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Abstract: Alzheimer's disease (AD) is an irreversible brain condition that impairs memory and cognitive processes. However, existing 
Alzheimer detection methods have shown low diagnostic accuracy (ACC) due to limited images and inefficient feature analysis. In this 
paper, a novel AD-HOLDER model is proposed for early recognition of AD using dual imaging methods: magnetic resonance imaging 
(MRI) and positron emission tomography (PET). The proposed AD-HOLDER model presents an integrated framework that uniquely 
combines Deep Image Prior (DIP) denoising, Histogram of Oriented Gradients (HOG) feature extraction, and Light Gradient Boosting 
Machine (LGBM) classification for AD detection from MRI and PET images. The HOG method aims to enhance the spatial and contextual 

representation of neurological patterns by combining structural features from MRI and statistical features from PET images. A classifier 
based on the LGBM processes the dual features to classify images as either normal or abnormal, effectively capturing complex patterns and 
improving classification ACC. The abnormal region is segmented using a graph-based segmentation (GBS) model to accurately detect 
affected areas for accurate detection of AD. The effectiveness of the proposed AD-HOLDER model is evaluated using ACC, specificity 
(SPE), precision (PRE), recall (REC), and F1-score (F1) based on the OASIS dataset. The proposed AD-HOLDER model achieves a 
classification ACC of 99.12 % through machine learning. The proposed AD-HOLDER model increases overall ACC by 1.55 %, 25.44 %, 
and 3.14 % compared to the Gradient Boosting Algorithm (GBA), Explainable Artificial Intelligence (XAI), and Computer-Aided Diagnosis 
(CAD) systems, respectively.  

Keywords: MRI images, PET images, Histogram of Oriented Gradients, machine learning, Light Gradient Boosting Machine, graph-based 
segmentation 

 

1. INTRODUCTION 

In recent years, the percentage of elderly people in the 
human population has grown rapidly. Data from the Turkish 

Statistical Agency indicate that 8.7 % of the population was 
older than 65 in 2018, compared to 4.7 % in 1980 [1]. 

According to the Statistical Agency, by 2080, people over 65 
will make up a quarter of the entire population. The number 

of Alzheimer’s disease (AD) patients has increased due to the 
aging population. According to AD International's (ADI) 

annual report, approximately 50 million people suffer from 
AD worldwide [2], [3]. Furthermore, they predict that this 

number will double every 20 years. As AD is a growing 
problem, developing new and effective methods for early 

diagnosis and treatment is becoming increasingly important 
and popular. Because brain tissue and nerve cells are lost, 

patients experience memory loss and cognitive impairment.  

Globally, by 2050, one in 85 people will have AD or 

another form of dementia [4], [5]. Other than therapies that 

slow disease progression, no alternative medication has been 

identified to stop or cure the disease, despite predictions that 
nursing and treatment expenses will rise dramatically with the 

increasing number of patients [6]. Since AD is a degenerative 

brain disease, nerve cells and tissue gradually disappear as the 

illness progresses [7]. Therefore, an essential component of 

early AD diagnosis is the identification of mild cognitive 

impairment (MCI), which is considered a precursor to AD 

[8]. Magnetic resonance imaging (MRI) and other forms of 

brain imaging, which allow for the visualization of the 

structure and function of the brain, have been used in the 

medical diagnosis of brain disorders [9]. 

To diagnose AD dementia, doctors assess the signs and 

symptoms of AD and use various tests. Physicians may also 

prescribe memory tests, brain imaging studies, or other 

laboratory tests [10]. By excluding other illnesses that might 

cause similar symptoms, these tests help medical pro-

fessionals diagnose patients. MRI can detect brain 

abnormalities associated with MCI [11] and can also help 

predict which individuals with MCI may eventually develop 
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AD. MRI scans can identify irregularities, such as a reduction 

in the size of certain brain regions, primarily affecting the 

parietal and temporal lobes [12]. AD is a neurological con-

dition that causes memory loss and dementia. Accurate and 

early diagnosis remains a significant challenge in medical 

practice, as traditional diagnostic methods often detect AD in 

its later stages. To address these challenges, a novel AD-

HOLDER model has been proposed for detecting AD using 

MRI and positron emission tomography (PET) images. MRI 

and PET imaging offer valuable insights into brain structure 

and function, but manually analyzing these complex datasets 

is time-consuming and prone to errors. Machine learning 

(ML) [13] techniques automate the detection process, leve-

raging large datasets to identify subtle patterns associated 

with AD progression. The main contributions of this research 

are as follows:  

• The novel AD-HOLDER model integrates MRI and 

PET images, leveraging both structural and statistical 

features. The dual-input images improve the ability of 

the model to capture complete neurological patterns 

crucial for early AD diagnosis. 

