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Abstract: In some test phases of equipment, the small sample size of test data and the absence of some maintenance operations may lead to
a multi-peak phenomenon in data distribution, which is a challenge for Bayesian information fusion based on maintainability assessment. In
this paper, prior information at two levels, the system level and the maintenance operation level, is integrated with the field test data via the
Bayesian melding method (BMM). Mixture priors are used to avoid prior-data conflicts in the Bayesian framework, and a Bayesian posterior
distribution is used to estimate system maintainability. Adaptive sampling importance resampling (ASIR) is used to overcome computational
difficulties in simulation algorithms. Compared to the other methods, the proposed method provides more information sources for
maintainability estimation, whose estimation effect is shown to be satisfactory based on two validation cases.
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1. INTRODUCTION

Maintainability by design is an important quality
characteristic of a product. A high level of maintainability
means that repairs are quick, easy and economical [1]. An in-
depth study of maintainability can support the development,
maintenance and support of equipment, providing a solid
material foundation for combat effectiveness. An important
aspect of maintainability studies is maintainability
estimation, which in many cases is an important part of the
operational suitability assessment in testing and evaluation
(T&E) of current equipment [2]. Maintainability
(a probability measure), mean time to repair (MTTR), and
maximum time to repair [3] are commonly used metrics for
maintainability evaluation. According to Military Handbooks
470A (MIL-HDBK-470A), the sample size for the
maintainability estimation should be at least 30 to ensure
a high degree of reliability of the estimates [4]. However, it is
practically impossible to obtain sufficient data for
maintainability estimation in certain phases of equipment
testing. This is partly due to the considerable cost of testing
and partly due to the fact that mapping the performance of the
equipment is no longer the primary purpose of testing. This
may result in insufficient fault samples being available for
maintenance operations.

Thanks to advances in data acquisition and storage
technologies, it is possible to collect data from other test
phases of the equipment, expert knowledge, and data from
similar equipment in addition to the current field test data. If
we want to integrate this data, Bayesian theory is a natural
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choice, and the prior distribution specification is a key issue
in the Bayesian framework. Zellner et al. [5] introduced a data
quality factor to measure the quality of prior information and
field test data, which in turn leads to more accurate prior
distributions. Ibrahim et al. [6] investigated the power prior
distribution and applied it to regression estimation with good
results. Zhou C et al. [7] proposed a demonstration method
using mixture prior distributions for the problem of small-
sample maintainability demonstration with multiple sources
of prior information, using credibility weighting based on
quality factors to integrate multiple prior distributions into
a single one.

In some phases of T&E, such as operational testing (OT),
one faces not only the problem that the sample size of
maintenance time is small, but probably also the problem of
under-representation of maintenance operations. Due to
limitations in test time and conditions, some failure modes
that take longer to uncover may not show up, while others
may lack excitation conditions, resulting in a lack of the types
of operations to fix them. When Bayesian theory is used to
integrate prior information, this missing information about
maintenance operations can be accounted for at the level of
the entire system. Consequently, there are two levels of prior
information to consider: historical maintenance data observed
from a microscopic viewpoint that is similar to the type of
maintenance operations in the field test, and historical
maintenance data observed from a macroscopic viewpoint for
the entire system that contains this maintenance data. In fact,
there are many studies in the field of reliability assessment
that have focused on the integration of different levels of prior
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information. Guo J et al. [8] effectively integrated various
expert knowledge and data sources at subsystem and system
levels using the Bayesian melding method (BMM) in
analyzing system reliability. Yang L et al. [9] integrated
multilevel prior information using an improved BMM, which
flexibly balanced the contributions of the prior distributions
involved in the integration by setting the weighting factors as
hyperparameters. From the perspective of system theory, the
integration of different levels of information manifests the
dialectical relationship between the whole and the local,
which helps to obtain a more reasonable prior distribution.
However, no corresponding studies have yet been conducted
in the field of maintainability assessment.

