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Abstract: Photoplethysmography (PPG) is well suited for wearable health applications, but has a lower frequency spectrum than 

electrocardiography (ECG) and is more affected by motion artifacts. In this study, ten signal filters from three categories were investigated 

in combination with different sampling rates to evaluate their effects on PPG signal quality. A correlation and accuracy analysis was 

performed comparing the interbeat intervals detected in PPG and ECG using Pearson correlation and absolute error. The results showed that 

specific filters with sampling rates as low as 40 Hz perform well in detecting autonomic neuropathy. The results highlight the potential of 

PPG with optimized filters and sampling rates for clinical screening of the autonomic nervous system (ANS) in wearable health monitoring. 
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1. INTRODUCTION 

The autonomic nervous system (ANS) controls the non-

striated muscles and glands and can be divided into three 

areas: sympathetic (thoracolumbar), parasympathetic 

(craniosacral), and enteric nervous system. The cardiac 

autonomic plexus is supplied by the cardiac nerves, which 

originate from the cervical and upper thoracic sympathetic 

ganglia (sympathetic) and the cardiac branches of the vagus 

nerves (parasympathetic). The most widely used examination 

for testing cardiac vagal tone is the variation of interbeat 

intervals, i.e. the variation of the R-R interval (RRIV) [1]. The 

RRIV can be reliably derived from electrocardiography 

(ECG) data, extracting the R peaks from one QRS complex 

to the next R peak intervals (RRIs) with millisecond accuracy. 

The RRI is not a fixed value, and the normal sinus arrhythmia 

is the heart rate (HR) variability that occurs with respiration. 

The phenomenon is significant in healthy people and occurs 

mainly in the young group. Sinus arrhythmia usually becomes 

less pronounced with increasing age and may be significantly 

impaired or abolished if the vagal innervation of the heart is 

impaired.  

The HR response to deep breathing shows maximum 
variability at a breathing rate of about 5 to 6 per minute [2]. 
Therefore, RRIV can be derived both at rest and during deep 
breathing to assess the ANS. In most autonomic system 
dysfunctions, the HR tends to be consistent at rest and during 
deep breathing. The lack of normal variability results in an 
inability to adapt to changes and low RRIV values. In 
contrast, in some patients with autonomic dysfunction, RRI 
increases irregularity and results in a significantly elevated 
RRIV above the normal range. However, to investigate these 
phenomena, routine RRIV screening requires experienced 
technicians to attach ECG electrodes to the limbs and 
maintain full participation. This makes screening for 
autonomic system dysfunction a problem in daily life.  

Photoplethysmography (PPG) is a simple, safe, common 

and convenient method of recording blood oxygen saturation 
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and arterial pulsation through the skin. It has also been 

attempted to detect different physiological characteristics and 

disease syndromes such as autonomic nervous function [3], 

respiratory rate estimation [4], metabolic syndromes [5], 

features of arteriovenous fistula stenosis in hemodialysis 

patients [6], etc. PPG sensors use light-based techniques to 

detect blood flow rates controlled by cardiac pumping action. 

The systolic peaks in the blood vessels correlate closely with 

the R waves in the ECG through a consistent delay, the pulse 

transit time [7]. By measuring the interval between one 

systolic peak and the next systolic peak of the PPG (SSI), we 

were able to infer the RRIV from the variation of SSIs 

(SSIV). In other words, we tried to simulate the electrical 

signals of the heart by arterial hemodynamic changes. 

Therefore, the calculation of RRIV requires highly accurate 

measurement of the maximum and minimum values of RRIs. 

It remains to be determined whether SSI is effective in 

calculating pulse rate variation, as few clinical studies have 

used SSIV to detect autonomic neuropathy. 

To assess cardiac autonomic function, RRIV derived from 

the interbeat intervals of ECG is the most important feature 

accepted by neurologists. Due to the interference of low-

frequency noise caused by motion artifacts [8], the temporal 

positions of the reference points determined by different 

filters at different sampling rates can be significantly altered 

and affect the calculation of the interbeat variations, i.e. the 

RRIV or even the SSIV. The more accurately the reference 

points (such as the peaks of the PPG systole, the PPG first 

derivative, and the PPG second derivative waves [9]) on the 

PPG waveforms mark the interbeat intervals, the more 

effectively the variation can be determined by careful signal 

analysis [8]. Thus, it can be seen that there are two key 

factors, namely the filter and the available sampling rate, to 

obtain accurate PPG derived features. However, prior to our 

work, these two factors have not been further investigated or 

analyzed, especially at different sampling rates below 

1000 Hz.  

In this study, a number of filters belonging to the infinite 

impulse response (IIR), finite impulse response (FIR), and 

wavelet transform (WT) types were selected to process the 

PPG signals after signal pre-processing and to localize the 

most appropriate PPG systolic peaks in the cardiac cycles. 

The Butterworth [10], Bessel [11], Chebyshev [12] and 

Elliptic [13] filters were selected for the IIR filters, and the 

Savitzky-Golay [14], Average [15], and periodic moving 

average [16] filters were selected for the FIR filters. Since the 

WT includes the discrete wavelet transform (DWT) and the 

continuous wavelet transform (CWT), the selected WT filters 

with different mother wavelets such as Daubechies [17], 

Coiflet [18], and Morlet [19] were considered in the study. As 

a result, ten specific filters are used to verify whether 

wearable devices with PPG are a potential surrogate for 

autonomic dysfunction detection. 

