
MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 110-121 

DOI: 10.2478/msr-2025-0014  *Corresponding author: 18033823223@163.com (Mochao Pei)  

110 

 

 

 

System Maintainability Estimation with Multi-Peak Time 

Distribution based on the Bayesian Melding Method 

Mochao Pei* , Jianping Hao, Cuijuan Gao 

Shijiazhuang Campus, Army Engineering University of the PLA, No. 97 Heping West Road, Shijiazhuang, Hebei, 050003, 

China, 18033823223@163.com, 2744793779@qq.com, karen_gaocj@163.com 

Abstract: In some test phases of equipment, the small sample size of test data and the absence of some maintenance operations may lead to 

a multi-peak phenomenon in data distribution, which is a challenge for Bayesian information fusion based on maintainability assessment. In 

this paper, prior information at two levels, the system level and the maintenance operation level, is integrated with the field test data via the 

Bayesian melding method (BMM). Mixture priors are used to avoid prior-data conflicts in the Bayesian framework, and a Bayesian posterior 

distribution is used to estimate system maintainability. Adaptive sampling importance resampling (ASIR) is used to overcome computational 

difficulties in simulation algorithms. Compared to the other methods, the proposed method provides more information sources for 

maintainability estimation, whose estimation effect is shown to be satisfactory based on two validation cases.  
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1. INTRODUCTION 

Maintainability by design is an important quality 

characteristic of a product. A high level of maintainability 

means that repairs are quick, easy and economical [1]. An in-

depth study of maintainability can support the development, 

maintenance and support of equipment, providing a solid 

material foundation for combat effectiveness. An important 

aspect of maintainability studies is maintainability 

estimation, which in many cases is an important part of the 

operational suitability assessment in testing and evaluation 

(T&E) of current equipment [2]. Maintainability 

(a probability measure), mean time to repair (MTTR), and 

maximum time to repair [3] are commonly used metrics for 

maintainability evaluation. According to Military Handbooks 

470A (MIL-HDBK-470A), the sample size for the 

maintainability estimation should be at least 30 to ensure 

a high degree of reliability of the estimates [4]. However, it is 

practically impossible to obtain sufficient data for 

maintainability estimation in certain phases of equipment 

testing. This is partly due to the considerable cost of testing 

and partly due to the fact that mapping the performance of the 

equipment is no longer the primary purpose of testing. This 

may result in insufficient fault samples being available for 

maintenance operations. 

Thanks to advances in data acquisition and storage 

technologies, it is possible to collect data from other test 

phases of the equipment, expert knowledge, and data from 

similar equipment in addition to the current field test data. If 

we want to integrate this data, Bayesian theory is a natural 

choice, and the prior distribution specification is a key issue 

in the Bayesian framework. Zellner et al. [5] introduced a data 

quality factor to measure the quality of prior information and 

field test data, which in turn leads to more accurate prior 

distributions. Ibrahim et al. [6] investigated the power prior 

distribution and applied it to regression estimation with good 

results. Zhou C et al. [7] proposed a demonstration method 

using mixture prior distributions for the problem of small-

sample maintainability demonstration with multiple sources 

of prior information, using credibility weighting based on 

quality factors to integrate multiple prior distributions into 

a single one. 
In some phases of T&E, such as operational testing (OT), 

one faces not only the problem that the sample size of 
maintenance time is small, but probably also the problem of 
under-representation of maintenance operations. Due to 
limitations in test time and conditions, some failure modes 
that take longer to uncover may not show up, while others 
may lack excitation conditions, resulting in a lack of the types 
of operations to fix them. When Bayesian theory is used to 
integrate prior information, this missing information about 
maintenance operations can be accounted for at the level of 
the entire system. Consequently, there are two levels of prior 
information to consider: historical maintenance data observed 
from a microscopic viewpoint that is similar to the type of 
maintenance operations in the field test, and historical 
maintenance data observed from a macroscopic viewpoint for 
the entire system that contains this maintenance data. In fact, 
there are many studies in the field of reliability assessment 
that have focused on the integration of different levels of prior 

     Journal homepage:  https://content.sciendo.com 

mailto:18033823223@163.com
mailto:18033823223@163.com
mailto:2744793779@qq.com
https://orcid.org/0009-0000-9468-7007
https://content.sciendo.com/view/journals/msr/msr-overview.xml


MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 110-121 

111 

information. Guo J et al. [8] effectively integrated various 
expert knowledge and data sources at subsystem and system 
levels using the Bayesian melding method (BMM) in 
analyzing system reliability. Yang L et al. [9] integrated 
multilevel prior information using an improved BMM, which 
flexibly balanced the contributions of the prior distributions 
involved in the integration by setting the weighting factors as 
hyperparameters. From the perspective of system theory, the 
integration of different levels of information manifests the 
dialectical relationship between the whole and the local, 
which helps to obtain a more reasonable prior distribution. 
However, no corresponding studies have yet been conducted 
in the field of maintainability assessment. 

When determining the prior distribution, the addition of 

inappropriate prior information can lead to a poor posterior 

distribution, which can have a negative impact on the 

maintainability estimation. It is therefore also necessary to 

check whether there is any significant conflict between the 

prior information and the field test data. The detection of such 

a conflict is generally performed by the consistency test in 

previous studies. Typical methods include the graph 

comparison method [10] and the Bayesian credible interval 

method [11], etc. Zhang Z [12], Zhu Z [13], and Wang J [14] 

all screened prior information from the perspective of data 

consistency. They used parametric or non-parametric 

methods to check whether the prior information and the field 

data were statistically derived from the same population. 