• A Histograms of Oriented Gradients (HOG) method is 

introduced, combining residual learning and multi-

branch convolution to extract rich spatial-contextual 

features. This approach effectively fuses complemen-

tary features from MRI and PET, improving the quality 

of representations used in classification. 

• A graph-based segmentation (GBS) approach is em-

ployed to precisely segment abnormal regions, impro-

ving detection specificity (SPE) and providing localized 

insights into affected brain areas, as demonstrated by 

significant gains in dice index (DI) compared to tradi-

tional segmentation models. 

The remainder of the paper is organized as follows: The 

literature on AD diagnosis and classification is reviewed in 

Part 2; the proposed approach is presented in Part 3; the 

experimental and assessment findings are shown in Part 4; 

and the study is concluded and future research is discussed in 

Part 5. 

2. LITERATURE REVIEW 

Many categorization strategies have been developed in 

various studies for the diagnosis and detection of AD. This 

section summarizes current research on AD diagnostic and 

detection systems using traditional ML and deep learning 

(DL) techniques. 

In 2021, Battineni et al. [14] proposed an ML approach 

associated with brain research that provided a more accurate 

examination of AD. The system uses longitudinal brain MRI 

data to classify patients into two groups: AD or non-AD. Six 

distinct supervised classifiers are used to categorize indi-

viduals. With an accuracy (ACC) rate of 97.58 %, the results 

demonstrate that the gradient boosting strategy outperforms 

the other models. 

In 2023, Rallabandi and Seetharaman [15] proposed an 

Inception-ResNet wrapper Convolutional Neural Network 

(CNN) model by combining information from PET and 

structural MRI imaging to detect AD. The DL model en-

hanced the automated imaging diagnostic tool's ACC and 

ability to distinguish mild cognitive impairment (MCI) and 

AD from healthy controls (HC) using dual imaging 

modalities. The proposed model performs as the best classi-

fier, detecting HC, MCI, and AD with accuracies of 95.5 %, 

94.1 %, and 95.7 %, respectively. 

In 2023, Odusami et al. [16] proposed integrating 

neuroimaging information from MRI and PET images to 

diagnose early AD. Effective binary categorization of AD is 

achieved using a specific 3-in-channel technique that extracts 

the most descriptive information from combined PET and 

MRI data. According to the testing results, the proposed 

model achieved a 73.90 % classification ACC using the AD 

Neuroimaging Initiative (ADNI) database. The results were 

obtained with a model of Explainable Artificial Intelligence 

(XAI). 

In 2022, AlSaeed and Omar [17] presented a pre-trained 

CNN model based on ResNet50 for AD diagnosis using MR 

images. The efficacy of a CNN utilizing standard Softmax, 

Support Vector Machine (SVM), and Random Forest (RF) is 

then assessed using a range of parameters. The results 

demonstrated that the model outperformed previous state-of-

the-art models, with models using the ADNI dataset 

exhibiting an ACC range of 85.7 % to 99 %. 

In 2022, Amini et al. [18] demonstrated the use of single-

nucleotide polymorphism markers (SNPs) to detect AD using 

PET images. Furthermore, SVM, Linear Discriminant Ana-

lysis (LDA), K-Nearest Neighbors (KNN), and CNN 

approaches were used to classify AD based on the frequency 

of alterations in brain tissue in PET images. The proposed 

SNPs appear to have a stronger correlation with quantitative 

traits than the ApoE gene SNPs, based on the data. In terms 

of the categorization outcome, CNN achieves the highest 

ACC at 91.1 %. 

In 2022, AA et al. [19] proposed a Computer-Aided 

Diagnosis (CAD) system that distinguishes between AD and 

NC patients based on features extracted from 18FDG-PET 

images. To extract these features, several 2D slices were 

taken from the FDG-PET images. According to the results, 

the proposed CAD system performs admirably compared to 

existing approaches and detailed in the literature, achieving 

ACC, sensitivity, and SPE of 96 %, 94 %, and 96 %, 

respectively. 

In 2021, Murugan et al. [20] presented a CNN architecture 

for AD categorization. Using the standard Kaggle dataset for 

dementia stage categorization, the model was trained and 

validated. It can accurately identify brain areas linked to AD 

and serves as a powerful decision support tool for doctors, 

helping them estimate the severity of AD based on the degree 

of dementia. The ACC of the model, evaluated using the 

ADNI dataset, was 84.83 %, demonstrating its robustness. 

