅ 𝐸elec + 𝐽 ⋅ 𝜖𝑓𝑠 ⋅ 𝑑2, if 𝑑 < 𝑑0

𝐽 ⋅ 𝐸elec + 𝐽 ⋅ 𝜖𝑚𝑝 ⋅ 𝑑4, if 𝑑 ≥ 𝑑0

 (4) 

 

where 𝐸elec, 𝜖𝑓𝑠, and 𝜖𝑚𝑝 are hardware parameters, and 𝑑0 is 

the threshold between channels. Additionally, the end-to-end 

delay for a path from source 𝑐 to sink 𝑠 is evaluated as the 

sum of per-hop latencies:  
 

𝐷𝑐→𝑠 = ∑  

𝑁

𝑘=1

𝑑𝑘 (5) 

F. Proposed Coati Optimization Algorithm  

This proposed algorithm can applied in smart home 

environments, including applications such as home sensors. 

It represents the weight of the 𝑗𝑡ℎ node in routing as the next 

node of the 𝑖𝑡ℎ node. The objective function (4), which 

considers delay, energy, trust, and distance, is provided as 
input to the COA, which selects the optimal forwarding node 

based on the decisions made by the COA algorithm. 
 

𝑂𝐵𝑗 =
𝛿1 ∙ 𝐿𝑇𝑖𝑗 + 𝛿2 ∙ 𝐷𝑖𝑠𝑡𝑗 + 𝛿3 ∙ 𝐷𝑐→𝑠

𝛿4 ∗ 𝐸𝑅𝑗

 (6) 

 

where 𝛿1, 𝛿2, 𝛿3, 𝑎𝑛𝑑 𝛿4 are relative coefficients with 

𝛿1 + 𝛿2 + 𝛿3 + 𝛿4 = 1. 𝐷𝑖𝑠𝑡𝑗  represents the distance bet-

ween the BS and the neighbor node 𝑗. The COA is 

an optimization technique that uses a population of coatis to 

search for a solution to a given problem. Each coati has 

a location in the search space (SS), corresponding to a set of 

values for the decision variables. This position serves as 

a potential solution to the problem. The starting point of the 

COA is determined using (6) through random initialization of 

the positions of the coatis. 

 

𝑋𝑖: 𝑥𝑖,𝑗 = 𝑙𝑏𝑗 + 𝑟 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗),  (7) 
𝑖 = 1,2,… 𝑁, 𝑗 = 1,2, . . 𝑚 

 

The coatis population in COA is mathematically 

represented using the matrix “X" called the population matrix. 

 

𝑋 = [

𝑥1,1 … 𝑥1,𝑚

⋮ ⋱ ⋮
𝑥𝑁,1 … 𝑥𝑁,𝑚

]

𝑁∗𝑀

 (8) 

 

Candidate solutions (CSs) are positioned in the decision 

variables, leading to the assessment of different values for the 

problem’s objective function, as shown in (9). 

 

𝐹 =

⌈
⌈
⌈
⌈
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁⌉

⌉
⌉
⌉
 

𝑁∗1

=

⌈
⌈
⌈
⌈
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)⌉

⌉
⌉
⌉
 

𝑁∗1

 (9) 

 

In the proposed meta-heuristic algorithm, the quality of the 

CS determines the outcome of the objective function, with the 

optimal member selected accordingly. The mathematical 

foundation of COA lies in population-based optimization 

inspired by natural cooperative behaviors. This approach 

accounts for topological and energy constraints to achieve 

optimal routing. 

Phase 1: Hunting as well as attacking strategy on iguana 

(exploration) 

The initial stage of population updating in SS is modeled 

by simulating the coatis’ attacking approach on iguanas. 

A group of coatis climbs a tree to capture an iguana and 

frighten it. This causes the coatis to move to various locations 

in SS, demonstrating exploration capability in the global 

search. In the COA design, the location of the best member is 

identified as the iguana’s location. The positions of the coatis 

climbing the tree are given by (10), representing the 

diversification of node selection. 

