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Abstract: Photoplethysmography (PPG) is well suited for wearable health applications, but has a lower frequency spectrum than
electrocardiography (ECG) and is more affected by motion artifacts. In this study, ten signal filters from three categories were investigated
in combination with different sampling rates to evaluate their effects on PPG signal quality. A correlation and accuracy analysis was
performed comparing the interbeat intervals detected in PPG and ECG using Pearson correlation and absolute error. The results showed that
specific filters with sampling rates as low as 40 Hz perform well in detecting autonomic neuropathy. The results highlight the potential of
PPG with optimized filters and sampling rates for clinical screening of the autonomic nervous system (ANS) in wearable health monitoring.
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1. INTRODUCTION

The autonomic nervous system (ANS) controls the non-
striated muscles and glands and can be divided into three
areas: sympathetic  (thoracolumbar), parasympathetic
(craniosacral), and enteric nervous system. The cardiac
autonomic plexus is supplied by the cardiac nerves, which
originate from the cervical and upper thoracic sympathetic
ganglia (sympathetic) and the cardiac branches of the vagus
nerves (parasympathetic). The most widely used examination
for testing cardiac vagal tone is the variation of interbeat
intervals, i.e. the variation of the R-R interval (RRIV) [1]. The
RRIV can be reliably derived from electrocardiography
(ECG) data, extracting the R peaks from one QRS complex
to the next R peak intervals (RRIs) with millisecond accuracy.
The RRI is not a fixed value, and the normal sinus arrhythmia
is the heart rate (HR) variability that occurs with respiration.
The phenomenon is significant in healthy people and occurs
mainly in the young group. Sinus arrhythmia usually becomes

DOI: 10.2478/msr-2025-0024

less pronounced with increasing age and may be significantly
impaired or abolished if the vagal innervation of the heart is
impaired.

The HR response to deep breathing shows maximum
variability at a breathing rate of about 5 to 6 per minute [2].
Therefore, RRIV can be derived both at rest and during deep
breathing to assess the ANS. In most autonomic system
dysfunctions, the HR tends to be consistent at rest and during
deep breathing. The lack of normal variability results in an
inability to adapt to changes and low RRIV values. In
contrast, in some patients with autonomic dysfunction, RRI
increases irregularity and results in a significantly elevated
RRIV above the normal range. However, to investigate these
phenomena, routine RRIV screening requires experienced
technicians to attach ECG electrodes to the limbs and
maintain full participation. This makes screening for
autonomic system dysfunction a problem in daily life.

Photoplethysmography (PPG) is a simple, safe, common
and convenient method of recording blood oxygen saturation
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and arterial pulsation through the skin. It has also been
attempted to detect different physiological characteristics and
disease syndromes such as autonomic nervous function [3],
respiratory rate estimation [4], metabolic syndromes [5],
features of arteriovenous fistula stenosis in hemodialysis
patients [6], etc. PPG sensors use light-based techniques to
detect blood flow rates controlled by cardiac pumping action.
The systolic peaks in the blood vessels correlate closely with
the R waves in the ECG through a consistent delay, the pulse
transit time [7]. By measuring the interval between one
systolic peak and the next systolic peak of the PPG (SSI), we
were able to infer the RRIV from the variation of SSls
(SSIV). In other words, we tried to simulate the electrical
signals of the heart by arterial hemodynamic changes.
Therefore, the calculation of RRIV requires highly accurate
measurement of the maximum and minimum values of RRIs.
It remains to be determined whether SSI is effective in
calculating pulse rate variation, as few clinical studies have
used SSIV to detect autonomic neuropathy.

To assess cardiac autonomic function, RRIV derived from
the interbeat intervals of ECG is the most important feature
accepted by neurologists. Due to the interference of low-
frequency noise caused by motion artifacts [8], the temporal
positions of the reference points determined by different
filters at different sampling rates can be significantly altered
and affect the calculation of the interbeat variations, i.e. the
RRIV or even the SSIV. The more accurately the reference
points (such as the peaks of the PPG systole, the PPG first
derivative, and the PPG second derivative waves [9]) on the
PPG waveforms mark the interbeat intervals, the more
effectively the variation can be determined by careful signal
analysis [8]. Thus, it can be seen that there are two key
factors, namely the filter and the available sampling rate, to
obtain accurate PPG derived features. However, prior to our
work, these two factors have not been further investigated or
analyzed, especially at different sampling rates below
1000 Hz.

In this study, a number of filters belonging to the infinite
impulse response (IIR), finite impulse response (FIR), and
wavelet transform (WT) types were selected to process the
PPG signals after signal pre-processing and to localize the
most appropriate PPG systolic peaks in the cardiac cycles.
The Butterworth [10], Bessel [11], Chebyshev [12] and
Elliptic [13] filters were selected for the IIR filters, and the
Savitzky-Golay [14], Average [15], and periodic moving
average [16] filters were selected for the FIR filters. Since the
WT includes the discrete wavelet transform (DWT) and the
continuous wavelet transform (CWT), the selected WT filters
with different mother wavelets such as Daubechies [17],
Coiflet [18], and Morlet [19] were considered in the study. As
a result, ten specific filters are used to verify whether
wearable devices with PPG are a potential surrogate for
autonomic dysfunction detection.