In 2024, Castellano et al. [21] proposed a unimodal and 

multimodal framework utilizing amyloid PET scans and 2D 

and 3D MRI images. Models that learn representations from 

volumetric data are more effective than those using 2D 

images. Additionally, compared to single-modality approa-

ches, the model's performance is significantly enhanced by 

mixing multiple modalities. Gradient-weighted Class Acti-

vation Mapping (Grad-CAM) predicts areas associated with 

AD, highlighting its potential as a tool for understanding the 

disease's underlying causes. 
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In 2023, Marwa et al. [22] created a DL based pipeline for 

AD stage detection and classification. The proposed analysis 

method uses 2D T1-weighted MR brain images and a CNN 

architecture. The pipeline provides both global and local 

categorization (i.e., normal vs. AD vs. MCI), offering a fast 

and accurate AD diagnosis. The method further classifies 

MCI into three categories: Mild Dementia (MD), Moderate 

Dementia (MoD), and Very Mild Dementia (VMD). In 2021, 

Massalimova and Varol [23] used structural MRI and diffu-

sion tensor imaging (DTI) data from the OASIS-3 dataset to 
classify AD, MCI, and normal cognition using a multi-modal 

DL technique. The results show that the agnostic model 

achieved an ACC of 0.96 on structural MRI and DTI images. 

In 2025, Muksimova et al. [24] developed FusionNet for 

AD diagnosis by creatively combining longitudinal imaging 

data with multi-modal data. The model provides a robust 

framework for early identification and continuous monitoring 

of AD by integrating various data sources, including MRI, 

PET, and CT scans, and by analyzing changes over time. 

FusionNet achieved 94 % ACC, with 92 % precision (PRE) 

and 93 % recall (REC) rates. 
In 2025, Mousavi et al. [25] proposed deep CNNs for AD 

diagnosis and categorization using MRI data. Training was 

enhanced through hyperparameter adjustment and genera-

lization. Overfitting was prevented by using a dynamic 

learning rate and early termination. The Xception model 

demonstrated high PRE, REC, and F1-score (F1) with an 

ACC of 96.89 and values of 0.97. 

According to the literature review, the effectiveness of 

existing methods is limited by their reliance on the laborious 

process of physical feature extraction and classification. Most 

of the studies mentioned above use MRI and PET images, 

which reduces performance rates. To address these challen-

ges, early-stage AD detection and classification are ne-

cessary. In this research, a novel AD-HOLDER model is 

proposed for detecting AD using dual images. 

3. PROPOSED METHODOLOGY  

In this study, the AD-HOLDER model is proposed for 

detecting the AD using MRI and PET images. Features are 

extracted using the HOG method, which captures essential 

patterns and edges from the images. The Light Gradient 

Boosting Machine (LGBM) classifier is then used to classify 

images as normal or abnormal. Finally, the abnormal region 

is segmented using a GBS model to specifically detect the 

region for early diagnosis of AD. The proposed AD-

HOLDER methodology is shown in Fig. 1. 

Fig. 1.  The proposed AD-HOLDER methodology.

A. Dataset description 

In this study, the OASIS dataset [26] consists of MRI and 

PET images from a longitudinal collection of 150 subjects 

aged 60 to 96 years. Each individual performed a total of 373 

imaging sessions, with at least one year between visits. For 

each patient, three or four distinct T1-weighted MRI images 

were  obtained in a single session.  The subjects include both 

men and women, and all are right-handed. During this ana-

lysis, 72 research participants were categorized as non-

demented. At the time of their first visits, 64 of the included 

subjects – 51 of whom had mild to moderate AD were 

classified as demented, and their condition remained that way 

for all future scans. A total of fourteen additional participants 

were initially diagnosed as non-demented but later developed 

mental health issues.  
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B. Pre-processing 

In this section, MRI and PET images are denoised using 

the Deep Image Prior (DIP) filter [27] to improve the quality 

of both MRI and PET images for efficient BS classification. 

A randomly initialized DIP filter takes random noise as input 

and reconstructs the corrupted image. Despite the corruption, 

the internal structure of the filter effectively adapts to fit the 

clear image. Let 𝑥0 denote the corrupted image; DIP proposes 

the following optimization:  

 

𝜃∗ =  arg min
𝜃

||𝑥0 − 𝑇 (𝜃|𝑧)||2
2  , 𝑥 = (𝜃∗|𝑧) (1) 

 

Here, T represents the DIP filter, z is the random noise input, 

𝑥 is the recovered (denoised) image, and 𝜃∗ represents the 

optimized filter parameters. This approach does not require 

conventional training data pairs. Instead, Stochastic Gradient 

Langevin Dynamics (SGLD) is used for posterior inference, 

improving denoising performance while avoiding early 

stopping. 