 

𝑋𝑖
𝑝1: 𝑥𝑖,𝑗

𝑝1 = 𝑥𝑖,𝑗 + 𝑟 ∙ (𝐼𝑔𝑗 − 𝐼 ∙ 𝑥𝑖,𝑗),  
(10) 

𝑖 = 1,2, … [
𝑁

2
] , 𝑗 = 1,2. .𝑚 

 

Once an iguana falls to the ground, it relocates to a random 

position in SS. Depending on these random locations, the 

coatis found on the ground move within SS as described 

below. They move based on random positions, ensuring 

broader exploration of the SS as in (11) and (12) 
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𝐼𝑔𝐺: 𝐼𝑔𝑗
𝐺 = 𝑙𝑏𝑗 + 𝑟 ∙ (𝑢𝑏𝑗 − 𝑙𝑏𝑗), 𝑗 = 1,2,… 𝑚 (11) 

 

𝑋𝑖
𝑃1: 𝑥𝑖,𝑗

𝑃1 = {
𝑥𝑖,𝑗 + 𝑟 ∙ (𝐼𝑔𝑗

𝐺 − 𝐼 ∙ 𝑥𝑖,𝑗),𝐹𝐼𝑔𝐺 < 𝐹𝑖      

𝑥𝑖,𝑗 + 𝑟 ∙ (𝑥𝑖,𝑗 − 𝐼𝑔𝑗
𝐺), else            

 (12) 

 
A new position determined for each coati is accepted for 

updating if it improves the value of the objective function 

(better path). Otherwise, the coati remains in its previous 

location. The update condition is determined using (13) for 

 𝑖 =  1, 2, . . . , 𝑁. 

 

𝑋𝑖 = {
𝑋𝑖

𝑃1, 𝐹𝑖
𝑃1 < 𝐹𝑖

𝑋𝑖       else        
 (13) 

 

Phase 2: Escaping from predators (exploitation) 

The next stage involves updating the location of coatis in 

SS, which is mathematically modeled based on the natural 

behavior of coatis when facing and escaping predators. To 

simulate this behavior, an arbitrary location is generated near 

the current location of each coati using (14) and (15).  

 

𝑙𝑏𝑗
local =

𝑙𝑏𝑗

𝑡
, 𝑢𝑏𝑗

local =
𝑢𝑏𝑗

𝑡
 (14) 

 

𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2𝑟) ∙ (𝑙𝑏𝑗

local + 𝑟 ∙ (𝑢𝑏𝑗
local − 𝑙𝑏𝑗

local)), 
(15) 

𝑖 = 1,2, . . 𝑁, 𝑗 = 1,2, . .𝑚 

 
The newly considered location is accepted if it increases 

the objective function value (16), 

 

𝑋𝑖 = {
𝑋𝑖

𝑃2,       𝐹𝑖
𝑃2 < 𝐹𝑖

𝑋𝑖 , else          
 (16) 

 
A HEC-based blind signcryption scheme is proposed 

(illustrated in Fig. 3) to ensure secure data routing between 

sensor nodes and the BS in WSNs. The scheme guarantees 

sender anonymity, reduces computational and communi-

cation costs, and involves three participants:  the controller, 

the sender node, and the BS, across four stages: setup, key 

generation, blind signcryption, and unsigncryption. 

Setup stage:  

The controller selects a finite field 𝔽_𝑞  and a divisor 𝐷 of 

the HEC, chooses 𝑛 ∈ ℤ𝑞 ∗, and computes the public–private 

key pair:  

 
𝑃pub =  𝑛𝐷 

𝑃priv  =  𝑛 

Key generation:  

The controller sends (𝑃pub ,  𝑃priv)  to the requesting sensor 

node via a secure channel. 