Due to the limited resources of wearable devices in terms 

of communication and computer hardware/software, 

sampling rates in signal acquisition can be much lower than 

similar procedures performed in laboratories or clinical 

examinations. For example, the PPG-powered sampling rate 

of wearable devices is reported as 200 Hz in [20], 100 Hz in 

[3], and 64 Hz in [21], which is much lower than the PPG 

sampling rate of the PPG performed in our study. Recently, 

there is another viable PPG application in smartphones, the 

video-based PPG [22]. Its sampling rate is even downscaled 

to 25 Hz. In this study, we will simultaneously investigate the 

correlation and accuracy of the above filters under the 

influence of relatively low sampling rates. 

In this article, Section 2 describes the methods for 

preparing the experimental and test environment, installing 

the test instruments, and signal processing to obtain the 

results of RRIV and SSIV. In Section 3, the results of PPG-

based cardiac autonomic function screening are compared 

with the ECG results, and some discussions are made in 

Section 4. Finally, conclusions are drawn in Section 5. 

2. LITERATURE REVIEW 

While previous studies focused on removing motion 

artifacts from ECG or PPG signals individually, this study 

compares the effects of different filtering methods and 

sampling rates on PPG signals, using the ECG signal as a 

ground truth reference. In [23], the Mexican hat WT is used 

to decompose the largest difference in the green channel 

between consecutive frames. The authors also introduce a 

recursive baseline-wander removal algorithm with an 

adaptive window that effectively eliminates baseline drift. 

Using this method, a mean absolute error (MAE) of 3.58 was 

obtained for HR detection. In [24], three different sampling 

methods for the detection of PPG signals are investigated: 

aggressive duty cycling (ADC), compressive sampling, and 

event-driven sampling. Of these, ADC offers the best balance 

between accuracy and simplicity, although it consumes more 

power than the other two methods. The study found that 82 % 

of PPG sensors with a power consumption of less than 

500 μW use ADC for sampling. Event-driven sampling, 

which minimizes power consumption by activating the LED 

only when the next peak in the signal is predicted, is 

particularly suitable for portable applications with limited 

power supply. In [25], a Hampel filter is used in conjunction 

with a fourth-order Butterworth bandpass filter to effectively 

remove noise from PPG signals. The study evaluates the 

performance of their filtering approach by comparing it with 

the results of eight recent studies. The method achieved an 

MAE of 2.41 for systolic blood pressure prediction and 1.31 

for diastolic blood pressure prediction, demonstrating 

remarkable accuracy in blood pressure estimation while 

effectively suppressing noise. This comparison highlights the 

robustness and effectiveness of their proposed filtering 

technique in the context of advanced PPG signal processing. 

rPPG-Toolbox is provided by [26], which uses Butterworth 

bandpass filter along with OpenFace [27] in practice, which 

can analyze head motion in a real video. They have tested 

their method with different datasets that have different 

sampling rates. The result shows that the PURE dataset with 

the plane-orthogonal-to-skin (POS) method has the better 

performance with an MAE of 3.67. In [28], the authors 

introduced a multi-filter multi-channel (MFMC) method to 

process PPG signals. Using this approach, they achieved an 

MAE of 2.13 mmHg for diastolic blood pressure detection 

and 3.52 mmHg for systolic blood pressure detection. They 

applied Savgol, Chebyshev II, and bandpass filter to both the 

ECG and the PPG.  
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In [29], the authors investigated the effects of reducing the 

sample rate on pulse rate variability (PRV). In particular, they 

investigated how reducing the sampling rate from 1000 Hz to 

50 Hz affected the accuracy and reliability of PRV 

measurements. The study focused on five different reference 

points, including line-medium and medium interpolate 

points, as these were crucial for analyzing the characteristics 

of the signal. 

The results showed that among the five reference points 

studied, the line-medium and medium interpolate points were 

particularly effective. These points enabled a significant 

reduction in the sampling rate of the PPG signal recorded 

from both the finger and the forehead to 50 Hz. Remarkably, 

this reduction did not lead to significant changes in the PRV 

indices compared to those obtained at a higher sampling rate 

of 1000 Hz. 

This indicates that under the conditions investigated, it is 

possible to use a lower sampling rate without compromising 

the quality of the PRV analysis. The ability to maintain the 

accuracy of PRV measurements with a reduced sampling rate 

could lead to more efficient data acquisition and processing 

in practical applications where lower sampling rates may be 

desirable due to hardware or data storage limitations. 

In [30], the authors investigated the effects of sampling rate 

on heart rate variability (HRV) and PRV by simultaneously 

collecting PPG and ECG data from 54 participants. Their 

results showed that PRV and HRV have different 

characteristics. PRV offers certain advantages as it can 

capture ANS activity in everyday situations, whereas ECG 

typically requires a clinical setting. In addition, PRV 

parameters can be accurately assessed at lower sampling rates 

compared to ECG parameters. A sampling rate of 100 Hz is 

recommended for robust measurements, although a rate of 

40 Hz can also provide satisfactory results. 

3. SUBJECT & METHODS 

The experiment in this study was conducted at the National 

Taiwan University Hospital (NTUH), Yunlin Branch. A total 

of 251 patients were recruited for the experiment, with IRB 

approval (No. 20180613RINA) issued by the Ethics Review 

Board of NTUH. The age distribution of patients ranged from 

twenty to sixty-nine years. The exclusion criteria apply to 

patients presenting with the following symptoms: 

• atrial fibrillation, 

• cardiac arrhythmia, 

• frequent premature ventricular contraction (PVC), 

occurring several times in one minute, and 

• severe involuntary movements, including tremors, 

which would cause significant motion artifacts in the 

recorded signals.  