Due to the limited resources of wearable devices in terms
of communication and computer hardware/software,
sampling rates in signal acquisition can be much lower than
similar procedures performed in laboratories or clinical
examinations. For example, the PPG-powered sampling rate
of wearable devices is reported as 200 Hz in [20], 100 Hz in
[3], and 64 Hz in [21], which is much lower than the PPG

sampling rate of the PPG performed in our study. Recently,
there is another viable PPG application in smartphones, the
video-based PPG [22]. Its sampling rate is even downscaled
to 25 Hz. In this study, we will simultaneously investigate the
correlation and accuracy of the above filters under the
influence of relatively low sampling rates.

In this article, Section 2 describes the methods for
preparing the experimental and test environment, installing
the test instruments, and signal processing to obtain the
results of RRIV and SSIV. In Section 3, the results of PPG-
based cardiac autonomic function screening are compared
with the ECG results, and some discussions are made in
Section 4. Finally, conclusions are drawn in Section 5.

2. LITERATURE REVIEW

While previous studies focused on removing motion
artifacts from ECG or PPG signals individually, this study
compares the effects of different filtering methods and
sampling rates on PPG signals, using the ECG signal as a
ground truth reference. In [23], the Mexican hat WT is used
to decompose the largest difference in the green channel
between consecutive frames. The authors also introduce a
recursive baseline-wander removal algorithm with an
adaptive window that effectively eliminates baseline drift.
Using this method, a mean absolute error (MAE) of 3.58 was
obtained for HR detection. In [24], three different sampling
methods for the detection of PPG signals are investigated:
aggressive duty cycling (ADC), compressive sampling, and
event-driven sampling. Of these, ADC offers the best balance
between accuracy and simplicity, although it consumes more
power than the other two methods. The study found that 82 %
of PPG sensors with a power consumption of less than
500 uW use ADC for sampling. Event-driven sampling,
which minimizes power consumption by activating the LED
only when the next peak in the signal is predicted, is
particularly suitable for portable applications with limited
power supply. In [25], a Hampel filter is used in conjunction
with a fourth-order Butterworth bandpass filter to effectively
remove noise from PPG signals. The study evaluates the
performance of their filtering approach by comparing it with
the results of eight recent studies. The method achieved an
MAE of 2.41 for systolic blood pressure prediction and 1.31
for diastolic blood pressure prediction, demonstrating
remarkable accuracy in blood pressure estimation while
effectively suppressing noise. This comparison highlights the
robustness and effectiveness of their proposed filtering
technique in the context of advanced PPG signal processing.
rPPG-Toolbox is provided by [26], which uses Butterworth
bandpass filter along with OpenFace [27] in practice, which
can analyze head motion in a real video. They have tested
their method with different datasets that have different
sampling rates. The result shows that the PURE dataset with
the plane-orthogonal-to-skin (POS) method has the better
performance with an MAE of 3.67. In [28], the authors
introduced a multi-filter multi-channel (MFMC) method to
process PPG signals. Using this approach, they achieved an
MAE of 2.13 mmHg for diastolic blood pressure detection
and 3.52 mmHg for systolic blood pressure detection. They
applied Savgol, Chebyshev I, and bandpass filter to both the
ECG and the PPG.

201



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 4, 200-211

In [29], the authors investigated the effects of reducing the
sample rate on pulse rate variability (PRV). In particular, they
investigated how reducing the sampling rate from 1000 Hz to
50 Hz affected the accuracy and reliability of PRV
measurements. The study focused on five different reference
points, including line-medium and medium interpolate
points, as these were crucial for analyzing the characteristics
of the signal.

The results showed that among the five reference points
studied, the line-medium and medium interpolate points were
particularly effective. These points enabled a significant
reduction in the sampling rate of the PPG signal recorded
from both the finger and the forehead to 50 Hz. Remarkably,
this reduction did not lead to significant changes in the PRV
indices compared to those obtained at a higher sampling rate
of 1000 Hz.

This indicates that under the conditions investigated, it is
possible to use a lower sampling rate without compromising
the quality of the PRV analysis. The ability to maintain the
accuracy of PRV measurements with a reduced sampling rate
could lead to more efficient data acquisition and processing
in practical applications where lower sampling rates may be
desirable due to hardware or data storage limitations.

In [30], the authors investigated the effects of sampling rate
on heart rate variability (HRV) and PRV by simultaneously
collecting PPG and ECG data from 54 participants. Their
results showed that PRV and HRV have different
characteristics. PRV offers certain advantages as it can
capture ANS activity in everyday situations, whereas ECG
typically requires a clinical setting. In addition, PRV
parameters can be accurately assessed at lower sampling rates
compared to ECG parameters. A sampling rate of 100 Hz is
recommended for robust measurements, although a rate of
40 Hz can also provide satisfactory results.

3. SUBJECT & METHODS

The experiment in this study was conducted at the National
Taiwan University Hospital (NTUH), Yunlin Branch. A total
of 251 patients were recruited for the experiment, with IRB
approval (No. 20180613RINA) issued by the Ethics Review
Board of NTUH. The age distribution of patients ranged from
twenty to sixty-nine years. The exclusion criteria apply to
patients presenting with the following symptoms:

e atrial fibrillation,

e cardiac arrhythmia,

o frequent premature ventricular contraction (PVC),

occurring several times in one minute, and

e severe involuntary movements, including tremors,

which would cause significant motion artifacts in the
recorded signals.