Blind signcryption:  

The sender selects two random values 𝑟1 , 𝑟2 ∈ ℤ𝑞 ∗  and 

computes: 

𝐾 =  𝑟1𝑃pub ,  

  𝐶 =  𝑀 ⊕ 𝐻1(𝐾), 

𝑠 =  𝑟2 + 𝐻2(𝐶) ∙ 𝑃priv(mod 𝑞) 

The blind message (C, s) is sent to the controller for signing 

without revealing M. The controller signs blindly: 
 

𝜎 = 𝑠 ∙ 𝑃pub  

 

The sender unblinds and forwards (C, σ) to BS. 

Unsigncryption:  

BS verifies validity by checking:  
 

𝐻2(𝐶) =  𝐻2(𝑀 ⊕ 𝐻1(𝐾)), 
 

If valid, the message is accepted; otherwise, it is rejected. 
The HEC-based approach offers higher security with smaller 
key sizes compared to traditional ECC, making it well-suited 
for resource-constrained WSN environments. The proposed 
framework incorporates COA, HEC-based signcryption, and 
trust-aware routing to optimize secure and energy-efficient 
data transmission within WSNs. Dynamic selection of the 
cluster head is enabled by the global search efficiency of 
COA and low overhead. This approach combines the 
advantages of each approach to provide a comprehensive 
solution. Simulation results verify our approach's 
performance advantage across various metricscompared to 
existing configurations. HEC-based blind signcryption is 
preferred over traditional lightweight cryptographic 
algorithms such as ECC, RSA, or AES due to its efficient 
computational balance.  

 

Fig. 3.  COA–HEC secure routing flowchart. 
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4. RESULTS AND DISCUSSION  

The proposed model was analyzed using the NS3 

simulator. Various metrics were evaluated to compare the 

COAHBS scheme with the SEHR and IBFA models: 

including computational cost, packet delivery ratio, average 

delay, average throughput, network lifetime, packet loss, 
communication overhead, and energy consumption. The 

simulation parameters used in this research are summarized 

in Table 2. The analysis indicates that COAHBS achieves 

optimal performance in terms of energy efficiency, packet 

delivery ratio, minimized packet loss, and reduced compu-

tational costs.  

Table 2.  Details of simulation parameters setup. 

Parameter Values 

Simulator model NS-3.26 

Sensor nodes count 50, 100, 150, 200, 250 

Simulation area 500×500 m 

Optimal path finding protocol COA 

SDN controller count 1 

Base station  3 

Size of packet 512 bytes 

Initial energy 50 J 

Simulation time 300 sec 

Transmission range 250 m 

 
As shown in Fig. 4 and Table 3, COAHBS consistently 

outperformed other protocols, achieving an average 

throughput of 75.6 %, surpassing SEHR, IBFA, ESMR, and 

GMPSO by 18.8 % - 59.4 %. This improvement is attributed 
to multi-objective path selection that optimizes trust, delay, 

hop count, and energy.  

 

Fig. 4.  Average throughput analysis. 

Table 3.  Average throughput comparison [Mbps]. 

Nodes COAHBS SEHR IBFA ESMR GMPSO 

  50 0.93 0.80 0.73 0.66 0.60 

100 0.86 0.71 0.65 0.62 0.55 

150 0.75 0.65 0.56 0.51 0.47 
200 0.64 0.52 0.50 0.43 0.40 

250 0.60 0.50 0.42 0.38 0.35 

Fig. 5 and Table 4 show that COAHBS maintained the 

highest packet delivery ratio (PDR) across various node 

densities, averaging 88.8 %, compared to SEHR 84 %, IBFA 

81.4 %, ESMR 77.8 %, and GMPSO 76.4 %. This im-

provement results from reduced route failures and improved 

route reliability. 

 

Fig. 5.  Analysis of PDR. 

Table 4.  PDR comparison [%]. 

Nodes COAHBS SEHR IBFA ESMR GMPSO 

50 97 92 90 87 86 
100 91 88 85 82 81 

150 88 83 80 76 75 

200 86 80 78 73 71 

250 82 77 74 71 69 

 

COAHBS exhibited the lowest delay among all approaches 

(average 4.83 ms) across all node counts (Fig. 6, Table 5). It 

achieved a delay reduction of up to 61 % compared to 

GMPSO, enabling faster data transmission through optimal 

route selection based on trust and hop-count criteria. 