 

𝑥 = 𝑥 + 𝜀, 𝜀 =  𝑁(0, 𝜎𝑛
2)  (2) 

 

where 𝑥∗ = ∫ 𝜌(𝑧, 𝜃 |𝑥) 𝑇(𝑧, 𝜃) d𝑧 d𝜃 generates the 

required image after a suitable prior 𝜌(𝑧, 𝜃) is added to the 

parameters. To ensure global optimality, Regularization by 

Denoising (RED) is applied. This framework allows integra-

tion of any image denoising filter and defines a regularization 

term as: 

 

𝜌(𝑥) =
1

2
𝑥𝑇(𝑥 − 𝑓(𝑥))      (3) 

 

where 𝑓(⋅) denotes the denoised version of the input image x. 

The gradient of the regularization function becomes: 

 

𝛻𝜌(𝑥) =  𝑥 −  𝑓 (𝑥) (4) 

 

The MRI and PET image restoration process estimates and 

removes the noise component from the input image, thereby 

preserving the essential structure of the image. A DIP filter 

with 64 filters, a 3 × 3 kernel size, and ReLU activation 

functions was used in the denoising step. The Adam optimizer 

was used to optimize the filter for up to 200 epochs at a learning 

rate of 0.001, with early stopping implemented after 20 

consecutive epochs if validation loss did not improve. This DIP 

configuration effectively reduced noise artifacts while 

preserving clinically relevant anatomical details, ensuring 

high-quality inputs for subsequent feature extraction. Filters 

produce a clear image output that reduces noisy distortions 

while maintaining the integrity of significant features, 

improving downstream tasks such as segmentation and 

classification. Data augmentation, including multi-angle 

rotation, adding Gaussian noise, improving and reducing 

brightness, and horizontal and vertical mirroring, was used to 

increase categorization ACC. 

C. Feature extraction   

The features are extracted using the HOG method [28], 

which captures essential patterns and edges from the images. 

HOG was used to extract structural features such as edges, 

contours, and textures relevant for distinguishing normal 

from abnormal brain tissues. A cell size of 50×50 pixels was 
selected to balance local detail capture and computational 

efficiency. In medical imaging applications, larger cells 

provide improved robustness against intensity variations 

while retaining discriminative edge information with similar 

parameter settings. Experimental investigations showed that 

50×50 cells offer the optimal balance between ACC and 

processing cost. We empirically evaluated different cell sizes 

(20×20, 30×30, and 50×50) and found that 50×50 yielded the 

highest classification ACC with reduced computational cost. 

HOGs represented each item as a single value vector by 

moving the window detector across the image, rather than 

computing a collection of feature vectors for different image 
areas. To obtain a HOG feature, the image's scale is modified 

while the HOG descriptor is calculated for each location. 

To compute the HOG feature, the image's gradients must 

be determined. Image gradients are defined as directed 

increases in pixel intensity along the x- and y-axes. A pixel's 

gradient vector at position (y, x) is described by (5). 
 

𝛻 𝑓(𝑥, 𝑦) = [
𝑔𝑥

𝑔𝑦
] =

[
 
 
 
∂𝑓

∂𝑥
∂𝑓

∂𝑦]
 
 
 
= [

𝑓 (𝑥 + 1, 𝑦) − 𝑓(𝑥 − 1, 𝑦)

𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦 − 1)
]   (5) 

 

Here, 𝑔𝑥 and 𝑔𝑦 are the gradients in the 𝑥 and 𝑦 directions, 

respectively, and 𝑓 (𝑥, 𝑦) is the pixel intensity at coordinates 

𝑥 and 𝑦. The gradient's phase, 𝜃(𝑥, 𝑦), and magnitude, 

𝑀(𝑥, 𝑦), can then be determined using the following 

formulas. 
 

𝑀(𝑥, 𝑦) = √𝑔𝑥
2 + 𝑔𝑦

2      (6) 

 

𝜃(𝑥, 𝑦) = arctan 
𝑔𝑦

𝑔𝑥

    (7) 

 

Here, 𝑔𝑥 and 𝑔𝑦 are the gradients in the 𝑥 and 𝑦 directions, 

respectively. 

D. Classification 

The LGBM classifier [29] is used to classify normal and 

abnormal cases using MRI and PET images. Ensemble 

learning includes techniques such as gradient boosting. Fig. 2 
shows the architecture diagram of the HOG-based LGBM 

classifier. In the ensemble boosting strategy, models are 

constructed sequentially by continuously minimizing the 

error of previously trained models. When splitting and 

propagating a tree, it is important to select the leaf that 

minimizes the loss the most. LGBM uses a histogram-based 

method to find the best split candidates. It employs gradient-

based one-side sampling (GOSS) to determine the importance 

of image occurrences for training, focusing more on data 

samples with larger gradients and less on those with smaller 

gradients. 
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It is assumed that data with smaller gradients have 

previously undergone extensive training, as they contain 

fewer errors. GOSS proposes discarding these less-

informative data points and using the remaining ones to 

determine information gain when establishing the best splits. 

