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Abstract: Alzheimer's disease (AD) is an irreversible brain condition that impairs memory and cognitive processes. However, existing
Alzheimer detection methods have shown low diagnostic accuracy (ACC) due to limited images and inefficient feature analysis. In this
paper, a novel AD-HOLDER model is proposed for early recognition of AD using dual imaging methods: magnetic resonance imaging
(MRI) and positron emission tomography (PET). The proposed AD-HOLDER model presents an integrated framework that uniquely
combines Deep Image Prior (DIP) denoising, Histogram of Oriented Gradients (HOG) feature extraction, and Light Gradient Boosting
Machine (LGBM) classification for AD detection from MRI and PET images. The HOG method aims to enhance the spatial and contextual
representation of neurological patterns by combining structural features from MRI and statistical features from PET images. A classifier
based on the LGBM processes the dual features to classify images as either normal or abnormal, effectively capturing complex patterns and
improving classification ACC. The abnormal region is segmented using a graph-based segmentation (GBS) model to accurately detect
affected areas for accurate detection of AD. The effectiveness of the proposed AD-HOLDER model is evaluated using ACC, specificity
(SPE), precision (PRE), recall (REC), and F1-score (F1) based on the OASIS dataset. The proposed AD-HOLDER model achieves a
classification ACC of 99.12 % through machine learning. The proposed AD-HOLDER model increases overall ACC by 1.55 %, 25.44 %,
and 3.14 % compared to the Gradient Boosting Algorithm (GBA), Explainable Artificial Intelligence (XAl), and Computer-Aided Diagnosis
(CAD) systems, respectively.

Keywords: MRI images, PET images, Histogram of Oriented Gradients, machine learning, Light Gradient Boosting Machine, graph-based
segmentation

1. INTRODUCTION

In recent years, the percentage of elderly people in the
human population has grown rapidly. Data from the Turkish
Statistical Agency indicate that 8.7 % of the population was
older than 65 in 2018, compared to 4.7 % in 1980 [1].
According to the Statistical Agency, by 2080, people over 65
will make up a quarter of the entire population. The number
of Alzheimer’s disease (AD) patients has increased due to the
aging population. According to AD International's (ADI)
annual report, approximately 50 million people suffer from

identified to stop or cure the disease, despite predictions that
nursing and treatment expenses will rise dramatically with the
increasing number of patients [6]. Since AD is a degenerative
brain disease, nerve cells and tissue gradually disappear as the
illness progresses [7]. Therefore, an essential component of
early AD diagnosis is the identification of mild cognitive
impairment (MCI), which is considered a precursor to AD
[8]. Magnetic resonance imaging (MRI) and other forms of
brain imaging, which allow for the visualization of the
structure and function of the brain, have been used in the

AD worldwide [2], [3]. Furthermore, they predict that this
number will double every 20 years. As AD is a growing
problem, developing new and effective methods for early
diagnosis and treatment is becoming increasingly important
and popular. Because brain tissue and nerve cells are lost,
patients experience memory loss and cognitive impairment.
Globally, by 2050, one in 85 people will have AD or
another form of dementia [4], [5]. Other than therapies that
slow disease progression, no alternative medication has been
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medical diagnosis of brain disorders [9].

To diagnose AD dementia, doctors assess the signs and
symptoms of AD and use various tests. Physicians may also
prescribe memory tests, brain imaging studies, or other
laboratory tests [10]. By excluding other illnesses that might
cause similar symptoms, these tests help medical pro-
fessionals diagnose patients. MRI can detect brain
abnormalities associated with MCI [11] and can also help
predict which individuals with MCI may eventually develop
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AD. MRI scans can identify irregularities, such as a reduction
in the size of certain brain regions, primarily affecting the
parietal and temporal lobes [12]. AD is a neurological con-
dition that causes memory loss and dementia. Accurate and
early diagnosis remains a significant challenge in medical
practice, as traditional diagnostic methods often detect AD in
its later stages. To address these challenges, a novel AD-
HOLDER model has been proposed for detecting AD using
MRI and positron emission tomography (PET) images. MRI
and PET imaging offer valuable insights into brain structure
and function, but manually analyzing these complex datasets
is time-consuming and prone to errors. Machine learning
(ML) [13] techniques automate the detection process, leve-
raging large datasets to identify subtle patterns associated
with AD progression. The main contributions of this research
are as follows:

e The novel AD-HOLDER model integrates MRI and
PET images, leveraging both structural and statistical
features. The dual-input images improve the ability of
the model to capture complete neurological patterns
crucial for early AD diagnosis.