After applying the exclusion criteria, there were three
patients with atrial fibrillation, one with cardiac arrhythmia,
two with frequent PVCs, and one with tremors. Finally, seven
patients were excluded from the experiment, and the total
number of patients included was 244, including 115 men and
129 women. The exclusion rate was 2.78 %.

The experiment was divided into two test phases: a resting
phase and a deep breathing phase. During the experiment, all
participants were asked to sit comfortably on a chair with
their hands flat on the table. In the resting phase, participants

were asked to sit on the chair, relax, and take normal breaths.
In the deep breathing phase, participants were asked to take
six deep breaths within one minute, alternating between
5 seconds inhalation and 5 seconds exhalation. To record
each phase, the ECG and PPG signals (see Fig.2) were
recorded simultaneously and continuously over a period of
four minutes. We used three electrodes to record the ECG
signals based on standard Lead Il. Two ECG electrodes are
attached to the front of the left (positive) and right wrist
(negative), and one is attached to the top of the left leg (earth),
as shown in Fig. 1. A reflective photosensor is placed over
the fingernail of the left index finger to capture PPG signals.

Rightarm | . | Leftarm

Negatlv% CT\ ) .\iosmve

5,
| %

Fig. 1. The placement of the ECG electrodes with PowerLab,
a physiological signal acquisition instruments from ADInstruments
Inc. [30].

Test environment and instruments

In this study, Fig.1 shows the environment and the
instruments for signal acquisition. The physiological signal
acquisition instruments, the PowerLab data acquisition
device from ADInstruments [39], were used to acquire the
ECG and PPG signals. This device is engineered for precise,
consistent and reliable data acquisition and is connected to
computers via USB links. With the support of the LabChart
software package from ADlInstruments [31], it can
immediately display the acquired signals and store them as
files for later analysis and reading. In this study, both signal
sampling rates for ECG and PPG were set to 1000 Hz in the
PowerLab system. It is worth noting that the resulting PPG
signal with a 1000 Hz sampling rate is treated as the original
signal to generate a downscaled PPG signal with a lower
sampling rate. A lower sampling rate signal generation
scheme is described below to obtain the lower sampling rates
for the later experimental procedure in this study.

Down-sampling procedure for generating lower PPG
sampling rates

To simulate lower sampling rates from the original PPG
signal (sampled at 1 kHz), we applied a uniform down-
sampling method with a parameterized sampling period (per)
defined in milliseconds.
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Let:
PPGraw[n] be the raw PPG signal sampled at 1 kHz, where
n is the signal length;
per be the sampling period in ms (e.g., per = 10 — 100 Hz);
S[i] be the down-sampled PPG signal.

The pseudocode below describes the process:

Inputs:
PPGraw: raw PPG signal sampled at 1 kHz
per: sampling period in milliseconds
Output:
S: down-sampled PPG signal

S S S S e

J

S

for i in range(0, j * (1000 // per)):
S.append (PPGraw([i * per])

240 # Number of seconds (4 minutes)
[]

This procedure was implemented in Python, using basic
list indexing for down-sampling. The parameter per directly
determines the sampling rate (e.g., per =1 ms = 1000 Hz,
per =10 ms = 100 Hz, etc.).

In this study, the following sampling periods were used to
generate lower-rate signals:

Sampling_periods = {2, 4, 5, 8, 10, 20, 25, 40, 50},
corresponding to frequencies between 20 Hz and 500 Hz. The
lowest assumed sampling rate is 20 Hz for the application of
video-based PPG [22].

Physiological signal processing

After the acquisition of ECG and PPG signals, the signal
processing flow, shown in Fig. 3, consists of four stages,
namely preprocessing, feature finding, signal decomposition
and feature calculation, and performance measurement.
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Fig. 2. Examples of ECG and PPG signals.

It should be noted that PPG signals are more susceptible to
interference from baseline wander noise than ECG signals
[8]. As in Stage 1 of Fig. 3, a baseline wander noise removal
algorithm is developed to remove the baseline wander noise
that was present in the raw ECG and PPG signals during
preprocessing. To find the features of the signals after
removing the baseline wander noise, the Pan-Tomkins
algorithm was applied to localize the R peaks (marked as R;
in Fig. 2) in the cardiac cycles of the denoised ECG (Stage 2).
At the same time, different filters were used to remove the
PPG signals to localize the S peaks (marked as S; in Fig. 2) in
each cardiac cycle (Stage 2). Then, the two time domain
features RRIi and SSli (see Fig. 2) are calculated for ECG and
PPG to determine the temporal length of each cardiac cycle

in Stage 3. Finally, performance measurements of the
variation of interbeat intervals and the associated HRV
parameters were performed. The acquired parameters are the
RRIV and HRV of the ECG signal at 1000 Hz sampling rate,
and the SSIV and associated HRV of the PPG signal at
different down-sampling rates in Stage 4.