After applying the exclusion criteria, there were three 

patients with atrial fibrillation, one with cardiac arrhythmia, 

two with frequent PVCs, and one with tremors. Finally, seven 

patients were excluded from the experiment, and the total 

number of patients included was 244, including 115 men and 

129 women. The exclusion rate was 2.78 %. 

The experiment was divided into two test phases: a resting 

phase and a deep breathing phase. During the experiment, all 

participants were asked to sit comfortably on a chair with 

their hands flat on the table. In the resting phase, participants 

were asked to sit on the chair, relax, and take normal breaths. 

In the deep breathing phase, participants were asked to take 

six deep breaths within one minute, alternating between 

5 seconds inhalation and 5 seconds exhalation. To record 

each phase, the ECG and PPG signals (see Fig. 2) were 

recorded simultaneously and continuously over a period of 

four minutes. We used three electrodes to record the ECG 

signals based on standard Lead II. Two ECG electrodes are 

attached to the front of the left (positive) and right wrist 

(negative), and one is attached to the top of the left leg (earth), 

as shown in Fig. 1. A reflective photosensor is placed over 

the fingernail of the left index finger to capture PPG signals. 

 

Fig. 1.  The placement of the ECG electrodes with PowerLab, 

a physiological signal acquisition instruments from ADInstruments 

Inc. [30]. 

Test environment and instruments 

In this study, Fig. 1 shows the environment and the 

instruments for signal acquisition. The physiological signal 

acquisition instruments, the PowerLab data acquisition 

device from ADInstruments [39], were used to acquire the 

ECG and PPG signals. This device is engineered for precise, 

consistent and reliable data acquisition and is connected to 

computers via USB links. With the support of the LabChart 

software package from ADInstruments [31], it can 

immediately display the acquired signals and store them as 

files for later analysis and reading. In this study, both signal 

sampling rates for ECG and PPG were set to 1000 Hz in the 

PowerLab system. It is worth noting that the resulting PPG 

signal with a 1000 Hz sampling rate is treated as the original 

signal to generate a downscaled PPG signal with a lower 

sampling rate. A lower sampling rate signal generation 

scheme is described below to obtain the lower sampling rates 

for the later experimental procedure in this study. 

Down-sampling procedure for generating lower PPG 

sampling rates 

To simulate lower sampling rates from the original PPG 

signal (sampled at 1 kHz), we applied a uniform down-

sampling method with a parameterized sampling period (per) 

defined in milliseconds. 
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Let: 
PPGraw[n] be the raw PPG signal sampled at 1 kHz, where 
n is the signal length; 
per be the sampling period in ms (e.g., per = 10 → 100 Hz); 
S[i] be the down-sampled PPG signal. 

The pseudocode below describes the process: 

# Inputs: 

#   PPGraw: raw PPG signal sampled at 1 kHz 

#   per: sampling period in milliseconds 

# Output: 

#   S: down-sampled PPG signal 

 

j = 240  # Number of seconds (4 minutes) 

S = [] 

for i in range(0, j * (1000 // per)): 

    S.append(PPGraw[i * per]) 

This procedure was implemented in Python, using basic 
list indexing for down-sampling. The parameter per directly 
determines the sampling rate (e.g., per = 1 ms = 1000 Hz, 
per = 10 ms = 100 Hz, etc.). 

In this study, the following sampling periods were used to 
generate lower-rate signals: 

Sampling_periods = {2, 4, 5, 8, 10, 20, 25, 40, 50}, 
corresponding to frequencies between 20 Hz and 500 Hz. The 
lowest assumed sampling rate is 20 Hz for the application of 
video-based PPG [22]. 

Physiological signal processing 

After the acquisition of ECG and PPG signals, the signal 
processing flow, shown in Fig. 3, consists of four stages, 
namely preprocessing, feature finding, signal decomposition 
and feature calculation, and performance measurement. 

 

Fig. 2.  Examples of ECG and PPG signals. 

It should be noted that PPG signals are more susceptible to 
interference from baseline wander noise than ECG signals 
[8]. As in Stage 1 of Fig. 3, a baseline wander noise removal 
algorithm is developed to remove the baseline wander noise 
that was present in the raw ECG and PPG signals during 
preprocessing. To find the features of the signals after 
removing the baseline wander noise, the Pan-Tomkins 

algorithm was applied to localize the R peaks (marked as 𝑅𝑖 
in Fig. 2) in the cardiac cycles of the denoised ECG (Stage 2). 
At the same time, different filters were used to remove the 

PPG signals to localize the S peaks (marked as 𝑆𝑖 in Fig. 2) in 
each cardiac cycle (Stage 2). Then, the two time domain 
features RRIi and SSIi (see Fig. 2) are calculated for ECG and 
PPG to determine the temporal length of each cardiac cycle 

in Stage 3. Finally, performance measurements of the 
variation of interbeat intervals and the associated HRV 
parameters were performed. The acquired parameters are the 
RRIV and HRV of the ECG signal at 1000 Hz sampling rate, 
and the SSIV and associated HRV of the PPG signal at 
different down-sampling rates in Stage 4. 

 

Fig. 3.  Signal processing flow chart for ECG and PPG. 