However, this changes the original data distribution and 

creates a bias towards samples with larger gradients. To 

address this, GOSS retains all samples with large gradients 

and randomly samples data with small gradients. When 

computing information gain, GOSS applies a constant 

multiplier to the weights of data instances with moderate 

gradients, as the sample remains skewed toward data with 

strong gradients. Additionally, LGBM regulates dataset 

sparsity using Exclusive Feature Bundling, which combines 

features almost losslessly by removing incompatible aspects 

and retaining the most useful components.  

Fig. 2.  Architecture diagram of the HOG-based LGBM model. 

Table 1 presents the hyperparameter settings of the LGBM 

classifier. The proposed AD-HOLDER model performance 

was evaluated using ACC, PRE, REC, SPE, and F1. To 
optimize performance, the number of estimators was set to 

500, the learning rate to 0.05, and the maximum tree depth to 

8. The feature fraction was set to 0.8 to reduce feature 

correlation and improve generalization. Regularization terms 

were incorporated through 𝜆𝐿1 = 0.1 and 𝜆𝐿2 = 0.2 to 

control model complexity and minimize overfitting. The 

OASIS dataset was split into 75 % for training and 25 % for 

testing, with cross-validation performed on the training set to 

ensure robustness and prevent overfitting. Cross-validation 

confirmed consistent results across folds, indicating strong 

generalization and minimal overfitting.  

Table 1.  Hyperparameter settings of the LGBM classifier. 

Hyper parameter Value 

Number of estimators 500 

Learning rate 0.05 

Maximum depth 8 

Feature fraction 0.8 

𝜆𝐿1(𝐿1 𝑟𝑒𝑔) 0.1 

𝜆𝐿2(𝐿2 𝑟𝑒𝑔) 0.2 

Cross-validation folds 3 and 5 

E. Segmentation 

The abnormal region is segmented using the GBS model 

[30] to specifically detect the region for early diagnosis of AD. 

GBS is a technique for segmenting images to enhance their 

quality by using graphs. Here, 𝐸 is the set of edges composed 

of two vertices (𝑣𝑖 , 𝑣𝑗),  𝐺 = (𝑉,𝐸) is an undirected graph, 

and 𝑤𝑖𝑗 is edge weight. Edge weights in GBS indicate the 

degree of dissimilarity between two pixels in an image.  

 

𝐼𝑛𝑡(𝐷)  =  max (𝑤(𝑒)), 𝑒 ∈ 𝑀𝑆𝑇(𝐷)  (8) 

 

𝐷𝑖𝑓 (𝐷1,𝐷2) = min (𝑤(𝑒)),       

  |𝑣𝑖 , 𝑣𝑗 ∈ 𝑒, 𝑣𝑖 ∈ 𝐷1,    𝑣𝑗 ∈ 𝐷2 
(9) 

 

The term min (𝑤(𝑒)) in (9) denotes the lowest possible 

edge weight that unites two separate components, 𝐷1 and 𝐷2, 

and is also known as " min (𝑤(𝑒))." It is necessary to use the 

least edge weight because employing a quantile, such as the 

median, results in an NP-hard computational problem.  

 

𝐸(𝐷1, 𝐷2) = {
True,𝐷𝑖𝑓(𝐷1,𝐷2) > 𝑀𝐼𝑛𝑡(𝐷1,𝐷2)

False,                        otherwise          
 (10) 
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The minimum internal difference, 𝑀𝐼𝑛𝑡(𝐷1,𝐷2) is defined 

as 
 

𝑀𝐼𝑛𝑡 (𝐷1, 𝐷2) = min  (𝐼𝑛𝑡(𝐷1) + 𝜏(𝐷1), 𝐼𝑛𝑡(𝐷2) + 𝜏(𝐷2)) 
(11) 

 

where 𝜏(𝐷) is a threshold function that determines the mini-

mum distance two components must have from each other for 

a border to exist between them. Fig. 3 shows visual examples 

of the segmented output.  

 

Fig. 3.  Visual examples of segmented regions. 

The greatest edge weight in the MST is indicated by Int (D) 

in (12). According to the GBS algorithm, the default threshold 

function is specified as  

 

𝜏(𝐷) =
𝑘

|𝑑|
     (12) 

 

In the GBS model, 𝑘 serves as a control-scale parameter that 

influences the preference for merging components. Speci-

fically, this threshold determines the minimum dissimilarity 

required between two regions for a boundary to be established. 

A higher 𝑘 value promotes the formation of larger and more 

coherent segments by allowing greater intra-region variation 

before splitting occurs. This technique is particularly important 

for accurately describing pathological regions in brain images, 

where preserving structural consistency is essential for reliable 

disease localization and diagnosis. 