However, the consistency test is performed at a certain 

significance level. If this level is exceeded, the prior 

distribution is discarded, which is a "black or white" approach 

that results in the loss of useful prior information.  

To solve the aforementioned problems, this paper proposes 

a maintainability estimation method that considers the 

integration of two different levels of prior information with 

the field data. The four main contributions of this work can 

be summarized as follows: 

1. In response to the problems of insufficient maintenance 

data and underrepresentation of maintenance operation 

types that existed in some test phases, a BMM-based 

maintainability estimation method that considers the 

prior information on different maintenance operations 

and the one about system level is proposed. 

2. In view of a possible conflict between a prior and the 

field data, a checking method for a prior-data conflict is 

given when the maintenance time follows the 

exponential, normal, and lognormal distribution, 

respectively, as well as a method for avoiding a prior-

data conflict based on mixture priors. 

3. Adaptive sampling importance resampling (ASIR) is 

flexibly applied to several links of the method proposed 

in this paper to solve computational difficulties. 

4. An interesting perspective is provided to gain a deeper 

understanding of the maintenance time distribution for 

complex equipment. 

The rest of this paper is organized as follows: Section 2 

presents the motivation for the research in this paper. 

Section 3 discusses the BMM-based maintainability 

estimation framework in detail. Sections 4 and 5 present 

a numerical case and a practical test case to validate and 

illustrate the benefits, respectively. The last section briefly 

summarizes this paper and draws three conclusions. 

2. MOTIVATION 

The maintenance time is a random variable that is usually 

considered to follow an exponential, normal or lognormal 

distribution [15]. However, it follows a mixture distribution 

when there is more than one time-dependent factor in the 

maintenance process, and its probability density curve then 

takes on a multi-peaked shape [16]. Literature [17] and [18] 

point out that the maintenance time sample set for complex 

equipment is a combination of samples from different types 

of maintenance operations, which is a typical heterogeneous 

dataset. If there are significant differences in the time 

expectations for these different types of maintenance 

operations, the sample set histogram will show multiple 

peaks, the typical sign of a mixture distribution. This 

representation is not incorrect, but it needs to be explained in 

more detail.  

In general, simple or basic maintenance operations follow 

a normal distribution, maintenance operations that can be 

completed after a short adjustment time or a quick 

replacement of parts follow an exponential distribution, and 

the lognormal distribution is suitable for describing the 

maintenance time of all types of complex equipment [19]. 

The maintenance of complex equipment consists of many 

different types of maintenance operations, with the types that 

occur less frequently taking longer, and vice versa. This 

mechanism leads to a distribution of maintenance time that is 

skewed to the "left" and has a long "tail" to the right. Ideally, 

there should be a standard lognormal distribution to model 

the maintenance time of complex equipment. In practice, 

however, this is not the case in some test phases. For example, 

for equipment intended for a specific combat mission, the 

mission-critical subsystems are only some of its components, 

which, together with factors such as the limitations of test 

conditions and test time, means that certain types of 

maintenance operations are not performed, so some "small 

populations" are missing in the lognormal distribution "large 

population" that should be present, thus creating the 

phenomenon of "multiple peaks". In other words, the 

lognormal distribution is the "intrinsic nature" of the 

maintenance time of complex equipment, while the multi-

peak phenomenon is the "extrinsic manifestation" under 

certain conditions. 

3. METHODOLOGIES 

The proposed method is described in detail in this section 

and its flowchart is shown in Fig. 1. First, the natural prior 

distributions for the system and each type of maintenance 

operation are determined based on historical data, and the 

induced system prior is evaluated based on the structural 

model and the natural priors for all maintenance operations. 

Then the BMM is used to obtain an updated prior for each 

maintenance operation, while a prior-data conflict 

elimination is used to determine an uninformative prior for 

each maintenance operation. The uninformative prior and the 

update prior are combined to generate the mixture prior and 

thus the posterior for each maintenance operation. Finally, the 

system maintainability is estimated based on the structural 

model and the posterior of all maintenance operations. 
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Fig. 1.  The flowchart of the proposed method. 

3.1  Model for system maintainability estimation 

The system maintainability 𝑀𝑠(𝑡) at a given time 𝑡 is 

a weighted mean of 𝑛 probabilities [20]: 
 

𝑀𝑠(𝑡) =∑𝑤𝑖𝑀𝑖(𝑡)

𝑛

𝑖=1

 (1) 

 

where 𝑀𝑖(𝑡) is the probability that the 𝑖th maintenance 

operation is completed at time 𝑡. The weight  

𝑤𝑖 = 𝜆𝑖/∑ 𝜆𝑖
𝑛
𝑖=1 , and 𝜆𝑖 denotes the failure rate 

corresponding to the failure object of the 𝑖th maintenance 

operation. To illustrate the methodology presented here, we 

consider three maintenance operations that belong to the 

same system and whose operation times follow exponential, 

lognormal or normal distributions. Thus, 𝑛 = 3, and the 

following equation can easily derived: 

 

{
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 (2) 

 

where  𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5 are the parameters. Historical system-

level data are less prone to "multi-peak" phenomena, because 

they are often richer and more patterned than field test data. 