o A Histograms of Oriented Gradients (HOG) method is
introduced, combining residual learning and multi-
branch convolution to extract rich spatial-contextual
features. This approach effectively fuses complemen-
tary features from MRI and PET, improving the quality
of representations used in classification.

e A graph-based segmentation (GBS) approach is em-
ployed to precisely segment abnormal regions, impro-
ving detection specificity (SPE) and providing localized
insights into affected brain areas, as demonstrated by
significant gains in dice index (DI) compared to tradi-
tional segmentation models.

The remainder of the paper is organized as follows: The
literature on AD diagnosis and classification is reviewed in
Part 2; the proposed approach is presented in Part 3; the
experimental and assessment findings are shown in Part 4;
and the study is concluded and future research is discussed in
Part 5.

2. LITERATURE REVIEW

Many categorization strategies have been developed in
various studies for the diagnosis and detection of AD. This
section summarizes current research on AD diagnostic and
detection systems using traditional ML and deep learning
(DL) techniques.

In 2021, Battineni et al. [14] proposed an ML approach
associated with brain research that provided a more accurate
examination of AD. The system uses longitudinal brain MRI
data to classify patients into two groups: AD or non-AD. Six
distinct supervised classifiers are used to categorize indi-
viduals. With an accuracy (ACC) rate of 97.58 %, the results
demonstrate that the gradient boosting strategy outperforms
the other models.

In 2023, Rallabandi and Seetharaman [15] proposed an
Inception-ResNet wrapper Convolutional Neural Network
(CNN) model by combining information from PET and
structural MRI imaging to detect AD. The DL model en-
hanced the automated imaging diagnostic tool's ACC and

ability to distinguish mild cognitive impairment (MCI) and
AD from healthy controls (HC) using dual imaging
modalities. The proposed model performs as the best classi-
fier, detecting HC, MCI, and AD with accuracies of 95.5 %,
94.1 %, and 95.7 %, respectively.

In 2023, Odusami et al. [16] proposed integrating
neuroimaging information from MRI and PET images to
diagnose early AD. Effective binary categorization of AD is
achieved using a specific 3-in-channel technique that extracts
the most descriptive information from combined PET and
MRI data. According to the testing results, the proposed
model achieved a 73.90 % classification ACC using the AD
Neuroimaging Initiative (ADNI) database. The results were
obtained with a model of Explainable Artificial Intelligence
(XAl).

In 2022, AlSaeed and Omar [17] presented a pre-trained
CNN model based on ResNet50 for AD diagnosis using MR
images. The efficacy of a CNN utilizing standard Softmax,
Support Vector Machine (SVM), and Random Forest (RF) is
then assessed using a range of parameters. The results
demonstrated that the model outperformed previous state-of-
the-art models, with models using the ADNI dataset
exhibiting an ACC range of 85.7 % to 99 %.

In 2022, Amini et al. [18] demonstrated the use of single-
nucleotide polymorphism markers (SNPs) to detect AD using
PET images. Furthermore, SVM, Linear Discriminant Ana-
lysis (LDA), K-Nearest Neighbors (KNN), and CNN
approaches were used to classify AD based on the frequency
of alterations in brain tissue in PET images. The proposed
SNPs appear to have a stronger correlation with quantitative
traits than the ApoE gene SNPs, based on the data. In terms
of the categorization outcome, CNN achieves the highest
ACC at91.1 %.

In 2022, AA et al. [19] proposed a Computer-Aided
Diagnosis (CAD) system that distinguishes between AD and
NC patients based on features extracted from 18FDG-PET
images. To extract these features, several 2D slices were
taken from the FDG-PET images. According to the results,
the proposed CAD system performs admirably compared to
existing approaches and detailed in the literature, achieving
ACC, sensitivity, and SPE of 96 %, 94 %, and 96 %,
respectively.