4. RESULTS AND DISCUSSION  

The experiments, analysis, and use of the following 

resources, tools, and settings are described in this section: 

a) Setting Used; b) Scikit-learn ML libraries with Python 3. 

Additionally, a study of the proposed AD-HOLDER model 

using a HOG-based LGBM architecture is included. The 

OASIS dataset is divided into two subsets for the research: 

75 % of the images are used for training, and the remaining 

25 % are used for testing. The percentage of patients 

accurately diagnosed as not having AD is a measure of 

diagnostic ACC.  

Fig. 4 illustrates the results of the proposed AD-HOLDER 

classification pipeline using features. Column 1 contains input 

dual images collected from the OASIS dataset. These dual 

modalities capture both structural and statistical features of the 

brain, which are crucial for early AD identification. Column 2 

shows the enhanced images using a DIP filter to improve image 

quality. Features are extracted using HOG in column 3. 

Structural features are derived from the MRI images, 

representing anatomical aspects such as tissue loss. Statistical 

features are extracted from the PET images, capturing 

metabolic changes typical of Alzheimer’s progression. The 

dual features extracted from MRI and PET images are passed 

to an LGBM classifier, which categorizes them as normal or 

abnormal, as shown in column 4. The abnormal cases are fed 

into the next phase for tumor segmentation in column 5.  

 

Fig. 4.  Experimental results of the proposed AD-HOLDER 
methodology. 

A. Performance analysis 

The effectiveness of the AD-HOLDER approach for 

categorizing instances of AD is evaluated using a set of 

assessment criteria, including SPE, PRE, REC, ACC, and F1. 
 

𝑆𝑃𝐸 =
𝑁true

𝑁true + 𝑃false

 (13) 

 

𝑃𝑅𝐸 =
𝑃true

𝑃true + 𝑃false

 (14) 

 

𝑅𝐸𝐶 =
𝑃true

𝑃true + 𝑁false

 (15) 

 

𝐴𝐶𝐶 = 
𝑃true + 𝑁true

Total no. of samples
 (16) 

 

𝐹1 = 2 (
𝑃𝑅𝐸 ∙ 𝑅𝐸𝐶

𝑃𝑅𝐸 + 𝑅𝐸𝐶
) (17) 
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Here, 𝑁true and 𝑁false represent true-positives and true-

negatives, while 𝑃true  and 𝑃false denote false negatives and 

false positives for the MRI and CT images. 

Table 2 presents the efficiency of the AD-HOLDER model 

using the specific parameters ACC, PRE, SPE, REC, and F1. 

As shown in Fig. 5, the performance of the classification for 

the normal and abnormal classes is illustrated across different 

evaluation metrics. The AD-HOLDER model achieved an 

ACC of 99.12 %, SPE of 97.79 %, PRE of 97.57 %, REC of 
92.60 %, and F1 of 96.55 % in identifying the two types of 

Alzheimer’s. This model attains higher ACC in identifying 

the normal class than the abnormal class. The overall average 

ACC achieved by the proposed AD-HOLDER model is 

99.12 % for AD classification based on the collected OASIS 

dataset.  

Table 2.  Efficiency assessment of the proposed AD-HOLDER 
model. 

Classes ACC SPE  PRE  REC F1  

Normal 98.96 98.42 96.83 89.73 95.38 

Abnormal 99.29 97.17 98.32 95.48 97.72 

 

 

Fig. 5.  Performance analysis for two-class classification. 

The ACC curve (Fig. 6) and loss curve (Fig. 7) of the 

proposed model over 100 epochs show its performance in 

classifying AD cases. The training curve is slightly higher 

than the testing curve, indicating effective learning and 

a steady improvement in ACC over time. The proposed model 

consistently reduces classification errors, demonstrating its 

effectiveness. The testing and training curves are nearly 

aligned, indicating good generalization without overfitting. 

These results suggest that the proposed model is well-trained, 

with minimal loss and excellent ACC. 

Fig. 8 shows the classification efficiency of the proposed 
AD-HOLDER model for AD detection across two stages: 

normal and abnormal. The confusion matrix (CM)provides 

clinically relevant insights into the model’s performance. 

A false positive occurs when a normal case is misclassified 

as abnormal, which may lead to unnecessary anxiety. A false 

negative (FN) occurs when an abnormal case is misclassified 

as normal, causing delays in diagnosis and intervention, po-

tentially accelerating disease progression. Minimizing false 

positives is crucial for reducing unnecessary evaluations, but 

it is also vital for early and accurate detection of AD. The CM 

shows the model's high ACC, correctly classifying 98.96 % 

of normal and 99.29 % of abnormal samples, with low 

misclassification rates of 1.04 % and 0.71 %, respectively.  

 

Fig. 6.  ACC curve for the proposed AD-HOLDER model. 