When determining the prior distribution, the addition of
inappropriate prior information can lead to a poor posterior
distribution, which can have a negative impact on the
maintainability estimation. It is therefore also necessary to
check whether there is any significant conflict between the
prior information and the field test data. The detection of such
a conflict is generally performed by the consistency test in
previous studies. Typical methods include the graph
comparison method [10] and the Bayesian credible interval
method [11], etc. Zhang Z [12], Zhu Z [13], and Wang J [14]
all screened prior information from the perspective of data
consistency. They used parametric or non-parametric
methods to check whether the prior information and the field
data were statistically derived from the same population.
However, the consistency test is performed at a certain
significance level. If this level is exceeded, the prior
distribution is discarded, which is a "black or white" approach
that results in the loss of useful prior information.

To solve the aforementioned problems, this paper proposes
a maintainability estimation method that considers the
integration of two different levels of prior information with
the field data. The four main contributions of this work can
be summarized as follows:

1. In response to the problems of insufficient maintenance
data and underrepresentation of maintenance operation
types that existed in some test phases, a BMM-based
maintainability estimation method that considers the
prior information on different maintenance operations
and the one about system level is proposed.

2. In view of a possible conflict between a prior and the
field data, a checking method for a prior-data conflict is
given when the maintenance time follows the
exponential, normal, and lognormal distribution,
respectively, as well as a method for avoiding a prior-
data conflict based on mixture priors.

3. Adaptive sampling importance resampling (ASIR) is
flexibly applied to several links of the method proposed
in this paper to solve computational difficulties.

4. An interesting perspective is provided to gain a deeper
understanding of the maintenance time distribution for
complex equipment.

The rest of this paper is organized as follows: Section 2
presents the motivation for the research in this paper.
Section 3  discusses the BMM-based maintainability
estimation framework in detail. Sections4 and 5 present
anumerical case and a practical test case to validate and
illustrate the benefits, respectively. The last section briefly
summarizes this paper and draws three conclusions.

2. MOTIVATION

The maintenance time is a random variable that is usually
considered to follow an exponential, normal or lognormal
distribution [15]. However, it follows a mixture distribution
when there is more than one time-dependent factor in the
maintenance process, and its probability density curve then
takes on a multi-peaked shape [16]. Literature [17] and [18]
point out that the maintenance time sample set for complex
equipment is a combination of samples from different types
of maintenance operations, which is a typical heterogeneous
dataset. If there are significant differences in the time
expectations for these different types of maintenance
operations, the sample set histogram will show multiple
peaks, the typical sign of a mixture distribution. This
representation is not incorrect, but it needs to be explained in
more detail.

In general, simple or basic maintenance operations follow
a normal distribution, maintenance operations that can be
completed after a short adjustment time or a quick
replacement of parts follow an exponential distribution, and
the lognormal distribution is suitable for describing the
maintenance time of all types of complex equipment [19].
The maintenance of complex equipment consists of many
different types of maintenance operations, with the types that
occur less frequently taking longer, and vice versa. This
mechanism leads to a distribution of maintenance time that is
skewed to the "left" and has a long "tail" to the right. Ideally,
there should be a standard lognormal distribution to model
the maintenance time of complex equipment. In practice,
however, this is not the case in some test phases. For example,
for equipment intended for a specific combat mission, the
mission-critical subsystems are only some of its components,
which, together with factors such as the limitations of test
conditions and test time, means that certain types of
maintenance operations are not performed, so some "small
populations™ are missing in the lognormal distribution "large
population" that should be present, thus creating the
phenomenon of "multiple peaks". In other words, the
lognormal distribution is the “intrinsic nature” of the
maintenance time of complex equipment, while the multi-
peak phenomenon is the "extrinsic manifestation" under
certain conditions.

3. METHODOLOGIES

The proposed method is described in detail in this section
and its flowchart is shown in Fig. 1. First, the natural prior
distributions for the system and each type of maintenance
operation are determined based on historical data, and the
induced system prior is evaluated based on the structural
model and the natural priors for all maintenance operations.
Then the BMM is used to obtain an updated prior for each
maintenance operation, while a prior-data conflict
elimination is used to determine an uninformative prior for
each maintenance operation. The uninformative prior and the
update prior are combined to generate the mixture prior and
thus the posterior for each maintenance operation. Finally, the
system maintainability is estimated based on the structural
model and the posterior of all maintenance operations.
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Fig. 1. The flowchart of the proposed method.