In 2021, Murugan et al. [20] presented a CNN architecture
for AD categorization. Using the standard Kaggle dataset for
dementia stage categorization, the model was trained and
validated. It can accurately identify brain areas linked to AD
and serves as a powerful decision support tool for doctors,
helping them estimate the severity of AD based on the degree
of dementia. The ACC of the model, evaluated using the
ADNI dataset, was 84.83 %, demonstrating its robustness.

In 2024, Castellano et al. [21] proposed a unimodal and
multimodal framework utilizing amyloid PET scans and 2D
and 3D MRI images. Models that learn representations from
volumetric data are more effective than those using 2D
images. Additionally, compared to single-modality approa-
ches, the model's performance is significantly enhanced by
mixing multiple modalities. Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) predicts areas associated with
AD, highlighting its potential as a tool for understanding the
disease's underlying causes.
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In 2023, Marwa et al. [22] created a DL based pipeline for
AD stage detection and classification. The proposed analysis
method uses 2D T1-weighted MR brain images and a CNN
architecture. The pipeline provides both global and local
categorization (i.e., normal vs. AD vs. MCI), offering a fast
and accurate AD diagnosis. The method further classifies
MCI into three categories: Mild Dementia (MD), Moderate
Dementia (MoD), and Very Mild Dementia (VMD). In 2021,
Massalimova and Varol [23] used structural MRI and diffu-
sion tensor imaging (DTI) data from the OASIS-3 dataset to
classify AD, MCI, and normal cognition using a multi-modal
DL technique. The results show that the agnostic model
achieved an ACC of 0.96 on structural MRI and DTI images.

In 2025, Muksimova et al. [24] developed FusionNet for
AD diagnosis by creatively combining longitudinal imaging
data with multi-modal data. The model provides a robust
framework for early identification and continuous monitoring
of AD by integrating various data sources, including MRI,
PET, and CT scans, and by analyzing changes over time.
FusionNet achieved 94 % ACC, with 92 % precision (PRE)
and 93 % recall (REC) rates.

In 2025, Mousavi et al. [25] proposed deep CNNs for AD
diagnosis and categorization using MRI data. Training was
enhanced through hyperparameter adjustment and genera-
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lization. Overfitting was prevented by using a dynamic
learning rate and early termination. The Xception model
demonstrated high PRE, REC, and F1-score (F1) with an
ACC of 96.89 and values of 0.97.

According to the literature review, the effectiveness of
existing methods is limited by their reliance on the laborious
process of physical feature extraction and classification. Most
of the studies mentioned above use MRI and PET images,
which reduces performance rates. To address these challen-
ges, early-stage AD detection and classification are ne-
cessary. In this research, a novel AD-HOLDER model is
proposed for detecting AD using dual images.

3. PROPOSED METHODOLOGY

In this study, the AD-HOLDER model is proposed for
detecting the AD using MRI and PET images. Features are
extracted using the HOG method, which captures essential
patterns and edges from the images. The Light Gradient
Boosting Machine (LGBM) classifier is then used to classify
images as normal or abnormal. Finally, the abnormal region
is segmented using a GBS model to specifically detect the
region for early diagnosis of AD. The proposed AD-
HOLDER methodology is shown in Fig. 1.
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Fig. 1. The proposed AD-HOLDER methodology.

A. Dataset description

In this study, the OASIS dataset [26] consists of MRI and
PET images from a longitudinal collection of 150 subjects
aged 60 to 96 years. Each individual performed a total of 373
imaging sessions, with at least one year between visits. For
each patient, three or four distinct T1-weighted MRI images
were obtained in a single session. The subjects include both

men and women, and all are right-handed. During this ana-
lysis, 72 research participants were categorized as non-
demented. At the time of their first visits, 64 of the included
subjects — 51 of whom had mild to moderate AD were
classified as demented, and their condition remained that way
for all future scans. A total of fourteen additional participants
were initially diagnosed as non-demented but later developed
mental health issues.
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B. Pre-processing

In this section, MRI and PET images are denoised using
the Deep Image Prior (DIP) filter [27] to improve the quality
of both MRI and PET images for efficient BS classification.
A randomly initialized DIP filter takes random noise as input
and reconstructs the corrupted image. Despite the corruption,
the internal structure of the filter effectively adapts to fit the
clear image. Let x,, denote the corrupted image; DIP proposes
the following optimization:

0* = arg rr}ginllx0 —T B12)||3 ,% = (0%]2) (1)

Here, T represents the DIP filter, z is the random noise input,
X is the recovered (denoised) image, and 6* represents the
optimized filter parameters. This approach does not require
conventional training data pairs. Instead, Stochastic Gradient
Langevin Dynamics (SGLD) is used for posterior inference,
improving denoising performance while avoiding early

stopping.
£=x+¢ee = N(,02) 2

where  x* = [p(z,018) T(z,0)dzdg generates the
required image after a suitable prior p(z, ) is added to the
parameters. To ensure global optimality, Regularization by
Denoising (RED) is applied. This framework allows integra-
tion of any image denoising filter and defines a regularization
term as:

p(x) = %xT(x - f() (3)

where f(-) denotes the denoised version of the input image x.
The gradient of the regularization function becomes:

Vp(x) = x — f (x) (4)

The MRI and PET image restoration process estimates and
removes the noise component from the input image, thereby
preserving the essential structure of the image. A DIP filter
with 64 filters, a 3x 3 kernel size, and ReLU activation
functions was used in the denoising step. The Adam optimizer
was used to optimize the filter for up to 200 epochs at a learning
rate of 0.001, with early stopping implemented after 20
consecutive epochs if validation loss did not improve. This DIP
configuration effectively reduced noise artifacts while
preserving clinically relevant anatomical details, ensuring
high-quality inputs for subsequent feature extraction. Filters
produce a clear image output that reduces noisy distortions
while maintaining the integrity of significant features,
improving downstream tasks such as segmentation and
classification. Data augmentation, including multi-angle
rotation, adding Gaussian noise, improving and reducing
brightness, and horizontal and vertical mirroring, was used to
increase categorization ACC.
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C. Feature extraction

The features are extracted using the HOG method [28],
which captures essential patterns and edges from the images.
HOG was used to extract structural features such as edges,
contours, and textures relevant for distinguishing normal
from abnormal brain tissues. A cell size of 50x50 pixels was
selected to balance local detail capture and computational
efficiency. In medical imaging applications, larger cells
provide improved robustness against intensity variations
while retaining discriminative edge information with similar
parameter settings. Experimental investigations showed that
50x50 cells offer the optimal balance between ACC and
processing cost. We empirically evaluated different cell sizes
(20x20, 30%30, and 50x50) and found that 50x50 yielded the
highest classification ACC with reduced computational cost.
HOGs represented each item as a single value vector by
moving the window detector across the image, rather than
computing a collection of feature vectors for different image
areas. To obtain a HOG feature, the image's scale is modified
while the HOG descriptor is calculated for each location.

To compute the HOG feature, the image's gradients must
be determined. Image gradients are defined as directed
increases in pixel intensity along the x- and y-axes. A pixel's
gradient vector at position (y, x) is described by (5).

of
_9x _|ox|_[fx+1Ly)—flx—1y)
71 =[g] = (07| = [oy 4 - fary -l ©
dy

Here, g, and g,, are the gradients in the x and y directions,
respectively, and f (x,y) is the pixel intensity at coordinates
x and y. The gradient's phase, 8(x,y), and magnitude,
M(x,y), can then be determined using the following

formulas.
M@ﬁ=/%+% (6)

6(x,y) = arctan i—y )

X

Here, g, and g, are the gradients in the x and y directions,
respectively.

D. Classification

The LGBM classifier [29] is used to classify normal and
abnormal cases using MRI and PET images. Ensemble
learning includes techniques such as gradient boosting. Fig. 2
shows the architecture diagram of the HOG-based LGBM
classifier. In the ensemble boosting strategy, models are
constructed sequentially by continuously minimizing the
error of previously trained models. When splitting and
propagating a tree, it is important to select the leaf that
minimizes the loss the most. LGBM uses a histogram-based
method to find the best split candidates. It employs gradient-
based one-side sampling (GOSS) to determine the importance
of image occurrences for training, focusing more on data
samples with larger gradients and less on those with smaller
gradients.
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It is assumed that data with smaller gradients have
previously undergone extensive training, as they contain
fewer errors. GOSS proposes discarding these less-
informative data points and using the remaining ones to
determine information gain when establishing the best splits.
However, this changes the original data distribution and
creates a bias towards samples with larger gradients. To
address this, GOSS retains all samples with large gradients