 

Fig. 7.  Loss curve for the proposed AD-HOLDER model. 

 

Fig. 8.  CM for two-class classification. 
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Fig. 9 illustrates the ROC curve of the proposed AD-

HOLDER framework across Alzheimer’s stages. According 

to the area under curve (AUC), each curve represents the 

difference between the true positive rates (TPR) and false 

positive rates (FPR) for a particular class. The model 

performs poorly for the normal class (AUC = 0.98) and best 

for the abnormal class (AUC = 0.99), as estimated with TPR 

and FPR parameters. The high AUC values indicate strong 

discrimination capacity at every level, with only slightly 

lower ACC under the collected dataset. 

 

Fig. 9.  ROC curve of the proposed AD-HOLDER classification 
model. 

Table 3 presents the AD-HOLDER model cross-validation 

results using 3-fold and 5-fold methods based on the OASIS 

dataset. For 3-fold cross-validation, the dataset was divided 

into three subsets, with 70 % used for training and 30 % for 

testing in each iteration to ensure every sample was evaluated. 
For 5-fold cross-validation, 80 % of the dataset was used for 

training and 20 % for testing, providing a robust estimate of 

generalization ability. Compared to the fixed 75 %-25 % 

split, cross-validation minimizes the risk of selection bias and 

yields more reliable performance evaluation. The consistent 

results across both 3-fold and 5-fold validation confirm the 

stability and robustness of the proposed model. 

Table 3.  Cross-validation results of the proposed AD-HOLDER 
model. 

Metric 
3-fold cross-validation 

[%] 

5-fold cross-validation 

[%] 

ACC 98.27 98.59 

SPE 96.80 96.14 

PRE 96.17 96.73 
REC 89.27 90.83 

F1 94.68 94.91 

B. Comparative analysis 

The efficacy of conventional models was evaluated to 

verify that the proposed AD-HOLDER model achieves a high 
level of ACC. The comparison of ML classifiers was 

conducted to assess whether the proposed model obtains 

better ACC. The comparative assessment was performed 

between the proposed model and four ML networks: KNN, 

Naive Bayes, Decision Tree, and RF. The performance 

assessment was carried out using ACC, SPE, PRE, REC, and 

F1 for each ML method. The ACC of the proposed AD-

HOLDER model is 99.14 %, which is higher than that of the 

classical ML methods. 

Table 4 presents a comparison of different denoising 

methods on MRI and PET images. Traditional filters such as 

Median, Gaussian, Bilateral, and Non-Local Mean (NLM) 

improve the peak signal-to-noise ratio (PSNR) and structural 
similarity index (SSIM) values compared to noisy inputs; 

however, they often fail to preserve fine structural details and 

edges in MRI and PET images. The proposed DIP method 

achieves the highest PSNR (31.82 dB) and SSIM (0.917), 

indicating superior noise suppression and structural 

preservation. These results confirm the effectiveness of DIP 

denoising for enhancing MRI and PET images prior to feature 

extraction. 

Table 4.  Quantitative comparison of denoising methods on MRI 
and PET images. 

Method PSNR [dB] SSIM 

Median filter 27.42 0.712 

Gaussian filter 28.06 0.815 

Bilateral filter 28.75 0.822 

NLM filter  29.74 0.858 

DIP (proposed) 31.82 0.917 

 
Table 5 presents a comparative assessment of existing 

classification networks. The proposed LGBM achieves the 

highest ACC (99.12 %) and F1 (96.55 %), demonstrating its 

superior performance. Decision trees and Naive Bayes 

perform moderately, while KNN performs lowest on all 

criteria, indicating its comparatively low efficacy. LGBM 

outperforms the other architectures across all metrics, 

achieving the highest ACC (99.12 %), SPE (97.79 %), PRE 

(97.57 %), REC (92.60 %), and F1 (96.55 %). The LGBM 

network achieves better results compared to the other 

detection networks. 

Table 5.  Comparative analysis between traditional ML networks.  

Techniques ACC SPE PRE REC F1 

KNN 90.63 89.39 90.37 85.92 87.93 

CNN 93.95 94.21 92.49 87.37 90.62 

Naive Bayes 92.84 91.83 88.93 86.75 89.51 

Decision Tree 93.92 93.72 94.93 88.23 92.73 

ViT 96.38 92.63 94.26 90.18 95.29 

RF  95.29 95.90 95.27 91.35 94.62 

LGBM 99.12 97.79 97.57 92.60 96.55 

 

The comparison was conducted with different DL-based 
segmentation networks using several parameters, as shown in 

Table 6. The proposed GBS network increases the overall DI 

by 26.34 %, 11.39 %, 7.66 %, and 5.38 % compared to U-net, 

V-net, Nested V-net, and SegNet, respectively. The proposed 

GBS approach outperforms all compared methods, achieving 

the highest ACC (99.12 %), DI (90.74 %), and intersection 

over union (IoU) (82.7 %). Traditional segmentation DL-

networks did not perform as well as the GBS network.  
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Table 6.  Comparison of traditional segmentation algorithms [%].  