Stage 1: pre-processing  

To remove the raw baseline wander in the ECG and PPG 
data, a baseline wander removal scheme based on the work of 
Chazal et al. [32] was considered. In two steps, the scheme 
uses a median filter [33] to filter out the core signals of ECG 
and PPG from the raw data. Chazal’s method generates a 
baseline drift signal and uses it to offset the baseline wander 
with the raw data. In this way, a set of clear ECG or PPG 
signals is generated. The scheme is briefly described below. 

Baseline wander removal by two-stage median filtering 

To remove the baseline wander from the ECG and PPG 
signals, we applied a two-stage median filtering process as 
follows: 

• Step 1: A median filter is applied to the raw signal using 
a shorter window size (1st_WinSize), resulting in the first 
filtered output. 

• Step 2: A second median filter is then applied to the 
Step 1 output using a larger window size (2nd_WinSize). 

• Step 3: The final baseline-corrected signal is obtained 
by subtracting the Step 2 output from the original raw 
signal. 

Due to the different characteristics of ECG and PPG 
signals, different window sizes are used: 

• For ECG: 
1st_WinSize corresponds to 5 Hz (QRS wave)  
2nd_WinSize corresponds to 1.67 Hz (P and T waves) 

• For PPG: 
1st_WinSize corresponds to 1.6 Hz (systolic peak, simi-
lar frequency to P and T in ECG, in the experiment 
1.6 Hz has the best performance) 
2nd_WinSize corresponds to 0.5 Hz (diastolic peak)  
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This approach effectively suppresses the low-frequency 

drift while preserving the main features of the signal. These 

values were initially taken from the literature [40], [41] and 

then tested and fine-tuned to achieve the best results. 

Stage 2: signal peak detection  

For the detection of R peaks, a real-time QRS detection 

algorithm proposed by Pan and Tompkins is used to 

determine the temporal locations of all R peaks [34]. Since 

the Pan-Tompkins method is very efficient and powerful in 

detecting R peaks in baseline wander-free ECG signals, no 

further signal processing is required before detecting R peaks. 

Fig. 4 illustrates the process of extracting QRS from raw 

signals. After squaring the signal, all negative values were 

eliminated. Based on the above results for detecting the 

temporal location of each R peak, the interval of each pair of 

neighboring R peaks (i.e., RRI) can be determined, and thus, 

the RRIV variation (i.e., RRIV) can also be obtained.  

 

Fig. 4.  The process of extracting QRS from raw signals. 

Since PPG signals are susceptible to motion artifacts, it is 

conceivable that PPG signals require careful signal 

processing to accurately detect PPG S peaks. In Table 1, four 

classical filters (Butterworth, Bessel, Chebyshev, and 

Elliptic), three smoothing filters (Savizky-Golay, average, 

and periodic moving average), and three wavelet-based 

filtering methods (Daubechies db6 (DWT), Coiflet C3 

(DWT),  and  Morlet   (CWT))   are  tried  to  find  the  most 

appropriate PPG S peak for each cardiac cycle. The classical 

filters (F01 to F04) have some outstanding features in signal 

filtering, but disadvantages in roll-off rate, pass/stopband 

ripple, and phase response [10]-[13]. Due to their low 

implementation complexity and low latency, they were used 

to determine the PPG S peak in this study. Then, the three 

smoothing filters (F11F13) are considered since the PPG 

signal is not similar to the embedded ECG with the sharp 

QRS complex. These filters can provide different 

experimental aspects in detecting the PPG S peak. The 

wavelet-based methods (F21 to F23) include discrete and 

continuous wavelet transforms. For the DWT, Daubechies 

db6 and Coiflet C3 were used to perform a test for PPG signal 

processing, and Morlet was chosen for the CWT. Since these 

WT techniques have been used for ECG signal processing 

[35], it seems interesting to apply these methods to the PPG 

for investigation. The parameter settings required for the 

above filters are given in the description in Table 1.  

To detect S peaks in the filtered PPG signal, a Python-

coded peak search program was developed using a specific 

threshold value. Fig. 5 shows the results of the search for the 

ECG and PPG peaks.  

 

Fig. 5.  Detected ECG and PPG peaks. 

 

 
Table 1.  A descriptive listing of PPG signal processing methods. 

No. Filter name Description 

F01 Butterworth The passband frequency is from 1 Hz to 5 Hz, and the filter order is 2.  

F02 Bessel 

F03 Chebyshev 

F04 Elliptic 

F11 Savitzky-Golay The polynomial order is 3, and the window size 401. 

F12 Average The passband frequency is from 1 Hz to 5 Hz. 

F13 Periodic moving After normalizing each cardiac cycle with the same number of sampled signals, the ith sampled signals of 

each of the 5 cycles are averaged, where 1  i  the normalized cycle length. 

F21 Daubechies Use the inverse DWT of Daubechies db6 and Coiflet C3 to reconstruct the selected band from 1 Hz to 5 Hz. 

F22 Coiflet C3 

F23 Morlet (CWT) Apply the inverse WT of Morlet to reconstruct the selected band from 1 Hz to 5 Hz. 
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Stage 3:  decomposition and feature calculation  

After peak detection processing, as shown in Fig. 5, the 

continuous cardiac cycles in the ECG or PPG are decomposed 

and stored in an array P(•), which records a series of peaks. 

Then the interval between each pair of neighboring peaks, 

i.e., an RRI or SSI, can be calculated using (1). 

 

𝐼𝑛𝑡𝑒𝑟_𝐵𝑒𝑎𝑡_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖 = 𝑃(𝑖 + 1) − 𝑃(𝑖) (1) 

 

where i  Z+, the set of positive integers. 