and randomly samples data with small gradients. When
computing information gain, GOSS applies a constant
multiplier to the weights of data instances with moderate
gradients, as the sample remains skewed toward data with
strong gradients. Additionally, LGBM regulates dataset
sparsity using Exclusive Feature Bundling, which combines
features almost losslessly by removing incompatible aspects
and retaining the most useful components.
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Fig. 2. Architecture diagram of the HOG-based LGBM model.

Table 1 presents the hyperparameter settings of the LGBM
classifier. The proposed AD-HOLDER model performance
was evaluated using ACC, PRE, REC, SPE, and F1. To
optimize performance, the number of estimators was set to
500, the learning rate to 0.05, and the maximum tree depth to
8. The feature fraction was set to 0.8 to reduce feature
correlation and improve generalization. Regularization terms
were incorporated through 4,;, =0.1 and 1,, =0.2 to
control model complexity and minimize overfitting. The
OASIS dataset was split into 75 % for training and 25 % for
testing, with cross-validation performed on the training set to
ensure robustness and prevent overfitting. Cross-validation
confirmed consistent results across folds, indicating strong
generalization and minimal overfitting.

Table 1. Hyperparameter settings of the LGBM classifier.

Hyper parameter Value
Number of estimators 500
Learning rate 0.05
Maximum depth 8
Feature fraction 0.8

A1 (L1 reg) 0.1
A, (L2 reg) 0.2
Cross-validation folds 3and5

E. Segmentation

The abnormal region is segmented using the GBS model
[30] to specifically detect the region for early diagnosis of AD.
GBS is a technique for segmenting images to enhance their
quality by using graphs. Here, E is the set of edges composed
of two vertices (v;,v;), G = (V,E) is an undirected graph,
and w;; is edge weight. Edge weights in GBS indicate the
degree of dissimilarity between two pixels in an image.

Int(D) = max (w(e)), e € MST(D) (8)
Dif (D;,D,) = min (w(e)),
v; €Dy, vj €D,

)

|v;, v Ee,

The term min (w(e)) in (9) denotes the lowest possible
edge weight that unites two separate components, D, and D,,
and is also known as " min (w(e))." It is necessary to use the
least edge weight because employing a quantile, such as the
median, results in an NP-hard computational problem.

True, Dif (D,,D,) > MInt(D,,D,)

False, otherwise (10)

E(D,,D,) =
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The minimum internal difference, MiInt(D,,D,) is defined
as

MInt (D;,D,) = min (Int(D,) + t(D,), Int(D,) + t(D,))
(11)

where (D) is a threshold function that determines the mini-
mum distance two components must have from each other for
a border to exist between them. Fig. 3 shows visual examples

of the segmented output.
iy

)

Fig. 3. Visual examples of segmented regions.
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The greatest edge weight in the MST is indicated by Int (D)
in (12). According to the GBS algorithm, the default threshold
function is specified as

k
T(D) = m

(12)

In the GBS model, k serves as a control-scale parameter that
influences the preference for merging components. Speci-
fically, this threshold determines the minimum dissimilarity
required between two regions for a boundary to be established.
A higher k value promotes the formation of larger and more
coherent segments by allowing greater intra-region variation
before splitting occurs. This technique is particularly important
for accurately describing pathological regions in brain images,
where preserving structural consistency is essential for reliable
disease localization and diagnosis.

4, RESULTS AND DISCUSSION

The experiments, analysis, and use of the following
resources, tools, and settings are described in this section:
a) Setting Used; b) Scikit-learn ML libraries with Python 3.
Additionally, a study of the proposed AD-HOLDER maodel
using a HOG-based LGBM architecture is included. The
OASIS dataset is divided into two subsets for the research:
75 % of the images are used for training, and the remaining
25% are used for testing. The percentage of patients
accurately diagnosed as not having AD is a measure of
diagnostic ACC.