Methods ACC DI IoU 

U-net 91.37 71.82 58.2 
V-net 93.75 81.46 69.9 

Nested V-net 95.01 84.28 72.9 

SegNet 92.37 86.10 73.5 

GBS (ours) 99.12 90.74 82.7 

 

Fig. 10 displays the visualization outcomes of the different 

segmentation methods.  In this evaluation, the GBS was 

compared with conventional networks such as V-Net and U-

Net. GBS reduces processing complexity and yields better 

segmentation results than current segmentation techniques. 

Table 7 presents a comparison of various existing methods 

with the proposed AD-HOLDER model using the collected 
OASIS dataset.  

Battineni (2021) employed a Gradient Boosting Algorithm 

(GBA), achieving 97.58 % ACC. Odusami et al. (2023) used 

XAI, achieving 73.90 % ACC. Hamdi (2022) implemented 

a CNN, which attained a slightly lower accuracy (96 %). The 

proposed AD-HOLDER model increases the overall ACC by 

1.55 %, 25.44 %, and 3.14 % for the GBA, XAI, and CNN, 

respectively. The reported p-values from paired t-tests are all 

below 0.05, indicating that the performance improvements of 

the AD-HOLDER model are statistically significant 

compared to existing approaches. The proposed AD-

HOLDER model also increases the F1 by 6.85 %, 8.70 %, 

and 3.23 % for the GBA, XAI, and CNN, respectively. Based 

on this overall comparative analysis, the proposed AD-

HOLDER model achieves better ACC and statistical 

significance. 

 

Fig. 10.  Comparison results of different segmentation techniques.  

Table 7.   Comparison of existing models and the proposed AD-HOLDER model. 

Authors Methods ACC [%] PRE [%] REC [%] F1 [%] p-value 

Battineni, G. [14] GBA 97.58 94.89 88.26 90.36 0.041 

Odusami, M., et al. [16] XAI 73.90 92.67 85.29 88.82 0.37 

Hamdi, M. [19] CNN 96.00 95.92 90.51 93.52 0.42 

Proposed model AD-HOLDER model 99.12 97.57 92.60 96.55 0.029 

 

 

 

Fig. 11.  Real-time clinical setting of the proposed AD-HOLDER model.  
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Fig. 11 illustrates the process of detecting AD using the 

proposed AD-HOLDER model. A patient first visits 

a hospital, where MRI and PET images are collected in real 

time for diagnosis. These images are then processed by the 

AD-HOLDER model, which analyzes them to predict AD 

locations. In the hospital, prediction results assist the doctor 

in refining the patient's diagnosis and recommending 

a treatment plan. This streamlined process enables real-time 

diagnosis, supporting timely and accurate diagnoses. The 

approach focuses on specific AD types, such as normal and 
abnormal, to simplify diagnosis and improve ACC. However, 

because it relies on a specific MRI and PET image dataset, 

the proposed model may not be generalizable to broader 

clinical settings and requires high-quality imaging for 

accurate classification. Moreover, while the proposed AD-

HOLDER model categorizes AD into normal and abnormal 

cases, it does not distinguish between multiple disease stages, 

limiting its ability to provide a detailed analysis of disease 

progression. 

5. CONCLUSION  

In this study, the AD-HOLDER model is proposed for 

detecting AD using MRI and PET images. Initially, the input 

images are denoised using a deep image priors filter for noise 

removal and image enhancement. Next, features are extracted 

using the HOG method, which captures essential patterns and 

edges from the images. Then, the LGBM classifier is used to 

classify the normal and abnormal cases. Finally, the abnormal 

region is segmented using a GBS model to specifically detect 

the region for early diagnosis of AD. The proposed AD-

HOLDER model achieves a classi-fication ACC of 99.12 % 

through machine learning. The proposed LGBM achieves the 

highest ACC (99.12 %) and F1 (96.55 %), indicating its 
superior performance. The proposed AD-HOLDER model 

increases overall ACC by 1.55 %, 25.44 %, and 3.14 % for 

the GBA, XAI, and CAD system, respectively. The proposed 

AD-HOLDER model categorizes AD into normal and 

abnormal cases, without distinguishing multiple disease 

stages, making it insufficient for detailed progression 

analysis. Future work will extend the proposed model to 

classify AD into multiple stages, allowing a more nuanced 

understanding of the disease's progression. Additionally, the 

model's diagnostic ACC could be enhanced by incorporating 

multi-modal data, such as genetic and clinical information. 
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