They can naturally be modeled by a lognormal distribution, 

and the system maintainability function in this case can be 

expressed as follows: 

𝑀′
𝑠(𝑡) =

1

𝜙2√2π
∫
1

𝑥

𝑡

0

 exp [−
1

2
(
ln 𝑥 − 𝜙1

𝜙2
)
2

] d𝑥 (3) 

 

where 𝜙1 and 𝜙2 are the parameters. 

3.2  Determination of prior distributions using historical 

data 

The parameters 𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5 in (2) are all random 

variables in the Bayesian context whose prior distributions 

can be assumed to be in the form of conjugate priors, and 

probability density functions (p.d.f.s) of the following form 

can be derived [21]: 
 

{
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 (4) 

 

which contains one Gamma p.d.f. and two Normal Inverse 

Gamma (N-IG) p.d.f.s. Similarly, the joint prior density form 

of the parameters 𝜙1 and 𝜙2 in (3) is: 
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2) =

√𝑘
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The hyperparameters 𝛼1 and 𝛽1 of 𝜋1(𝜃1) can be deter-

mined using the moment method if historical test data are 

available [22]. If the maintenance time 𝑋 follows an 

exponential distribution, the expected value 𝜇𝑚 and the 

variance 𝜎𝑚
2  of its marginal density 𝑚(𝑥|𝛼1, 𝛽1) are each 

represented as follows: 
 

 𝜇𝑚 = ∫ 𝜇(𝜃)𝜋1(𝜃1)
∞

0

 d𝜃1 =
𝛽1

𝛼1 − 1
 (6) 

 

𝜎𝑚
2 = ∫ (𝜎2(𝜃) + [𝜇(𝜃) − 𝜇𝑚]

2)𝜋1(𝜃1)d𝜃1

+∞

0

= (
𝛽1
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)
2 𝛼1
𝛼1 − 2

 

 (7) 
 

After replacing  𝜇𝑚 and  𝜎𝑚
2  with the sample mean x  and 

sample variance 
2v  of  𝑋, respectively, the estimates of the 

hyperparameters 𝛼1 and 𝛽1 can be derived by a simple 

calculation as follows: 
 

   

{
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2𝑣2

𝑣2 − 𝑥̄2
      

 𝛽̂1 =
(𝑣2 + 𝑥̄2)𝑥̄

𝑣2 − 𝑥̄2

 (8) 

 

Since  𝜋2(𝜃2, 𝜃3
2), 𝜋3(𝜃4, 𝜃5

2)  and  𝜋(𝜙1, 𝜙2
2) are all 

N-IG densities, their hyperparameters are determined by the 

same approach. Taking 𝜋(𝜙1, 𝜙2
2) as an example, the 

hyperparameters 𝜇, 𝑘, 𝑟 and 𝜆 are estimated as follows [23]: 
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where 

 𝐴𝑘 =
1

𝑛
∑𝑋𝑖

𝑘,

𝑛

𝑖=1

𝑘 = 1,2,3,4 (10) 

 

is the 𝑘th moment of the sample of maintenance time 𝑋.  

3.3  Updating the prior using BMM 

In the Bayesian context, 𝑀1, 𝑀2 and 𝑀3 in (2) can also be 

regarded as functions of 𝜃1, (𝜃2, 𝜃3) and (𝜃4, 𝜃5), 
respectively. Then the mapping relationship from the input 

vector 𝜽 = (𝜃1, 𝜃2, 𝜃3, 𝜃4, 𝜃5) to the output variable 𝑀𝑠 can 

be established, denoted as  𝑊:𝜽 → 𝑀𝑠, and the model can be 

further defined as 𝑀𝑠 = 𝑊(𝜽), which is exactly the system 

maintainability model shown in (1) and (2). Since one  𝑀𝑠 

can be mapped by more than one  𝜽, the model is irreversible. 

Take the distribution obtained from expert knowledge or 

historical experimental data as the natural prior and let  𝑞1(𝜽) 
be the natural prior of 𝜽. In (3), 𝑀′

𝑠(𝑡) is strictly 

monotonically decreasing with respect to 𝜙1. Therefore, the 

following inverse function can be easily determined: 

𝜙1 = ℎ(𝜙2, 𝑀𝑠
′) = ln 𝑡 − 𝜙2 ⋅ Φ

−1(𝑀𝑠
′) (11) 

 

where Φ−1(⋅) is the inverse function of the cumulative 

distribution function (c.d.f.) of the standard normal 

distribution. The natural prior 𝑞2(𝑀𝑠) of the system 

maintainability can be solved by combining (5) and (11) as 

follows: 
 

𝑞2(𝑀𝑠) =                        
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−1(𝑀𝑠)−𝜇)
2

2𝜙2
2

+∞

0

d𝜙2
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(12) 

The integral in (12) does not yield a closed expression and 

can be approximated by numerical integration. The structural 

model 𝑀𝑠 = 𝑊(𝜽) corresponds to a transformation of 𝜽. 