Based on (1), let IB_Interval be the set of all 

Inter_Beat_Intervali, e.g., {Inter_Beat_Intervali  i  Z+}. 

In this study, the method for calculating the interbeat 

variation in the ECG or PPG (i.e., the RRIV or SSIV) is 

shown in (2).  

 

𝑉𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =
max (𝐼𝐵_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙) − min (𝐼𝐵_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙)

mean (𝐼𝐵_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙)
∗ 100 % 

(2) 

 

where the functions max (), min (), and mean () generate the 

maximum, minimum, and mean values for IB_Interval.  

Stage 4: performance measurement 

To evaluate the effectiveness of SSI as an alternative to 

RRI, we used correlation and accuracy as performance 

metrics in this study. First, the correlation coefficients could 

be used to examine the trend of positive, negative, or no 

correlation between two discrete data sets. Let {𝑟1, 𝑟2, . . . , 𝑟𝑛} 

and {𝑠1, 𝑠2, . . . , 𝑠𝑛} be two data sets consisting of RRIs and 

SSIs, respectively. To measure the strength of a linear 

relationship between ECG and PPG parameters based on RRI 

and SSI, the Pearson correlation coefficient Rrs 3) is used. 

Through the correlation analysis, we can examine the 

closeness of the RRIs to the different SSIs obtained by the 

aforementioned preprocessing schemes (Table 1). 

   

𝑅𝑟𝑠 =
𝑛 ∑ 𝑟𝑖𝑠𝑖 − ∑ 𝑟𝑖 ∑ 𝑠𝑖

√𝑛 ∑ 𝑟𝑖
2 − (∑ 𝑟𝑖)

2√𝑛 ∑ 𝑠𝑖
2 − (∑ 𝑠𝑖)

2
 (3) 

 

Second, we used the average absolute errors to evaluate the 

accuracy of the different SSIs from the PPG compared to the 

RRI from the ECG. After obtaining the RRIi and SSIi sets, i.e.,  

{𝑟1, 𝑟2, . . . , 𝑟𝑛} and {𝑠1, 𝑠2, . . . , 𝑠𝑛}, the average absolute error 

(AbsErr) was calculated. For the performance evaluation of the 

interbeat variation, we evaluate the accuracy of the different 

SSIVs with respect to the RRIV using AbsErr. 

To investigate the applicability of the PPG-based solution 

for telemedicine and clinical applications, we include two 

HRV time domain parameters, SDNN and NN50, in addition 

to the interbeat interval and interbeat variation in the PPG in 

the accuracy evaluation [3]. In [36], the definition of SDNN 

is the standard deviation of all normal-to-normal intervals, 

and NN50 is the number of pairs of adjacent NN intervals that 

differ by more than 50 ms in the entire recording. In our 

study, the inclusion of SDNN and NN50 was essential for 

evaluating the validity of PPG-based detection of cardiac 

autonomic function. 

Autonomic nervous system 

To examine the use of PPG in screening for ANS disorders, 

the following four aspects of the examination are highlighted. 

The ANS regulates vital involuntary functions such as heart 

rate, blood pressure, and respiration through its sympathetic 

and parasympathetic branches. ANS dysfunction is 

associated with conditions such as diabetic neuropathy, 

cardiovascular disease, and postural orthostatic tachycardia 

syndrome (POTS). Due to its close connection to 

cardiovascular regulation, the ANS can be effectively 

monitored by non-invasive methods such as PPG:  

• the assessment parameters used in ANS evaluation, such 

as interbeat interval (e.g., RRI, SSI), the interbeat 

variation (e.g., RRIV, SSIV), SDNN, and NN50;  

• the filters used in PPG signal processing (see Table 1);  

• the sampling rates used in PPG signal acquisition (e.g., 

1000 Hz, 500 Hz, …, 20 Hz);  

• The effectiveness evaluation index includes the Pearson 

correlation and the average absolute error between the 

ECG and PPG parameters.  

In this study, the RRI generated by the Pan-Tompkins 

algorithm is used as a criterion for comparison with the SSIs 

generated by the filters with different down-scaled sampling 

rates. To calculate a series of intervals in the ECG and PPG, 

(1) is applied to determine the RRI and different SSIs. Then, 

(2) is required to obtain the interbeat variation for the ECG 

and PPG series. Then, SDNN and NN50 were determined by 

RRI and the different SSIs to evaluate the validity of PPG-

based detection of the cardiac autonomic function. To 

calculate the correlation coefficients, see (3) to evaluate the 

accuracy of using PPG as a substitute for ECG.  

Since the physiological signals of the participants are 

recorded for four minutes in the resting phase and the deep 

breathing phase, each 4-minute signal unit is divided into the 

first and last 30-second signal units and three middle 1-

minute signal units for analysis. For the sake of signal 

stability, the three units in the middle were used to calculate 

the evaluation parameters.  

4. RESULTS 

This section is divided into three subsections to provide a 

comprehensive overview of the main results obtained from 

the comparative analysis of different filtering methods and 

sampling rates applied to PPG signals.  

A. Correlation and accuracy analysis of interbeat intervals 

in PPGs 

To assess the validity of the interbeat interval in the PPG 

using the ECG evaluation criteria, Table 2 and Table 3 show 

the correlation coefficient and absolute error rate between the 

RRI at 1000 Hz and an SSI at different sampling rates.  