ECG raw signals PPG raw signals

Stage 1: Preprocessing
Baseline Wander Removal algorithm

¥

|Stage 2: Signal Peak Detection |

Locating R peaks after signal
processed by
Pan-Tompkins algorithm

Locating S peaks after signal
processed by Filters at
different Sampling Rates

Stage 3: Decomposition and Feature Computation
Computation of
PPG-based Interbeat Intervals,
Interbeat Variation

Computation of
ECG-based Interbeat Intervals,
Interbeat Variation

Stage 4: Performance Measurement
1) Correlation & Accuracy Analyses of Inter-beat Intervals,
2) Evaluation of Interbeat Variation, SDNN, and NNS50, and
3) Verification for Healthcare Screening.

Fig. 3. Signal processing flow chart for ECG and PPG.

Stage 1: pre-processing

To remove the raw baseline wander in the ECG and PPG
data, a baseline wander removal scheme based on the work of
Chazal et al. [32] was considered. In two steps, the scheme
uses a median filter [33] to filter out the core signals of ECG
and PPG from the raw data. Chazal’s method generates a
baseline drift signal and uses it to offset the baseline wander
with the raw data. In this way, a set of clear ECG or PPG
signals is generated. The scheme is briefly described below.

Baseline wander removal by two-stage median filtering

To remove the baseline wander from the ECG and PPG
signals, we applied a two-stage median filtering process as
follows:

e Step 1: A median filter is applied to the raw signal using

a shorter window size (1%_WinSize), resulting in the first
filtered output.
e Step 2: A second median filter is then applied to the
Step 1 output using a larger window size (2™ _WinSize).

e Step 3: The final baseline-corrected signal is obtained
by subtracting the Step 2 output from the original raw
signal.

Due to the different characteristics of ECG and PPG
signals, different window sizes are used:

e For ECG:

1*_ WinSize corresponds to 5 Hz (QRS wave)
2" WinSize corresponds to 1.67 Hz (P and T waves)

e For PPG:

1%t WinSize corresponds to 1.6 Hz (systolic peak, simi-
lar frequency to P and T in ECG, in the experiment
1.6 Hz has the best performance)

2" WinSize corresponds to 0.5 Hz (diastolic peak)
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This approach effectively suppresses the low-frequency
drift while preserving the main features of the signal. These
values were initially taken from the literature [40], [41] and
then tested and fine-tuned to achieve the best results.

Stage 2: signal peak detection

For the detection of R peaks, a real-time QRS detection
algorithm proposed by Pan and Tompkins is used to
determine the temporal locations of all R peaks [34]. Since
the Pan-Tompkins method is very efficient and powerful in
detecting R peaks in baseline wander-free ECG signals, no
further signal processing is required before detecting R peaks.
Fig. 4 illustrates the process of extracting QRS from raw
signals. After squaring the signal, all negative values were
eliminated. Based on the above results for detecting the
temporal location of each R peak, the interval of each pair of
neighboring R peaks (i.e., RRI) can be determined, and thus,
the RRIV variation (i.e., RRIV) can also be obtained.
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Fig. 4. The process of extracting QRS from raw signals.

Since PPG signals are susceptible to motion artifacts, it is
conceivable that PPG signals require careful signal
processing to accurately detect PPG S peaks. In Table 1, four
classical filters (Butterworth, Bessel, Chebyshev, and
Elliptic), three smoothing filters (Savizky-Golay, average,
and periodic moving average), and three wavelet-based
filtering methods (Daubechies db6 (DWT), Coiflet C3
(DWT), and Morlet (CWT)) are tried to find the most

appropriate PPG S peak for each cardiac cycle. The classical
filters (FO1 to FO4) have some outstanding features in signal
filtering, but disadvantages in roll-off rate, pass/stopband
ripple, and phase response [10]-[13]. Due to their low
implementation complexity and low latency, they were used
to determine the PPG S peak in this study. Then, the three
smoothing filters (F11~F13) are considered since the PPG
signal is not similar to the embedded ECG with the sharp
QRS complex. These filters can provide different
experimental aspects in detecting the PPG S peak. The
wavelet-based methods (F21 to F23) include discrete and
continuous wavelet transforms. For the DWT, Daubechies
db6 and Coiflet C3 were used to perform a test for PPG signal
processing, and Morlet was chosen for the CWT. Since these
WT techniques have been used for ECG signal processing
[35], it seems interesting to apply these methods to the PPG
for investigation. The parameter settings required for the
above filters are given in the description in Table 1.

To detect S peaks in the filtered PPG signal, a Python-
coded peak search program was developed using a specific
threshold value. Fig. 5 shows the results of the search for the
ECG and PPG peaks.

0.4

03 =

02

0.1

0.2

ECG Amplitude (mV)

03
0015

0.005

PPG Amplitude (mV)

Q01

Q015

25 3 as
Q02 =10
lI'ime (sec.)

Fig. 5. Detected ECG and PPG peaks.

Table 1. A descriptive listing of PPG signal processing methods.

No.  Filter name Description

FO1  Butterworth

FO2  Bessel
FO3  Chebyshev
FO4  Elliptic

The passband frequency is from 1 Hz to 5 Hz, and the filter order is 2.

F11  Savitzky-Golay
F12  Average
F13  Periodic moving

The polynomial order is 3, and the window size 401.
The passband frequency is from 1 Hz to 5 Hz.
After normalizing each cardiac cycle with the same number of sampled signals, the ith sampled signals of

each of the 5 cycles are averaged, where 1 <i < the normalized cycle length.