Consequently, a distribution of  𝑀𝑠, called the induced prior 

distribution 𝑞1
∗(𝑀𝑠) of system maintainability, can be 

determined based on  𝑞1(𝜽)  and 𝑀𝑠 = 𝑊(𝜽). Since the 

model  𝑀𝑠 = 𝑊(𝜽) is irreversible, numerical calculations are 

required to derive  𝑞1
∗(𝑀𝑠). To do this, a large number of 

random samples of  𝜽 are first generated from  𝑞1(𝜽). Then, 

for each random sample, the model  𝑀𝑠 = 𝑊(𝜽) is used to 

evaluate  𝑀𝑠, resulting in a large number of random samples 

of  𝑀𝑠. Finally, 𝑞1
∗(𝑀𝑠) is estimated based on these random 

samples using kernel density estimation (KDE) [24]. In 

BMM, 𝑞1
∗(𝑀𝑠) and 𝑞2(𝑀𝑠) are integrated by geometric 

pooling, which is: 

 

𝑞3
∗(𝑀𝑠) = 𝜀𝛼 𝑞1

∗(𝑀𝑠)
𝛼  𝑞2(𝑀𝑠)

1−𝛼  (13) 

 

where  𝑞3
∗(𝑀𝑠) is the pooled prior of system maintainability, 

𝛼 is the weight, and 𝜀𝛼 is a normalization constant.  𝑞3
∗(𝑀𝑠) 

can be further transformed into the updated prior  𝑞𝜽(𝜽) of 𝜽: 

 

𝑞𝜽(𝜽) = 𝑞3
∗(𝑀𝑠)

𝑞1(𝜽)

𝑞1
∗(𝑀𝑠)

= 𝜀𝛼𝑞1(𝜽) [
𝑞2[𝑊(𝜽)]

𝑞1
∗[𝑊(𝜽)]

]

1−𝛼

 (14) 

 

The foregoing details show that based on the deterministic 

structural model and natural priors, the BMM integrates the 

prior information of each maintenance operation to the 

system level and further transfers the pooled system 

information to the maintenance operation level. The 

information integration and updating for different levels is 

thus realized.  𝑞𝜽(𝜽) integrates the prior information of  𝑀𝑠 

and 𝜽, and also integrates the structural information of the 

model 𝑀𝑠 = 𝑊(𝜽).  

3.4  Checking and avoiding prior-data conflict 

There is a significant discrepancy between the prior 

information at system level and the field test data. When 

integrated according to (14), there may still be a prior-data 

conflict, although this discrepancy is mitigated to some extent 

by the structural model  𝑀𝑠 = 𝑊(𝜽). It is necessary to avoid 

such a conflict while preserving useful information in the 

prior. 
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3.4.1  Conflict check 

In the Bayesian framework, a prior-data conflict arises 

whenever the prior concentrates most of its mass in the low-

density region of the likelihood [25], which is then measured 

by  𝑃(𝑠0) in the following equation: 

 

 {

𝑃(𝑠0) = 𝐹𝑆(𝑚𝑆(𝑠) ≤ 𝑚𝑆(𝑠0)) 

 𝑚𝑆(𝑠) = ∫𝑝(𝑠|𝜃) 𝑝(𝜃) d𝜃       
𝛩

 (15) 

 

where  𝑆 denotes a minimum sufficient statistic (MSS) for the 

parameter 𝜃 in the sampling model, which in a sense 

condenses all the information about 𝜃 in the data. 𝑠0 denotes 

the observation of  𝑆, 𝑝(𝜃) is the prior p.d.f. of 𝜃, and  𝑝(𝑠|𝜃) 
is the marginal p.d.f. of  𝑆.  𝑚𝑆(𝑠) is known as the p.d.f. of 

the prior predictive distribution. The smaller 𝑃(𝑠0) is, the 

stronger is the tendency that the main mass of the data is 

concentrated in the tails of  𝑚𝑆(𝑠), i.e., the stronger is a prior-

data conflict.  

For a sample 𝑥 = (𝑥1, … , 𝑥𝑛) of maintenance time 𝑋,  

𝑆 = 𝑥̄−1 is an MSS for  𝜃1 in (2) if 𝑋 follows an exponential 

distribution. Since 𝑥̄−1 ∼ IG(𝑛, 𝑛𝜃1) [26], where IG is an 

abbreviation for Inverse Gamma, so: 

 

 𝑝(𝑥̄−1|𝜃1) =
(𝑛𝜃1)

𝑛

Γ(𝑛)
(𝑥̄−1)−𝑛−1𝑒

−
𝑛𝜃1
𝑥̄−1  (16) 

 

Since the prior distribution of 𝜃1 is Gamma(𝛼1, 𝛽1), 
the posterior distribution is then given by 

𝜃1|𝑥 ∼ Gamma(𝛼1 + 𝑛, 𝛽1 + 𝑛𝑥̄) [27]. Consequently, the 

prior predictive density of  𝑥̄−1 can be derived according to 

Bayes’ theorem: 

 

 𝑚(𝑥̄−1) =
𝜋1(𝜃1)𝑝(𝑥̄

−1|𝜃1)

𝜋1(𝜃1|𝑥)
∝  

(𝑥̄−1)−𝑛−1

(𝛽1 + 𝑛/𝑥̄
−1)𝛼1+𝑛

 (17) 

 

where 𝜋1(𝜃1|𝑥) is the p.d.f. of Gamma(𝛼1 + 𝑛, 𝛽1 + 𝑛𝑥̄). 

𝑆 = (𝑥̄, 𝑣2) is an MSS for (𝜃4, 𝜃5
2) in (2) if 𝑋 follows 

a normal distribution, where  𝑣2 is the sample variance of  𝑋. 