Fig. 6 shows that the IIR filter bank performs better than 

the other filter banks in both the resting phase and the deep 

breathing phase. The four IIR filters are very similar in both 

phases, with the exception that Butterworth (F01) is slightly 

better than the other three. At the same time, each correlation 

coefficient  (CC) value in the four IIR filters of the two phases 
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decreases linearly and slowly when the different sampling 

rates are examined. In Fig. 6, we can see that the IIR filter 

bank has very high CC values in both phases even at low 

sampling rates. This shows that the filter bank is suitable for 

wearables in healthcare. 

For the other filters, F11 performs best in both phases at 

different sampling rates in the FIR filter bank, and its CC 

value is close to the CC values of the IIR filters. F23 

outperforms the other two filters in the WT filter bank and its 

effectiveness is close to the IIR and F11 filters. 

       

     (a) (b) 

Fig. 6.  HeatMap of correlation coefficients between the RRI at 1 kHz and the SSIs at various rates in resting (a), breathing phase (b). 

Table 2.  Average absolute errors between the RRIV/ECG SDNN/ECG, NN50 at 1000 Hz and the SSIV/PPG SDNN/PPG NN50 at different 

sampling rates. 

Note: Phase R and B are resting and breathing phase, respectively. 

Table 3.  RRIV assessment range of normal cardiac autonomic 

function in each age group based on ECG [38].  

Age [y] 20 ~ 29 30 ~ 39 40 ~ 49 50 ~ 59 60 ~ 69 

Rest [ms] 12 ~ 46    6 ~ 32    6 ~ 36    5 ~ 23    7 ~ 19 

Breath [ms]  19 ~ 62    9 ~ 54  14 ~ 48  11 ~ 59    8 ~ 28 

 

Fig. 8 shows the absolute error, measured in microseconds, 

for all filters. For the IIR filter bank, it can be seen that the 

absolute errors of the filters are very low. Especially, at low 

sampling rates, the errors in both phases remain relatively 

low.  This  means  that  their  accuracy  is  good  enough  for 

wearable healthcare applications. For the FIR filter bank, F11 

has the lowest absolute error, which is close to that of the IIF 

filter bank. For F12 and F13, the accuracy becomes very poor 

in both phases below 25 Hz and 200 Hz, respectively. 

Therefore, they are not suitable for healthcare applications, 

especially at lower sampling rates. For the WT filter bank, 

F23 performs better than the other two filters in both phases 

in terms of absolute error.  

At the same time, the anomaly of F21 in absolute error at 

1000 Hz can be seen in the table. This could be due to the 

unsuitable selection of the mother wavelets.  

Filter/ 

Sample rates 

Phase Parameter 1000  

[Hz] 

500  

[Hz] 

250  

[Hz] 

200  

[Hz] 

125  

[Hz] 

100  

[Hz] 

50  

[Hz] 

40  

[Hz] 

25  

[Hz] 

20  

[Hz] 

F01 R SSIV [%] 0.6 0.6 1.2 1.3 1.3 1.4 1.8 2.2 3.4 4.4 

F11 R SSIV [%] 1.4 1.5 2.1 2.2 2.3 2.3 2.8 3 4.1 7.3 

F23 R SSIV [%] 2 2.2 3 2.5 2.9 2.8 3.2 4.7 4.6 5.8 

F01 B SSIV [%] 0.9 1.1 1.2 1.1 1.2 1.2 1.8 2 2.9   3.8 

F11 B SSIV [%] 2.5 2.3 2.3 2.5 2.6 2.7 3.1 3.3 4.2 14.4 

F23 B SSIV [%] 2.6 2.7 2.9 2.5 2.9 3 3.4 5 4.3   5.6 

F01 R SDNN [ms] 0.6 0.6 0.6 0.6 0.8 0.9 2.1 3.1 6.5 9.5 

F11 R SDNN [ms] 1.3 1.4 1.5 1.6 1.7 1.9 3.2 4 7.3 12.4 

F23 R SDNN [ms] 2.7 2.6 2.8 2.1 2.7 2.3 3.4 6.9 7.5 10.8 

F01 B SDNN [ms] 1.2 1.2 1.3 1.3 1.3 1.4 2.2 2.7 5   7.2 

F11 B SDNN [ms] 2.2 2.2 2.2 2.4 2.4 2.6 3.3 3.9 6.3 15.3 

F23 B SDNN [ms] 2.7 2.7 2.9 2.4 2.7 2.6 3.3 6.1 5.6   8.1 

F01 R NN50 [%] 0.8 0.9 0.8 1 1 1.3 1.7 1.7 3.6   3.1 

F11 R NN50 [%] 1.7 1.6 1.8 1.6 1.9 2 3.5 2.2 5.1   4.3 

F23 R NN50 [%] 1.5 1.5 1.5 1.6 1.6 1.8 2.2 2.1 4.1   3.3 

F01 B NN50 [%] 0.8 0.8 0.8 0.9 0.9 1.1 2.2 1.8 3.6   3.1 

F11 B NN50 [%] 2.4 2.4 2.8 2.3 2.7 2.3 4.9 2.8 5.9   5.3 

F23 B NN50 [%] 1.6 1.6 1.7 1.6 1.7 1.9 3.1 2.5 4.8   4.1 
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                                                                      (a)                                                                                      (b) 

Fig. 7.  Evaluation of the best SSIV assessment range of normal cardiac autonomic function with the ROC curve, (a) – the resting phase; 

(b) – the deep breathing phase. 

B. Evaluation of interbeat variation and HRV in PPGs 

In Table 2, three parameters related to heart rhythm 

variability, SSIV, SDNN, and NN50, were used to evaluate 

the accuracy of using PPG instead of ECG. Since the 

calculation of the absolute errors of these parameters is 

performed using (4), the units of measurement for the 

absolute errors are expressed in percent (%) for SSIV and 

NN50 and in ms for SDNN. 