Fig. 4 illustrates the results of the proposed AD-HOLDER
classification pipeline using features. Column 1 contains input
dual images collected from the OASIS dataset. These dual
modalities capture both structural and statistical features of the
brain, which are crucial for early AD identification. Column 2
shows the enhanced images using a DIP filter to improve image
quality. Features are extracted using HOG in column 3.
Structural features are derived from the MRI images,

representing anatomical aspects such as tissue loss. Statistical
features are extracted from the PET images, capturing
metabolic changes typical of Alzheimer’s progression. The
dual features extracted from MRI and PET images are passed
to an LGBM classifier, which categorizes them as normal or
abnormal, as shown in column 4. The abnormal cases are fed
into the next phase for tumor segmentation in column 5.
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Fig. 4. Experimental
methodology.

A. Performance analysis

The effectiveness of the AD-HOLDER approach for
categorizing instances of AD is evaluated using a set of
assessment criteria, including SPE, PRE, REC, ACC, and F1.

SPE = Ntruiviu;false (13)
PRE = PtrueP t‘|r'uj;false (14)
REC= Ptruepiu;]false (12)
AcC = Tot:ltrrlll;.:flzzrl;fples (16)
F1=2 (% (17)
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Here, Niue and Ng, s represent true-positives and true-
negatives, while P.,. and Pg,s. denote false negatives and
false positives for the MRI and CT images.

Table 2 presents the efficiency of the AD-HOLDER model
using the specific parameters ACC, PRE, SPE, REC, and F1.
As shown in Fig. 5, the performance of the classification for
the normal and abnormal classes is illustrated across different
evaluation metrics. The AD-HOLDER model achieved an
ACC of 99.12 %, SPE of 97.79 %, PRE of 97.57 %, REC of
92.60 %, and F1 of 96.55 % in identifying the two types of
Alzheimer’s. This model attains higher ACC in identifying
the normal class than the abnormal class. The overall average
ACC achieved by the proposed AD-HOLDER model is
99.12 % for AD classification based on the collected OASIS
dataset.

Table 2. Efficiency assessment of the proposed AD-HOLDER
model.

Classes ACC  SPE PRE REC F1
Normal 98.96 9842 96.83 89.73 95.38
Abnormal  99.29 97.17 98.32 9548 97.72
100 - Normal = Abnormal
08 L P
96
; 94
é 92
% 90
="
88
86
84
Accuracy Specificity Precision  Recall F1 Score
Classes

Fig. 5. Performance analysis for two-class classification.

The ACC curve (Fig. 6) and loss curve (Fig.7) of the
proposed model over 100 epochs show its performance in
classifying AD cases. The training curve is slightly higher
than the testing curve, indicating effective learning and
a steady improvement in ACC over time. The proposed model
consistently reduces classification errors, demonstrating its
effectiveness. The testing and training curves are nearly
aligned, indicating good generalization without overfitting.
These results suggest that the proposed model is well-trained,
with minimal loss and excellent ACC.

Fig. 8 shows the classification efficiency of the proposed
AD-HOLDER model for AD detection across two stages:
normal and abnormal. The confusion matrix (CM)provides
clinically relevant insights into the model’s performance.
A false positive occurs when a normal case is misclassified
as abnormal, which may lead to unnecessary anxiety. A false
negative (FN) occurs when an abnormal case is misclassified
as normal, causing delays in diagnosis and intervention, po-
tentially accelerating disease progression. Minimizing false
positives is crucial for reducing unnecessary evaluations, but
itis also vital for early and accurate detection of AD. The CM
shows the model's high ACC, correctly classifying 98.96 %
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of normal and 99.29 % of abnormal samples, with low
misclassification rates of 1.04 % and 0.71 %, respectively.
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Fig. 9 illustrates the ROC curve of the proposed AD-
HOLDER framework across Alzheimer’s stages. According
to the area under curve (AUC), each curve represents the
difference between the true positive rates (TPR) and false
positive rates (FPR) for a particular class. The model
performs poorly for the normal class (AUC = 0.98) and best
for the abnormal class (AUC = 0.99), as estimated with TPR
and FPR parameters. The high AUC values indicate strong
discrimination capacity at every level, with only slightly
lower ACC under the collected dataset.
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Fig. 9. ROC curve of the proposed AD-HOLDER classification
model.