Then 𝑥̄ ∼ N(𝜃4, 𝜃5
2/𝑛) is independent of 

𝑣2 ∼ (𝜃5
2/(𝑛 − 1))𝜒2

(𝑛−1)
, so that the marginal density of 

(𝑥̄, 𝑣2) is: 

 

𝑝(𝑥̄, 𝑣2|𝜃4, 𝜃5
2) =

1

√2π
𝜃5

2

𝑛

𝑒

−
(𝑥̄−𝜃4)

2

2𝜃5
2

𝑛
𝑛 − 1

𝜃5
2

𝑒
−
𝑣2(𝑛−1)

2𝜃5
2
(
𝑣2(𝑛 − 1)

𝜃5
2 )

𝑛−3
2

2
𝑛−1
2  Γ (

𝑛 − 1
2

)
 

(18) 

 

Actually, the following equation is clearly known from the 

form of  𝜋3(𝜃4, 𝜃5
2) in (4): 

 

𝜃4|𝜃5
2 ∼ N(𝜇3, 𝜃5

2/𝑘3), 𝜃5
2 ∼ IG(𝑟3/2, 𝜆3/2) (19) 

 

The posterior distribution of  (𝜃4, 𝜃5
2)  is then given as: 

 

{
 𝜃4|𝜃5

2, 𝑥 ∼ N(𝜇𝑥, (𝑛 + 𝑘3)
−1𝜃5

2)

𝜃5
2|𝑥      ∼ IG(𝑟3/2 + 𝑛/2, 𝜆𝑥)   

 (20) 

where  𝜇𝑥 = (𝑛 + 𝑘3)
−1(𝜇3𝑘3 + 𝑛𝑥̄)  

and  𝜆𝑥 = 𝜆3/2 + (𝑛 − 1)𝑣
2/2 + 𝑛(𝑥̄ − 𝜇3)

2/2(𝑛/𝑘3 + 1).  

The joint prior predictive density of  (𝑥̄, 𝑣2)  can be derived 

according to Bayes’ theorem as: 
 

𝑚(𝑥̄, 𝑣2) =
𝜋3(𝜃4, 𝜃5

2) 𝑝(𝑥̄, 𝑣2|𝜃4, 𝜃5
2)

𝜋3(𝜃4, 𝜃5
2|𝑥)

∝
(𝑣2)

𝑛−3
2

(𝜆𝑥)
𝑟3+𝑛
2

 (21) 

 

In the above description, 𝑃(𝑠0) in (15) does not yield 

a closed analytical expression, whose Monte Carlo estimate 

is therefore given here:  

➢ Step 1.  

For given 𝛼1 and  𝛽1[𝜇3, 𝑘3, 𝑟3 and 𝜆3],  

generate 𝜃1[(𝜃4, 𝜃5
2)]  from  𝜋1(𝜃1)[𝜋3(𝜃4, 𝜃5

2)]. 
➢ Step 2.  

For  𝜃1 [(𝜃4, 𝜃5
2)] generated from step 1,  

generate 𝑥̄−1 [(𝑥̄, 𝑣2)] from 𝑝(𝑥̄−1|𝜃1) [𝑝(𝑥̄, 𝑣
2|𝜃4, 𝜃5

2)], 

and evaluate  𝑚(𝑥̄−1)[𝑚(𝑥̄, 𝑣2)] according to (17), (18). 

➢ Step 3.  

Repeat step 1 and step 2 many times and record the 

proportion of 

𝑚(𝑥̄−1)  ≤  𝑚(𝑥̄0
−1) [𝑚(𝑥̄, 𝑣2)  ≤  𝑚(𝑥̄0, 𝑣0

2)],  
where  𝑥̄0

−1[(𝑥̄0, 𝑣0
2)]  is an observation of  𝑥̄−1[(𝑥̄, 𝑣2)] 

based on the sample 𝑥 = (𝑥1, … , 𝑥𝑛). This proportion is 

a Monte Carlo estimate of  𝑃(𝑠0). 
The expressions “[⋅]” in the above three steps correspond 

to the case where 𝑋 follows a normal distribution. If  𝑋 

follows a lognormal distribution, it is sufficient to set  

𝑌 = log(𝑋) and then proceed as in the case of a normal 

distribution. 

3.4.2  Conflict avoidance 

To avoid prior-data conflict, a mixture prior distribution 

𝜋(𝜃|𝐷ℎ , 𝜓)  with the following form is used in this paper: 

 

𝜋(𝜃|𝐷ℎ , 𝜓) = 𝜓𝜋(𝜃) + (1 − 𝜓)𝜋(𝜃|𝐷ℎ) (22) 

 

where 𝜋(𝜃) is the non-informative prior for the parameter 𝜃, 

𝜋(𝜃|𝐷ℎ) is the informative prior constructed from the 

historical data 𝐷ℎ, and the weight 𝜓 is adjusted to incorporate 

as much prior information as possible without prior-data 

conflict, i.e., 

 

𝜓 = inf  {𝜓|𝑃𝜋(𝜃|𝐷ℎ,𝜓)(𝑠0) ≥ 𝛽} (23) 

 

where  𝑃𝜋(𝜃|𝐷ℎ,𝜓)(𝑠0)  denotes the conflict measure between 

the mixture prior 𝜋(𝜃|𝐷ℎ , ) and the field test data 

calculated according to (15), and 𝛽 is a tuning parameter 

whose setting is related to the degree of flexibility assumed 

by the tester. 