 
(a) 

 
(b) 

Fig. 8.  HeatMap of average absolute errors between the RRI at 

1000 Hz and the SSIs at different sampling rates in resting (a) and 

breathing phases (b). 

The evaluation tests showed the average absolute errors of 

SSIV, SDNN, and NN50 from the filters F01, F11, and F23 

at different sampling rates, related to the test phase in Table 2. 

The F01 IIR filter bank produces the most accurate values for 

SSIV, SDNN, and NN50 compared to all other filters, and 

F01 in particular achieves the best accuracy. In addition, F11 

and F23 showed very low average absolute errors in their 

respective filter bank, as can be seen in Fig. 8.  

In addition, F23 shows greater superiority than F11 as the 

accuracy values are better at the lower sampling rates of 

Table 2. This indicates that the WT filters have good potential 

for use in wearable healthcare applications.  

C. ANS screening for healthcare application 

Table 3 shows the RRIV assessment range for normal 
cardiac autonomic function during the resting and deep 
breathing phases of an outpatient neurological examination 
[31]. Due to the superiority of acquiring PPG signals over 
ECG, the idea of replacing the ECG data in Table 3 with the 
PPG data based on the previous analysis is very promising for 
remote healthcare monitoring.  

To obtain a case of the most appropriate SSIV assessment 
range for normal cardiac autonomic function, it is necessary 
to find the best SSIV assessment range based on a set of 
optimal sensitivity and specificity values of the statistical test 
results. To give an example, the SSIV result with a 1000 Hz 
sampling rate from the Butterworth filter (F01) was used with 
the previous correlation and accuracy analysis. 

To replace RRIV with SSIV in Table 3, the RRIV and 
SSIV values of all participants, totaling 244 cases, were 
screened and confirmed by the neurologist in our research 
team to determine whether their cardiac ANS was normal or 
abnormal. Subsequently, the diagnostic results are treated 
with RRIV as the ground truth and the SSIV results are the 
predictive values. Table 4 shows a confusion matrix based on 
the RRIV ground truth and SSIV substitution value, with the 
SSIV assessment range values for all age groups taken from 
Table 3. In this case, the calculated sensitivity and specificity, 
which are 86.27 % and 98.45 % for the resting phase and 
84.62 % and 98.96 % for the deep breathing phase, are shown 
in the column ‘RRIV source’ in Table 5.  

To obtain the most appropriate normal assessment range of 
the SSIV, an inward/outward scaling strategy using the ROC 
curve is attempted [37]. For a scale-out increment of 1, the 
scope of the RRIV assessment range (Table 3) is extended by 
decreasing the lower limit of the range by 1 and increasing 
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the upper limit of the range by 1. For example, the normal 
assessment range in the resting phase for the 20 to 29 year 
olds is 12 ~ 46 ms; if the normal assessment range is in a 
scale-out increment of 2, it becomes 10 ~ 48 ms; and if the 
range is decreased inward by 4, it becomes 16 ~ 42 ms. Apply 
the same inward/outward scaling strategy for other age 
groups. In Table 5, the term ‘Out+2’ means that the normal 
assessment range is in a scale-out increment of 2, and ‘In-4’ 
means that the range decreases inward by 4. Consequently, 
Table 5 shows seven possible prediction models with 
sensitivity and specificity for different increments and 
decrements. Note that the term ‘RRIV source’ denotes an 
increment or decrement of 0. 

Table 4.  Confusion matrix between RRIV and SSIV in the resting 

and deep breathing phases. 

Phase SSIV 

RRIV 

Abnormal 

[ms] 

RRIV 

Normal 

[ms] 

Resting 
Abnormal 44     2 

Normal   8 190 

Deep breathing 
Abnormal 44     3 

Normal   7 190 

As a screening tool for daily life, the best normal 

assessment range of the SSIV should have the characteristic 

of high sensitivity and low (1 - specificity), resulting in most 

true positives being positive and few true negatives being 

positive. Based on the seven SSIV prediction models in 

Table 5, the ROC curves of the resting and deep breathing 

phases are outlined in Fig. 5. In Fig. 7, the sensitivity and 

specificity of the best cut-off point are 96 % and 92 % in the 

resting phase, and 94 % and 96 % in the deep breathing phase, 

respectively. It can be seen that the SSIV assessment range of 

‘In-1’ in Table 5 comes closest to the best cut points for both 

phases.  

In addition, Fig. 7 shows an evaluation index, namely the 

area under the curve (AUC). In the ROC curves, the AUC 

indicates the discrimination capacity of an SSIV prediction 

model. In the case of Fig. 7, the AUC of the resting and deep 

breathing phases are 0.982 and 0.979, respectively. If the 

value of the AUC is greater than 0.9, the SSIV prediction 

model has excellent discrimination. As a screening tool, this 

result is very accurate and sufficient. The most appropriate 

SSIV assessment range is shown in Table 6.  

Table 5.  The sensitivity and specificity of SSIV in different assessment ranges. 

Phase Rate [%] Out+2  Out+1  RRIV source  In-1  In-2  In-3  In-4 

Rest 
Sensitivity  36.54 63.46 84.62 96.15 96.15 100.00 100.00 

Specificity  98.96 98.96 98.96 91.67 79.69 70.83 59.90 

Breath 
Sensitivity  54.90 70.59 86.27 94.12 94.12 96.08 96.08 

Specificity  99.48 99.48 98.45 95.85 91.19 84.97 78.24 

 

Table 6.  SSIV assessment range of normal cardiac autonomic function in each age group based on PPG. 