 

Fig. 6.  Average delay analysis. 

Table 5.  Evaluation of average delay comparison [msec]. 

Nodes COAHBS SEHR IBFA ESMR GMPSO 

50 2.012 4.23 6.34 7.58 8.35 

100 3.056 5.97 7.29 8.21 10.33 

150 4.37 6.67 8.11 9.33 12.96 

200 5.66 7.55 9.12 11.54 14.77 

250 6.78 8.06 10.75 12.58 15.92 
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Fig. 7 and Table 6 show that COAHBS was the most 
energy-efficient protocol, with energy consumption rising 
from 0.23 J to 0.63 J as the node count increased from 50 to 
250, which is significantly lower than that of alternative 
protocols. This represents a 173.91 % increase, which is 
considerably more efficient than GMPSO’s maximum 
increase of 160.53 %.  

 

Fig. 7.  Energy consumption analysis. 

Table 6.  Energy consumption comparison [J]. 

Nodes COAHBS SEHR IBFA ESMR GMPSO 

50 0.23 0.47 0.55 0.64 0.76 
100 0.35 0.50 0.64 0.73 0.89 
150 0.47 0.72 0.85 0.89 0.97 

200 0.58 0.85 0.99 1.23 1.44 
250 0.63 0.98 1.13 1.45 1.98 

 

The COA-HEC framework demonstrates significant 

scientific contributions by efficiently integrating multi-

objective optimization with lightweight cryptography, 

achieving comprehensive performance improvements in 

SDWSNs. It ensures energy efficiency [25], trust, reduced 

delay, and minimal packet loss while maintaining scalability 

[26] for dense IoT networks. Outperforming existing 

algorithms, it provides secure, reliable, and practical 
communication for industrial automation, healthcare 

monitoring, and smart city infrastructures. While the 

manuscript presents promising theoretical results, some 

proofs remain concise. Expanding these proofs with 

additional intermediate steps and mathematical justifications 

would enhance the rigor of the work, thereby strengthening 

the credibility and validity of the proposed framework. 

The presented examples effectively validate the applica-

bility of the theoretical results. However, incorporating more 

varied and complex case studies would better demonstrate the 

breadth and versatility of the proposed methods, further 
reinforcing their potential for diverse IoT deployment 

scenarios. 

5. CONCLUSION  

This work presents a significant advancement in SDWSN-
based IoT routing through the COA-HEC framework, which 

integrates multi-objective optimization, trust management, 

and lightweight cryptography to address critical gaps in 

existing research, including the simultaneous optimization of 

energy, trust, delay, and hops, the lack of efficient security, 

and the limited scalability of traditional metaheuristics. The 

COA ensures optimal exploration–exploitation for dynamic 

path selection, while the trust model enhances resilience 

against malicious nodes. The HEC-based blind signcryption 

provides confidentiality, integrity, and anonymity with 

minimal computational and communication overhead, 

making it suitable for constrained IoT nodes. Extensive NS-3 

simulations demonstrate superior performance over SEHR, 

IBFA, ESMR, and GMPSO, improving throughput by 
59.4 %, PDR by 12.4 %, and reducing delay by 61 %. The 

framework scales efficiently to dense networks and is directly 

applicable to industrial IoT, healthcare monitoring, and smart 

city infrastructures. By combining holistic optimization, 

lightweight security, and real-world applicability, COA-HEC 

establishes a scalable, secure, and energy-efficient paradigm 

for next-generation IoT routing, with future work focusing on 

hardware validation, mobility-aware trust models, and AI-

driven predictive optimization. In addition to the theoretical 

contributions, a more detailed discussion of practical 

applications such as deployment in large-scale industrial IoT 
systems, healthcare monitoring platforms, and smart city 

infrastructures, would be beneficial. Although the manuscript 

briefly addresses open questions and possible extensions, 

expanding this discussion would provide a clearer roadmap 

for future research. 
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