In this paper, prior-data conflict checks are required for 

each of the three maintenance operations. The informative 

prior  𝜋(𝜃|𝐷ℎ)  of (22) should be sequentially replaced by the 

corresponding components in the updated prior 𝑞𝜽(𝜽), i.e., 

𝑞(𝜃1)，𝑞(𝜃2, 𝜃3) and  𝑞(𝜃4, 𝜃5). As for the choice of the non-

informative prior  𝜋(𝜃), the absence of the possibility of any 

prior-data conflict should be considered as a necessary 

characteristic of any non-informative prior for our purposes, 
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as suggested in [25]. The choice of  𝜋(𝜃) is not unique and 

should be subjected to a process of trial and error, the result 

of which is that the variance of  𝜋(𝜃) is much larger than that 

of  𝜋(𝜃|𝐷ℎ). This choice should be such that  𝜇𝑚 ≈ 𝑥̄  in (6) 

if the maintenance time 𝑋 follows an exponential distribution. 

If  𝑋  follows a normal distribution, its marginal distribution 

is a generalized Student’s 𝑡 distribution, i.e., [23]: 
 

𝑋|𝜇3, 𝑘3, 𝑟3, 𝜆3  ∼  𝑡𝑟3 (𝜇3,
𝜆3(1 + 𝑘3)

𝑟3𝑘3
) (24) 

 

where 𝜇3 is a mean parameter, 𝑟3 is a degree of freedom 

parameter, and  √𝜆3(1 + 𝑘3)/(𝑟3𝑘3)  is a scale parameter. 

The choice should result in 𝜇3 ≈ 𝑥̄ and 

𝜆3(1 + 𝑘3)/𝑟3𝑘3 ≈ 𝑣
2. The aforementioned approaches 

make prior-data conflict extremely weak when a non-

informative prior is used. If 𝑋 follows a lognormal 

distribution, it is sufficient to set 𝑌 = log(𝑋) and then 

proceed as in the case of a normal distribution. 

3.5  Posterior inference of system maintainability 

According to Bayes’ theorem, the posterior distribution 

𝜋𝜽
𝑠𝑢𝑏 can be evaluated on the basis of the mixture prior 

distribution and the field test data as follows: 
 

𝜋𝜽
𝑠𝑢𝑏 ∝  𝜋(𝜃|𝐷ℎ , 𝜓)𝐿(𝜃) (25) 

 

where 𝐿(𝜃) is the likelihood function for the maintenance 

time observations. The posterior distribution of the 

parameters  𝜃1, 𝜃2, 𝜃3, 𝜃4 and  𝜃5 can be evaluated according 

to (25). By combining (1) and (2), the distribution and the 

estimate of the system maintainability can be determined. The 

results of the evaluation are determined by simulation 

algorithms, which are described later. 

3.6  The application of adaptive sampling importance 

resampling  

Sampling importance resampling (SIR), originally 

developed by Rubin [28], was used for posterior inference to 

overcome the challenges of sampling from complex priors 

and likelihood functions. The basic principle of SIR is to take 

a large number of samples from a known distribution, then re-

weight the samples, and finally resample the samples 

according to the weights to form the target distribution. 

However, the occasional presence of a small number of large 

importance weights may dominate the resampling process 

during the algorithm run, which may cause the SIR to not 

perform well. Liang [29] extended the pruned-enriched 

Rosenbluth method by setting upper bounds on the weights 

to limit the use of certain samples. The enrichment method 

explores a broader range of samples by splitting large weights 

into small ones. In this paper, ASIR is used for three contexts: 

the first is the updated prior  𝑞𝜽(𝜽) in (14), the second is the 

mixture prior 𝜋(𝜃|𝐷ℎ , ) in (22), and the third is the 

posterior  𝜋𝜽
𝑠𝑢𝑏 in (25). The ASIR procedure for 𝑞𝜽(𝜽) is 

shown as follows: 

➢ Step 1.  

Generate initial random samples. That is, generate a set of 

samples  {𝜽𝑗 , 𝑗 = 1, … ,𝑚}  from  𝑞1(𝜽). 

➢ Step 2.  
Calculate resampling weights. 

a. Generate a set of samples  {𝑀𝑠𝑗 , 𝑗 = 1, … ,𝑚}  using the 

mapping relationship 𝑊:𝜽 → 𝑀𝑠 and calculate the 
resampling weight 𝑐𝑗 as follows: 

 

𝑐𝑗 = [
𝑞2[𝑊(𝜽𝑗)]

𝑞1
∗[𝑊(𝜽𝑗)]

]

1−𝛼

 (26) 

 

    where  𝑊(𝜽𝑗) = 𝑀𝑠𝑗 . Based on  {𝑀𝑠𝑗 , 𝑗 = 1, … ,𝑚}, 

KDE is used to obtain  𝑞1
∗[𝑊(𝜽𝑗)], and  𝑞2[𝑊(𝜽𝑗)] is 

calculated according to (12). 

b. Choose 𝑑 weights randomly from  {𝑐𝑗 , 𝑗 = 1, … ,𝑚}  and 

sort them in descending order to obtain  {𝑐𝑗
′ , 𝑗 = 1, … , 𝑑}. 

c. Define a set {𝑦𝑘 , 𝑘 = 1,… , 𝑑} with  𝑦𝑘 = ∑ 𝑐𝑗
′𝑘

𝑗=1    and 

assign the element  𝑦⌊𝛾×𝑑⌋ as the threshold value, where 

𝛾 is an empirical threshold percentage, e.g., 𝛾 = 80 %. 
⌊𝛾 × 𝑑⌋  is the floor value of  𝛾 × 𝑑.  

d. Split any weight 𝑐𝑏 > 𝑦⌊𝛾×𝑑⌋ in  {𝑐𝑗 , 𝑗 = 1, … ,𝑚} into 

𝑔𝑏 = ⌊𝑐𝑏/𝑦⌊𝛾×𝑑⌋ + 1⌋  number of weights  𝑐𝑏/𝑔𝑏  used 

for resampling the corresponding  𝜽𝑏.  
e. Repeat (b)-(d) until the predefined condition, such as 

a certain standard deviation of the sampling weights, is 
met. 