F21  Daubechies
F22  Coiflet C3
F23  Morlet (CWT)

Use the inverse DWT of Daubechies db6 and Coiflet C3 to reconstruct the selected band from 1 Hz to 5 Hz.

Apply the inverse WT of Morlet to reconstruct the selected band from 1 Hz to 5 Hz.
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Stage 3: decomposition and feature calculation

After peak detection processing, as shown in Fig. 5, the
continuous cardiac cycles in the ECG or PPG are decomposed
and stored in an array P(*), which records a series of peaks.
Then the interval between each pair of neighboring peaks,
i.e., an RRI or SSI, can be calculated using (1).

Inter_Beat_Interval; = P(i + 1) — P(i) 1)

where i € Z*, the set of positive integers.

Based on (1), let IB_Interval be the set of all
Inter_Beat_Interval;, e.g., {Inter_Beat Interval; | i ¢ Z*}.
In this study, the method for calculating the interbeat
variation in the ECG or PPG (i.e., the RRIV or SSIV) is
shown in (2).

max (IB_Interval) — min (IB_Interval) 100 %
* 0

)

Variation =
mean (IB_Interval)

where the functions max (), min (), and mean () generate the
maximum, minimum, and mean values for IB_Interval.

Stage 4: performance measurement

To evaluate the effectiveness of SSI as an alternative to
RRI, we used correlation and accuracy as performance
metrics in this study. First, the correlation coefficients could
be used to examine the trend of positive, negative, or no
correlation between two discrete data sets. Let {ry,75,...,7,}
and {s;,s,,...,s,} be two data sets consisting of RRIs and
SSls, respectively. To measure the strength of a linear
relationship between ECG and PPG parameters based on RRI
and SSI, the Pearson correlation coefficient Rys 3) is used.
Through the correlation analysis, we can examine the
closeness of the RRIs to the different SSIs obtained by the
aforementioned preprocessing schemes (Table 1).

_ nynsi—XLnXs
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Second, we used the average absolute errors to evaluate the
accuracy of the different SSIs from the PPG compared to the
RRI from the ECG. After obtaining the RRI; and SSI; sets, i.e.,
{ri,75,..., 1} and {s4, s,,...,s,}, the average absolute error
(Abserr) was calculated. For the performance evaluation of the
interbeat variation, we evaluate the accuracy of the different
SSIVs with respect to the RRIV using Absgyr.

To investigate the applicability of the PPG-based solution
for telemedicine and clinical applications, we include two
HRYV time domain parameters, SDNN and NN50, in addition
to the interbeat interval and interbeat variation in the PPG in
the accuracy evaluation [3]. In [36], the definition of SDNN
is the standard deviation of all normal-to-normal intervals,
and NN50 is the number of pairs of adjacent NN intervals that
differ by more than 50 ms in the entire recording. In our
study, the inclusion of SDNN and NN50 was essential for
evaluating the validity of PPG-based detection of cardiac
autonomic function.

Autonomic nervous system

To examine the use of PPG in screening for ANS disorders,
the following four aspects of the examination are highlighted.
The ANS regulates vital involuntary functions such as heart
rate, blood pressure, and respiration through its sympathetic
and parasympathetic branches. ANS dysfunction is
associated with conditions such as diabetic neuropathy,
cardiovascular disease, and postural orthostatic tachycardia
syndrome (POTS). Due to its close connection to
cardiovascular regulation, the ANS can be effectively
monitored by non-invasive methods such as PPG:

o the assessment parameters used in ANS evaluation, such
as interbeat interval (e.g., RRI, SSI), the interbeat
variation (e.g., RRIV, SSIV), SDNN, and NN50;

o the filters used in PPG signal processing (see Table 1);

o the sampling rates used in PPG signal acquisition (e.g.,
1000 Hz, 500 Hz, ..., 20 Hz);

o The effectiveness evaluation index includes the Pearson
correlation and the average absolute error between the
ECG and PPG parameters.

In this study, the RRI generated by the Pan-Tompkins
algorithm is used as a criterion for comparison with the SSls
generated by the filters with different down-scaled sampling
rates. To calculate a series of intervals in the ECG and PPG,
(1) is applied to determine the RRI and different SSls. Then,
(2) is required to obtain the interbeat variation for the ECG
and PPG series. Then, SDNN and NN50 were determined by
RRI and the different SSls to evaluate the validity of PPG-
based detection of the cardiac autonomic function. To
calculate the correlation coefficients, see (3) to evaluate the
accuracy of using PPG as a substitute for ECG.

Since the physiological signals of the participants are
recorded for four minutes in the resting phase and the deep
breathing phase, each 4-minute signal unit is divided into the
first and last 30-second signal units and three middle 1-
minute signal units for analysis. For the sake of signal
stability, the three units in the middle were used to calculate
the evaluation parameters.

4. RESULTS

This section is divided into three subsections to provide a
comprehensive overview of the main results obtained from
the comparative analysis of different filtering methods and
sampling rates applied to PPG signals.

A. Correlation and accuracy analysis of interbeat intervals
in PPGs

To assess the validity of the interbeat interval in the PPG
using the ECG evaluation criteria, Table 2 and Table 3 show
the correlation coefficient and absolute error rate between the
RRI at 1000 Hz and an SSI at different sampling rates.