Table 3 presents the AD-HOLDER model cross-validation
results using 3-fold and 5-fold methods based on the OASIS
dataset. For 3-fold cross-validation, the dataset was divided
into three subsets, with 70 % used for training and 30 % for
testing in each iteration to ensure every sample was evaluated.
For 5-fold cross-validation, 80 % of the dataset was used for
training and 20 % for testing, providing a robust estimate of
generalization ability. Compared to the fixed 75 %-25 %
split, cross-validation minimizes the risk of selection bias and
yields more reliable performance evaluation. The consistent
results across both 3-fold and 5-fold validation confirm the
stability and robustness of the proposed model.

Table 3. Cross-validation results of the proposed AD-HOLDER

between the proposed model and four ML networks: KNN,
Naive Bayes, Decision Tree, and RF. The performance
assessment was carried out using ACC, SPE, PRE, REC, and
F1 for each ML method. The ACC of the proposed AD-
HOLDER model is 99.14 %, which is higher than that of the
classical ML methods.

Table 4 presents a comparison of different denoising
methods on MRI and PET images. Traditional filters such as
Median, Gaussian, Bilateral, and Non-Local Mean (NLM)
improve the peak signal-to-noise ratio (PSNR) and structural
similarity index (SSIM) values compared to noisy inputs;
however, they often fail to preserve fine structural details and
edges in MRI and PET images. The proposed DIP method
achieves the highest PSNR (31.82 dB) and SSIM (0.917),
indicating superior noise suppression and structural
preservation. These results confirm the effectiveness of DIP
denoising for enhancing MRI and PET images prior to feature
extraction.

Table 4. Quantitative comparison of denoising methods on MRI
and PET images.

Method PSNR [dB] SSIM
Median filter 27.42 0.712
Gaussian filter 28.06 0.815
Bilateral filter 28.75 0.822
NLM filter 29.74 0.858
DIP (proposed) 31.82 0.917

Table 5 presents a comparative assessment of existing
classification networks. The proposed LGBM achieves the
highest ACC (99.12 %) and F1 (96.55 %), demonstrating its
superior performance. Decision trees and Naive Bayes
perform moderately, while KNN performs lowest on all
criteria, indicating its comparatively low efficacy. LGBM
outperforms the other architectures across all metrics,
achieving the highest ACC (99.12 %), SPE (97.79 %), PRE
(97.57 %), REC (92.60 %), and F1 (96.55 %). The LGBM
network achieves better results compared to the other
detection networks.

Table 5. Comparative analysis between traditional ML networks.

model.

3-fold cross-validation 5-fold cross-validation

Techniques ACC SPE PRE REC F1

KNN 90.63 89.39  90.37 85.92 87.93
CNN 93.95 9421 92.49 87.37 90.62
Naive Bayes 92.84 91.83 88.93 86.75 89.51
Decision Tree  93.92 93.72  94.93 88.23 92.73
ViT 96.38 92.63 94.26 90.18 95.29
RF 95.29 9590 95.27 91.35 94.62
LGBM 99.12 97.79 97.57 92.60 96.55

Metric [%] [%]

ACC 98.27 98.59
SPE 96.80 96.14
PRE 96.17 96.73
REC 89.27 90.83
F1 94.68 94.91

B. Comparative analysis

The efficacy of conventional models was evaluated to
verify that the proposed AD-HOLDER model achieves a high
level of ACC. The comparison of ML classifiers was
conducted to assess whether the proposed model obtains
better ACC. The comparative assessment was performed

The comparison was conducted with different DL-based
segmentation networks using several parameters, as shown in
Table 6. The proposed GBS network increases the overall DI
by 26.34 %, 11.39 %, 7.66 %, and 5.38 % compared to U-net,
V-net, Nested V-net, and SegNet, respectively. The proposed
GBS approach outperforms all compared methods, achieving
the highest ACC (99.12 %), DI (90.74 %), and intersection
over union (loU) (82.7 %). Traditional segmentation DL-
networks did not perform as well as the GBS network.
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Table 6. Comparison of traditional segmentation algorithms [%].