Age [y] 20 ~ 29 30 ~ 39 40 ~ 49 50 ~ 59 60 ~ 69 

Rest [ms] 13 ~ 45   7 ~ 31   7 ~ 35   6 ~ 22   8 ~ 18 

Breath [ms] 20 ~ 61 10 ~ 53 15 ~ 47 12 ~ 58   9 ~ 27 
 

5. DISCUSSION 

The evaluation of accuracy and correlation shows the close 

relationship between RRI at 1000 Hz and SSI at different 

sampling rates. Table 2 and Table 3 confirm that the IIR filter 

bank performs very well even at 40 Hz in the two test phases, 

and F11 and F23 have similar results. When evaluating the 

variability of the heart rhythm with PPG, the IIR filter bank 

showed the best accuracy, regardless of the test phase. F12 

produced the worst SSIVs in both phases in the FIR and WT 

filter banks. One possible reason for this is that the detection 

results of the peak detection scheme deviate significantly 

from the true peak position. Moreover, F12 and F13 are not 

both of poor accuracy. Their poor accuracy only occurs at 

frequencies below 200 Hz and 25 Hz, respectively. 

Therefore, their availability still depends on application 

requirements.  

As for the FIR filter bank, its performance is not as good 

as that of the IIR filters. These filters are better at smoothing  

and filtering out noise outside the signal band, but when noise 

is embedded in the signal band, the detected signal peaks used 

to determine the SSIs deviate accordingly, making the 

absolute error higher. However, it seems that only F11 can 

better deal with the problem of signal peak deviation due to 

embedded noise in the signal. For the filter bank of the 

wavelet transform, it can be seen that F23 outperforms the 

other two DWT methods. This is due to the fact that their 

mother wavelets are not close to the morphology of the PPG 

signal curves. In contrast, the mother wavelet of F23 is more 

closely related to the PPG morphology, so its accuracy and 

correlation are better than those of the other two methods.  

For the normal assessment range of cardiac autonomic 

function suitable for SSIV, the discriminating capacity of the 

assessment in the two phases is 0.982 and 0.979, respectively, 

which is recognized as excellent. In practice, it shows that it 

is possible to detect autonomic abnormalities by calculating 

and extracting SSIV values from the processed PPG signals 

at different sampling rates.   
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6. CONCLUSION 

Compared to previous studies, our approach stands out in 

that we systematically evaluate multiple filter types across a 

range of sampling rates, which is rarely addressed in the 

current literature. Most existing work relies on a fixed filter 

or sampling configuration, often optimized for controlled 

environments or non-clinical applications [4], [5], [21]. 

Although some studies show acceptable accuracy for general 

HR estimation, they are not robust enough when applied to 

clinical use cases such as the detection of cardiac autonomic 

neuropathy. In contrast, our study provides a comprehensive 

performance comparison showing that filters such as 

Butterworth and Morlet wavelets exhibit high fidelity in peak 

detection and HRV feature extraction even at low sampling 

rates and variable conditions. This fills a significant research 

gap and lays the foundation for more reliable PPG-based 

diagnostics in both clinical and wearable settings. 

In the literature, some studies focus on heartbeat and heart 

rate detection with wearable devices in daily life, which 

cannot provide sufficiently accurate PPG features. It is clear 

that anti-noise filters performed with different sampling rates 

have not been extensively evaluated, especially for clinical 

trials using SSIV to detect cardiac autonomic neuropathy. In 

this study, PPG was investigated as an alternative to ECG to 

detect cardiac autonomic neuropathy. Since PPG is 

susceptible to noise due to motion artifacts, suitable filters for 

different sampling rates need to be tested for noise immunity.  

All PPG signals were processed and screened for the target 

application of detecting autonomic abnormalities. In the 

experiments, we found that the Butterworth, Bessel, 

Chebyshev, Elliptic, and Savitzky-Golay filters and the 

Morlet wavelet have the best signal preprocessing capabilities 

for the 10 selected sampling rates and thus can accurately 

localize the peaks in the PPG signal to generate interbeat 

intervals. We also investigated these filters to generate other 

PPG-derived parameters such as the interbeat variation, 

SDNN, and NN50. The results show that the above filters are 

still good candidates for the intended application. Finally, the 

normal range of autonomic nerves suitable for SSIV was 

determined by ROC curve analysis. The AUC in the resting 

phase was as high as 98.2 % and in the deep breathing phase 

reached 97.9 %. In conclusion, the IIR filter bank, F11 and 

F23 can provide very satisfactory processing results for 

wearable healthcare applications with lower acquisition rates.  

In addition to healthcare monitoring and clinical screening, 

PPG applications in disease-related screening require highly 

accurate signal processing. For example, participants with 

severe peripheral artery atherosclerosis, including subclavian 

or brachial artery stenosis, may affect the systolic peak of 

pulsation, and the PPG signal is easily disturbed by hand 

movements, an uncooperative participant or those with 

obvious tremor or dyskinesia may not record reliable results. 

In this study, we have only completed the exploration of 

interbeat variation and HRV time-domain parameters. In the 

near future, we need to investigate other parameters suitable 

for disease detection. To explore PPG-based blood pressure 

estimation, blood glucose estimation, biometric 

identification, etc. in depth, a lot of research work needs to be 

done in the future. 
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