➢ Step 3.  

Resample from {𝜽𝑗, 𝑗 = 1, … ,𝑚} with the importance 

weights derived in step 2. 
The ASIR procedure for  𝜋(𝜃|𝐷ℎ , 𝜓)  is similar to the 

above procedure, where the initial samples are generated 
from  𝜋(𝜃)  and  𝜋(𝜃|𝐷ℎ)  and the initial resampling weights 
have only two values, with  𝜓  assigned to the samples from  
𝜋(𝜃)  and  (1 − 𝜓)  assigned to the samples from  𝜋(𝜃|𝐷ℎ). 
The distribution of the new samples is 𝜋(𝜃|𝐷ℎ , 𝜓). 
Furthermore, these new samples are resampled with their 
likelihood function values in (25) as initial weights, resulting 

in the samples of  𝜋𝜽
𝑠𝑢𝑏. 

4. NUMERICAL CASE FOR VALIDATION 

In this section, a synthetic dataset is provided for 
demonstration purposes. Suppose there are 9 different types 
of maintenance operations for a system whose times follow 
normal distributions with different parameters. A set of 
randomly generated time samples from each of the 9 normal 
distributions is combined into a large sample set. The 
parameters are set as shown in Table 1. Obviously, the sample 
size in Table 1 is also the number of failures corresponding 
to the maintenance operation, and therefore can be used to 
calculate the weight  𝑤𝑖   in (1). 

Three datasets are generated for demonstration. Dataset 1 
was generated using the settings in Table 1 with 834 
maintenance time samples. The data in dataset 1 belonging to 
maintenance operations 1, 2 and 4 are filtered out and 
combined into dataset 2. The time samples for maintenance 
operations 1, 2 and 4 are generated again to form dataset 3, 
with sample sizes of 20, 4 and 14, respectively. These three 
data sets are treated as historical data of the system, historical 
data of maintenance operations 1, 2, and 4 and field test data, 
whose distribution characteristics are illustrated with 
histograms, KDE curves and probability plots, as shown in 
Fig. 2. 
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Table 1.  Parameter settings for maintenance operations. 

Number of 

maintenance 

operation type 

Mean 

parameter  

Variance 

parameter  

Sample 

size 

1 33.49 15.07 132 

2 75.35 64.59 24 

3 17.88 8.33 187 

4 44.45 23.13 96 

5 97.05 160.39 12 

6 25.29 10.81 172 

7 129.12 942.91 4 

8 11.21 8.98 154 

9 58.00 39.06 53 

 

As can be seen in Fig. 2, dataset 1 shows a clear positive 

skewness and fits well with a lognormal distribution. The 

other datasets are multimodal. Based on datasets 1 and 2, the 

natural prior distributions of the system and the three 

maintenance operations with N-IG forms can be determined 

using (9). All hyperparameter estimates are listed in Table 2. 

For a given time  𝑡 = 25, the induced system prior can be 

derived based on the structural model  𝑀𝑠 = 𝑊(𝜽) and the 

natural prior distributions of maintenance operations 1, 2, and 

4. Subsequently, the updated priors of the three operations 

can be evaluated according to (14), which are also treated as 

informative priors in Section 3.4.2. In addition, the non-

informative priors of the maintenance operations can also be 

determined according to the method described in 

Section 3.4.2, whose hyperparameter settings are listed in 

Table 3. The p.d.f. plots for the three maintenance operations 

with informative and non-informative priors are shown in 

Fig. 3, where the informative priors were determined using 

KDE.  

 
                                                                 (a)                                                                                                  (b) 

 
                                                                 (c)                                                                                                  (d) 

Fig. 2.  Illustration of the distribution characteristics of datasets 1, 2 and 3; (a)-(c) Histograms and KDE curves for dataset 1, 2 and 3;  

(d) Probability plot for dataset 1. 
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Table 2.  Hyperparameter estimates for the natural prior 

distributions. 

Hyperparameter source 𝜇̂ 𝑘̂ 𝑟̂ 𝜆̂ 

System 3.22 1 13.06 1.97 

Maintenance operation 1 33.55 1 8.50 49.87 

Maintenance operation 2 74.62 1 4.21 75.17 

Maintenance operation 4 44.90 1 6.45 45.98 

Table 3.  Hyperparameter settings for the non-informative priors. 