Fig. 6 shows that the IIR filter bank performs better than
the other filter banks in both the resting phase and the deep
breathing phase. The four IIR filters are very similar in both
phases, with the exception that Butterworth (FO1) is slightly
better than the other three. At the same time, each correlation
coefficient (CC) value in the four IIR filters of the two phases
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decreases linearly and slowly when the different sampling
rates are examined. In Fig. 6, we can see that the IIR filter
bank has very high CC values in both phases even at low
sampling rates. This shows that the filter bank is suitable for
wearables in healthcare.

Correlation Coefficients - Resting Phase

96.9 957 94.7 89.1 86.2
96.5 953 944 88.1 858
96.7 956 94.6 88.7

96.7 956 94.6 88.7
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84.1 : 8.1
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For the other filters, F11 performs best in both phases at
different sampling rates in the FIR filter bank, and its CC
value is close to the CC values of the IIR filters. F23
outperforms the other two filters in the WT filter bank and its
effectiveness is close to the IIR and F11 filters.

Correlation Coefficients - Breathing Phase
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Fig. 6. HeatMap of correlation coefficients between the RRI at 1 kHz and the SSls at various rates in resting (a), breathing phase (b).

Table 2. Average absolute errors between the RRIV/ECG SDNN/ECG, NN50 at 1000 Hz and the SSIV/PPG SDNN/PPG NN50 at different

sampling rates.

Filter/ Phase  Parameter 1000 500 250 200 125 100 50 40 25 20

Sample rates [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz] [Hz]
FO1 R SSIV [%] 0.6 0.6 1.2 1.3 1.3 14 1.8 2.2 34 4.4
F11 R SSIV [%] 14 15 2.1 2.2 2.3 2.3 2.8 3 4.1 7.3
F23 R SSIV [%] 2 2.2 3 25 2.9 2.8 3.2 4.7 4.6 5.8
FO1 B SSIV [%] 0.9 11 1.2 1.1 1.2 1.2 1.8 2 2.9 3.8
F11 B SSIV [%] 25 2.3 2.3 25 2.6 2.7 3.1 3.3 4.2 14.4
F23 B SSIV [%] 2.6 2.7 2.9 2.5 2.9 3 3.4 5 4.3 5.6
FO1 R SDNN [ms] 0.6 0.6 0.6 0.6 0.8 0.9 2.1 3.1 6.5 9.5
F11 R SDNN [ms] 1.3 14 15 1.6 1.7 1.9 3.2 4 7.3 124
F23 R SDNN [ms] 2.7 2.6 2.8 2.1 2.7 2.3 34 6.9 75 10.8
FO1 B SDNN [ms] 1.2 1.2 1.3 1.3 1.3 14 2.2 2.7 5 7.2
F11 B SDNN [ms] 2.2 2.2 2.2 2.4 2.4 2.6 3.3 3.9 6.3 15.3
F23 B SDNN [ms] 2.7 2.7 2.9 2.4 2.7 2.6 3.3 6.1 5.6 8.1
Fo1 R NN50 [%] 0.8 0.9 0.8 1 1 1.3 1.7 1.7 3.6 3.1
F11 R NN50 [%] 1.7 1.6 1.8 1.6 1.9 2 35 2.2 5.1 4.3
F23 R NN50 [%)] 1.5 15 15 1.6 1.6 1.8 2.2 2.1 4.1 3.3
FO1 B NN50 [%)] 0.8 0.8 0.8 0.9 0.9 11 2.2 1.8 3.6 3.1
F11 B NN50 [%)] 2.4 2.4 2.8 2.3 2.7 2.3 4.9 2.8 5.9 5.3
F23 B NN50 [%] 1.6 1.6 1.7 1.6 1.7 1.9 3.1 2.5 4.8 4.1

Note: Phase R and B are resting and breathing phase, respectively.

Table 3. RRIV assessment range of normal cardiac autonomic
function in each age group based on ECG [38].

Agely] 20~29 30~39 40-49 50~59 60 ~69
Rest[ms] 12~46 6-~32 6~36 5~23 7~19
Breath [ms] 19~62 9~54 14~48 11~59 8-28

Fig. 8 shows the absolute error, measured in microseconds,
for all filters. For the IIR filter bank, it can be seen that the
absolute errors of the filters are very low. Especially, at low
sampling rates, the errors in both phases remain relatively
low. This means that their accuracy is good enough for

wearable healthcare applications. For the FIR filter bank, F11
has the lowest absolute error, which is close to that of the IIF
filter bank. For F12 and F13, the accuracy becomes very poor
in both phases below 25Hz and 200 Hz, respectively.
Therefore, they are not suitable for healthcare applications,
especially at lower sampling rates. For the WT filter bank,
F23 performs better than the other two filters in both phases
in terms of absolute error.

At the same time, the anomaly of F21 in absolute error at
1000 Hz can be seen in the table. This could be due to the
unsuitable selection of the mother wavelets.
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Fig. 7. Evaluation of the best SSIV assessment range of normal cardiac autonomic function with the ROC curve, (a) — the resting phase;

(b) — the deep breathing phase.