Methods ACC DI loU
U-net 91.37 71.82 58.2
V-net 93.75 81.46 69.9
Nested V-net  95.01 84.28 72.9
SegNet 92.37 86.10 73.5
GBS (ours) 99.12 90.74 82.7

Fig. 10 displays the visualization outcomes of the different
segmentation methods. In this evaluation, the GBS was
compared with conventional networks such as V-Net and U-
Net. GBS reduces processing complexity and yields better
segmentation results than current segmentation techniques.

Table 7 presents a comparison of various existing methods
with the proposed AD-HOLDER model using the collected
OASIS dataset.

Battineni (2021) employed a Gradient Boosting Algorithm
(GBA), achieving 97.58 % ACC. Odusami et al. (2023) used
XA, achieving 73.90 % ACC. Hamdi (2022) implemented
a CNN, which attained a slightly lower accuracy (96 %). The
proposed AD-HOLDER model increases the overall ACC by
1.55 %, 25.44 %, and 3.14 % for the GBA, XAl, and CNN,
respectively. The reported p-values from paired t-tests are all
below 0.05, indicating that the performance improvements of
the AD-HOLDER model are statistically significant
compared to existing approaches. The proposed AD-
HOLDER model also increases the F1 by 6.85 %, 8.70 %,

and 3.23 % for the GBA, XAl, and CNN, respectively. Based
on this overall comparative analysis, the proposed AD-
HOLDER model achieves better ACC and statistical
significance.

Ground Truth U-Net V-Net

o
0

Fig. 10. Comparison results of different segmentation techniques.
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Table 7. Comparison of existing models and the proposed AD-HOLDER model.

Authors Methods ACC[%] PRE[%] REC[%] F1[%] p-value
Battineni, G. [14] GBA 97.58 94.89 88.26 90.36 0.041
Odusami, M., etal. [16] XAl 73.90 92.67 85.29 88.82 0.37
Hamdi, M. [19] CNN 96.00 95.92 90.51 93.52 0.42
Proposed model AD-HOLDER model 99.12 97.57 92.60 96.55 0.029
[ Proposed AD-
i HOLDER
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Fig. 11. Real-time clinical setting of the proposed AD-HOLDER model.
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Fig. 11 illustrates the process of detecting AD using the
proposed AD-HOLDER model. A patient first visits
a hospital, where MRI and PET images are collected in real
time for diagnosis. These images are then processed by the
AD-HOLDER model, which analyzes them to predict AD
locations. In the hospital, prediction results assist the doctor
in refining the patient's diagnosis and recommending
a treatment plan. This streamlined process enables real-time
diagnosis, supporting timely and accurate diagnoses. The
approach focuses on specific AD types, such as normal and
abnormal, to simplify diagnosis and improve ACC. However,
because it relies on a specific MRI and PET image dataset,
the proposed model may not be generalizable to broader
clinical settings and requires high-quality imaging for
accurate classification. Moreover, while the proposed AD-
HOLDER model categorizes AD into normal and abnormal
cases, it does not distinguish between multiple disease stages,
limiting its ability to provide a detailed analysis of disease
progression.

5. CONCLUSION

In this study, the AD-HOLDER model is proposed for
detecting AD using MRI and PET images. Initially, the input
images are denoised using a deep image priors filter for noise
removal and image enhancement. Next, features are extracted
using the HOG method, which captures essential patterns and
edges from the images. Then, the LGBM classifier is used to
classify the normal and abnormal cases. Finally, the abnormal
region is segmented using a GBS model to specifically detect
the region for early diagnosis of AD. The proposed AD-
HOLDER model achieves a classi-fication ACC of 99.12 %
through machine learning. The proposed LGBM achieves the
highest ACC (99.12 %) and F1 (96.55 %), indicating its
superior performance. The proposed AD-HOLDER model
increases overall ACC by 1.55 %, 25.44 %, and 3.14 % for
the GBA, XAl, and CAD system, respectively. The proposed
AD-HOLDER model categorizes AD into normal and
abnormal cases, without distinguishing multiple disease
stages, making it insufficient for detailed progression
analysis. Future work will extend the proposed model to
classify AD into multiple stages, allowing a more nuanced
understanding of the disease's progression. Additionally, the
model's diagnostic ACC could be enhanced by incorporating
multi-modal data, such as genetic and clinical information.
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