Number of maintenance 

operation type 

𝜇̂ 𝑘̂ 𝑟̂ 𝜆̂ 

1 32.32 0.8 1.3 41 

2 72.42 0.4 1.2 50 

4 43.10 0.2 0.1 8 

   

 
                                                 (a)                                                                                                     (b) 

 
                                                (c)                                                                                                      (d) 

 
                                                (e)                                                                                                     (f) 

Fig. 3.  The p.d.f plots for the prior distributions: (a), (c) and (e) Informative priors for maintenance operations 1, 2 and 4, respectively;  

(b), (d) and (f) Non-informative priors for maintenance operations 1, 2 and 4, respectively. 
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As can be seen in Fig. 3, the regions of the heat maps in 

(b), (d) and (f) are more dispersed and flatter, which is 

a characteristic of non-informative priors. Using the methods 

described in Section 3.4.2, the mixture posteriors can be 

evaluated on the basis of non-informative and informative 

priors. In addition, the system maintainability at  𝑡 = 25 can 

be estimated based on the methods described in Section 3.5. 

Similarly, by changing the value of 𝑡, the system 

maintainability at other times can also be estimated. For 

comparison purposes, system maintainability is also 

estimated using the following three methods: 

➢ Method 1:  

Dataset 1 (which is treated as the historical data of the 

system) is fitted with a lognormal distribution whose 

parameters are estimated using maximum likelihood 

estimation (MLE), and the values of its c.d.f. are treated as 

the estimates of system maintainability. 

➢ Method 2:  

The time samples of each maintenance operation in dataset 

3 (which is treated as field test data) are fitted with a normal 

distribution whose parameters are estimated using MLE. 

According to (1), the weighted mean of all normal 

distribution c.d.f values is used as an estimate of the system 

maintainability.    

➢ Method 3:  

In the proposed method, the system-level prior information 

is ignored, i.e., dataset 1 is not used.   

The three methods and the proposed method for estimating 

system maintainability are shown in Fig. 4. 

As can be seen from Fig. 4, the estimates of Methods 2 and 

3 are not far apart, as the same three normal components were 

used to generate datasets 2 and 3. Compared to Method 2, the 

estimates of Method 3 are slightly closer to those of Method 1 

because Method 3 uses more time samples than Method 2 and 

therefore should provide more accurate estimates. The 

estimates of the proposed method are closer to those of 

Method 1 than to those of Methods 2 and 3 because it takes 

into account the system-level prior information compared to 

Method 3. Method 1 uses 834 time samples. Without taking 

into account the differences in test conditions between current 

tests and historical tests, it can be assumed that the estimates 

of Method 1 are closest to the true results. However, there are 

always differences between the various tests, and some of 

these are quite significant. In this study, this is thoroughly 

considered. Therefore, the proposed method provides the 

most reasonable results.   

 

Fig. 4.  Maintainability curves for four estimation methods based on the synthetic data. 

5. A PRACTICAL TEST CASE 

The data used in this case comes from the performance 

tests (PT) and OT for a specific type of wheeled armored 

vehicle (WAV) in 2023. There are several differences 

between PT and OT, such as those related to vehicle drivers, 

road conditions and individual task durations. In addition, the 

OT covered a much shorter period of time than the PT. In 

addition to several WACs of this type, there was also some 

accompanying test equipment that was used to form a tactical 

system to complete the planned combat missions. For the 

purpose of subsequent demonstrations and to meet the 

requirements of proprietary information protection, the actual 

data used in this case was modified accordingly. When 

analyzing the maintenance operations in the tests, it was 

found that some maintenance operations are similar and can 

be grouped into the same categories. Overall, the 28 

maintenance operations that occurred during the OT are 

grouped into three categories and their maintenance times are 

found to follow exponential, normal, and lognormal 

distributions, respectively. In addition, prior information on 

the three maintenance operations was screened in the PT, 

including 58 maintenance time samples. Similar to the 

method in Section 4, the characteristics of the data are shown 

in Fig. 5. The three methods and the proposed method for 

estimating system maintainability are shown in Fig. 6.  
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(a)                                                                                            (b) 

 
(c)                                                                                              (d) 

Fig. 5.  Illustration for the distribution characteristics of practical data; (a)-(c) Histograms and KDE curves for system level data from PT, 

the three maintenance operation data from PT, and the data from OT; (d) Probability plot for OT data. 

As can be seen from Fig. 5 and Fig. 6, the characteristics 

of the datasets are similar to those in Section 4, and the result 

of comparing the maintainability estimates is also similar, 

although the practical maintenance operation times contain 

not only a normal distribution but also an exponential 

distribution and a lognormal distribution.  
 

 

Fig. 6.  Maintainability curves for four estimation methods based on practical data. 
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6. CONCLUSION 

In some test phases of equipment, due to the limited test 

time and conditions, the test data used for the maintainability 

evaluation not only faces the problem of small sample size, 

but also the problem of insufficient representativeness of 

maintenance operations, which may cause the lognormal data 

that should have appeared to have a multi-peak state, which 

in turn poses a challenge to the maintainability estimation 

based on Bayesian information fusion. To overcome this 

challenge, two levels of prior information, the system level 

and the maintenance operation level, are integrated with the 

field test data via BMM. Mixture priors are used to avoid 

prior-data conflicts and a Bayesian posterior distribution is 

used to estimate system maintainability. The main 

conclusions are as follows: 

• BMM can consider prior information at different levels, 

expanding the channels for data sources. 

• The mixture priors provide a balance between the non-

informative prior and the informative prior, avoiding 

prior-data conflicts in the Bayesian framework. 

• Compared with other traditional methods, the proposed 

method can provide more reasonable estimates for 

maintainability. 

In addition to maintainability, MTTR and maximum repair 

time are also important metrics for maintainability 

estimation. The next main task will be to investigate the 

estimation of other metrics. 
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