B. Evaluation of interbeat variation and HRV in PPGs

In Table 2, three parameters related to heart rhythm
variability, SSIV, SDNN, and NN50, were used to evaluate
the accuracy of using PPG instead of ECG. Since the
calculation of the absolute errors of these parameters is
performed using (4), the units of measurement for the
absolute errors are expressed in percent (%) for SSIV and
NN50 and in ms for SDNN.
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Fig. 8. HeatMap of average absolute errors between the RRI at
1000 Hz and the SSis at different sampling rates in resting (a) and
breathing phases (b).

The evaluation tests showed the average absolute errors of
SSIV, SDNN, and NN50 from the filters FO1, F11, and F23
at different sampling rates, related to the test phase in Table 2.
The FO1 IR filter bank produces the most accurate values for
SSIV, SDNN, and NN50 compared to all other filters, and
FO1 in particular achieves the best accuracy. In addition, F11
and F23 showed very low average absolute errors in their
respective filter bank, as can be seen in Fig. 8.

In addition, F23 shows greater superiority than F11 as the
accuracy values are better at the lower sampling rates of
Table 2. This indicates that the WT filters have good potential
for use in wearable healthcare applications.

C. ANS screening for healthcare application

Table 3 shows the RRIV assessment range for normal
cardiac autonomic function during the resting and deep
breathing phases of an outpatient neurological examination
[31]. Due to the superiority of acquiring PPG signals over
ECG, the idea of replacing the ECG data in Table 3 with the
PPG data based on the previous analysis is very promising for
remote healthcare monitoring.

To obtain a case of the most appropriate SSIV assessment
range for normal cardiac autonomic function, it is necessary
to find the best SSIV assessment range based on a set of
optimal sensitivity and specificity values of the statistical test
results. To give an example, the SSIV result with a 1000 Hz
sampling rate from the Butterworth filter (FO1) was used with
the previous correlation and accuracy analysis.

To replace RRIV with SSIV in Table 3, the RRIV and
SSIV values of all participants, totaling 244 cases, were
screened and confirmed by the neurologist in our research
team to determine whether their cardiac ANS was normal or
abnormal. Subsequently, the diagnostic results are treated
with RRIV as the ground truth and the SSIV results are the
predictive values. Table 4 shows a confusion matrix based on
the RRIV ground truth and SSIV substitution value, with the
SSIV assessment range values for all age groups taken from
Table 3. In this case, the calculated sensitivity and specificity,
which are 86.27 % and 98.45 % for the resting phase and
84.62 % and 98.96 % for the deep breathing phase, are shown
in the column ‘RRIV source’ in Table 5.

To obtain the most appropriate normal assessment range of
the SSIV, an inward/outward scaling strategy using the ROC
curve is attempted [37]. For a scale-out increment of 1, the
scope of the RRIV assessment range (Table 3) is extended by
decreasing the lower limit of the range by 1 and increasing
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the upper limit of the range by 1. For example, the normal
assessment range in the resting phase for the 20 to 29 year
olds is 12 ~ 46 ms; if the normal assessment range is in a
scale-out increment of 2, it becomes 10 ~ 48 ms; and if the
range is decreased inward by 4, it becomes 16 ~ 42 ms. Apply
the same inward/outward scaling strategy for other age
groups. In Table 5, the term ‘Out+2’ means that the normal
assessment range is in a scale-out increment of 2, and ‘In-4’
means that the range decreases inward by 4. Consequently,
Table 5 shows seven possible prediction models with
sensitivity and specificity for different increments and
decrements. Note that the term ‘RRIV source’ denotes an
increment or decrement of 0.

Table 4. Confusion matrix between RRIV and SSIV in the resting
and deep breathing phases.

RRIV RRIV
Phase SSIV Abnormal  Normal
[ms] [ms]
Resting Abnormal 44 2
Normal 8 190
. Abnormal 44 3
Deep breathing Normal 7 190

As a screening tool for daily life, the best normal
assessment range of the SSIV should have the characteristic
of high sensitivity and low (1 - specificity), resulting in most
true positives being positive and few true negatives being
positive. Based on the seven SSIV prediction models in
Table 5, the ROC curves of the resting and deep breathing
phases are outlined in Fig. 5. In Fig. 7, the sensitivity and
specificity of the best cut-off point are 96 % and 92 % in the
resting phase, and 94 % and 96 % in the deep breathing phase,
respectively. It can be seen that the SSIV assessment range of
‘In-1” in Table 5 comes closest to the best cut points for both
phases.

In addition, Fig. 7 shows an evaluation index, namely the
area under the curve (AUC). In the ROC curves, the AUC
indicates the discrimination capacity of an SSIV prediction
model. In the case of Fig. 7, the AUC of the resting and deep
breathing phases are 0.982 and 0.979, respectively. If the
value of the AUC is greater than 0.9, the SSIV prediction
model has excellent discrimination. As a screening tool, this
result is very accurate and sufficient. The most appropriate
SSIV assessment range is shown in Table 6.

Table 5. The sensitivity and specificity of SSIV in different assessment ranges.

Phase Rate [%] Out+2 Out+1 RRIV source In-1 In-2 In-3 In-4

Rest Sensitivity 36.54 63.46 84.62 96.15 96.15 100.00 100.00
Specificity 98.96 98.96 98.96 91.67 79.69 70.83 59.90

Breath Sensitivity 54.90 70.59 86.27 94.12 94.12 96.08 96.08
Specificity 99.48 99.48 98.45 95.85 91.19 84.97 78.24

Table 6. SSIV assessment range of normal cardiac autonomic function in each age group based on PPG.

Age [y] 20~29  30~39  40~49  50~59  60~69
Rest [ms] 13~ 45 7-~31 7~35 6~ 22 8~18
Breath [ms] 20~61  10~53  15~47  12~58 9~27

5. DISCUSSION

The evaluation of accuracy and correlation shows the close
relationship between RRI at 1000 Hz and SSI at different
sampling rates. Table 2 and Table 3 confirm that the IIR filter
bank performs very well even at 40 Hz in the two test phases,
and F11 and F23 have similar results. When evaluating the
variability of the heart rhythm with PPG, the IIR filter bank
showed the best accuracy, regardless of the test phase. F12
produced the worst SSIVs in both phases in the FIR and WT
filter banks. One possible reason for this is that the detection
results of the peak detection scheme deviate significantly
from the true peak position. Moreover, F12 and F13 are not
both of poor accuracy. Their poor accuracy only occurs at
frequencies below 200Hz and 25Hz, respectively.
Therefore, their availability still depends on application
requirements.

As for the FIR filter bank, its performance is not as good
as that of the IR filters. These filters are better at smoothing

and filtering out noise outside the signal band, but when noise
is embedded in the signal band, the detected signal peaks used
to determine the SSIs deviate accordingly, making the
absolute error higher. However, it seems that only F11 can
better deal with the problem of signal peak deviation due to
embedded noise in the signal. For the filter bank of the
wavelet transform, it can be seen that F23 outperforms the
other two DWT methods. This is due to the fact that their
mother wavelets are not close to the morphology of the PPG
signal curves. In contrast, the mother wavelet of F23 is more
closely related to the PPG morphology, so its accuracy and
correlation are better than those of the other two methods.

For the normal assessment range of cardiac autonomic
function suitable for SSIV, the discriminating capacity of the
assessment in the two phases is 0.982 and 0.979, respectively,
which is recognized as excellent. In practice, it shows that it
is possible to detect autonomic abnormalities by calculating
and extracting SSIV values from the processed PPG signals
at different sampling rates.
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6. CONCLUSION

Compared to previous studies, our approach stands out in
that we systematically evaluate multiple filter types across a
range of sampling rates, which is rarely addressed in the
current literature. Most existing work relies on a fixed filter
or sampling configuration, often optimized for controlled
environments or non-clinical applications [4], [5], [21].
Although some studies show acceptable accuracy for general
HR estimation, they are not robust enough when applied to
clinical use cases such as the detection of cardiac autonomic
neuropathy. In contrast, our study provides a comprehensive
performance comparison showing that filters such as
Butterworth and Morlet wavelets exhibit high fidelity in peak
detection and HRV feature extraction even at low sampling
rates and variable conditions. This fills a significant research
gap and lays the foundation for more reliable PPG-based
diagnostics in both clinical and wearable settings.

In the literature, some studies focus on heartbeat and heart
rate detection with wearable devices in daily life, which
cannot provide sufficiently accurate PPG features. It is clear
that anti-noise filters performed with different sampling rates
have not been extensively evaluated, especially for clinical
trials using SSIV to detect cardiac autonomic neuropathy. In
this study, PPG was investigated as an alternative to ECG to
detect cardiac autonomic neuropathy. Since PPG is
susceptible to noise due to motion artifacts, suitable filters for
different sampling rates need to be tested for noise immunity.

All PPG signals were processed and screened for the target
application of detecting autonomic abnormalities. In the
experiments, we found that the Butterworth, Bessel,
Chebyshev, Elliptic, and Savitzky-Golay filters and the
Morlet wavelet have the best signal preprocessing capabilities
for the 10 selected sampling rates and thus can accurately
localize the peaks in the PPG signal to generate interbeat
intervals. We also investigated these filters to generate other
PPG-derived parameters such as the interbeat variation,
SDNN, and NN50. The results show that the above filters are
still good candidates for the intended application. Finally, the
normal range of autonomic nerves suitable for SSIV was
determined by ROC curve analysis. The AUC in the resting
phase was as high as 98.2 % and in the deep breathing phase
reached 97.9 %. In conclusion, the IIR filter bank, F11 and
F23 can provide very satisfactory processing results for
wearable healthcare applications with lower acquisition rates.

In addition to healthcare monitoring and clinical screening,
PPG applications in disease-related screening require highly
accurate signal processing. For example, participants with
severe peripheral artery atherosclerosis, including subclavian
or brachial artery stenosis, may affect the systolic peak of
pulsation, and the PPG signal is easily disturbed by hand
movements, an uncooperative participant or those with
obvious tremor or dyskinesia may not record reliable results.
In this study, we have only completed the exploration of
interbeat variation and HRV time-domain parameters. In the
near future, we need to investigate other parameters suitable
for disease detection. To explore PPG-based blood pressure
estimation,  blood glucose estimation,  biometric
identification, etc. in depth, a lot of research work needs to be
done in the future.
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