3.1 Model for system maintainability estimation

The system maintainability M,(t) at a given time t is
a weighted mean of n probabilities [20]:

My(6) = ) wiMi(6) M

i=1

where M;(t) is the probability that the i maintenance
operation is completed at time t. The weight
w; =A;/XA;, and A; denotes the failure rate
corresponding to the failure object of the i maintenance
operation. To illustrate the methodology presented here, we
consider three maintenance operations that belong to the
same system and whose operation times follow exponential,
lognormal or normal distributions. Thus, n =3, and the
following equation can easily derived:

M;(t)=1—e 0t
M,(t) = ! ftl exp [—l(—lnx _ 62)2] dx
021 )y x 2 63 2)
1t 1/x — 6,\°
esmfo exp[_i( ) ]d"

where 6, 6,,05,0,, 05 are the parameters. Historical system-
level data are less prone to "multi-peak” phenomena, because
they are often richer and more patterned than field test data.
They can naturally be modeled by a lognormal distribution,
and the system maintainability function in this case can be
expressed as follows:

M;(t) =

;o1 t1 1/Inx — ¢\ >
e A e I R

where ¢, and ¢, are the parameters.

3.2 Determination of prior distributions using historical
data

The parameters 6,,6,,05,0,,05 in (2) are all random
variables in the Bayesian context whose prior distributions
can be assumed to be in the form of conjugate priors, and
probability density functions (p.d.f.s) of the following form
can be derived [21]:

- B al-1 ,-plot
m(61) = Tah ' ¢
T2
(ﬁ)7 -1,-3 Aptko (6, —p5)?
\/k—z 2 (932) 2 e 26,7
1 (3)
3

\/k_ (%)2 —r3—3  _Aatks(0,—ps)®
3 (952) 2 265°

7T3(94: 952) = 5 e

= ()

which contains one Gamma p.d.f. and two Normal Inverse
Gamma (N-IG) p.d.f.s. Similarly, the joint prior density form
of the parameters ¢, and ¢, in (3) is:

”2(92» 932) = (4)

T

o EG) e et
7'[(¢1:¢2 ) = \/T_T[ F(%) (¢2 ) e b2 )

112



MEASUREMENT SCIENCE REVIEW, 25, (2025), No. 3, 110-121

The hyperparameters a, and B, of m;(6;) can be deter-
mined using the moment method if historical test data are
available [22]. If the maintenance time X follows an
exponential distribution, the expected value u,, and the
variance ¢ of its marginal density m(x|ay,B;) are each
represented as follows:

* B
b = [ w@)m (0)) a6, = P ©
0
400 2
wh= [ @@+ ) = im0 = () 75
()

After replacing u,, and o2 with the sample mean X and

sample variance v of X, respectively, the estimates of the
hyperparameters a; and S; can be derived by a simple
calculation as follows:

(’d 3 20?2

17 p2 _ %2
{ . W+ xDx ®)
kﬁl: vz_jz

Since m,(6,,05%), m3(0,,05>) and w(¢py,p,>) are all
N-IG densities, their hyperparameters are determined by the
same approach. Taking m(¢,, ¢,%) as an example, the
hyperparameters u, k, r and A are estimated as follows [23]:

le =4
k=1
) —13—4;11 + 44,24, + 24,2 —%A4
T —§A14+A22 —%A4 9)
. —g(A2 —A,%)(54,* — 64,74, + A,)
—%Al“ + 24,74, + A,% — %A4
where

Zxkk_1234

is the k™ moment of the sample of maintenance time X.

(10)

3.3 Updating the prior using BMM

In the Bayesian context, M;, M, and M5 in (2) can also be
regarded as functions of 6,,(6,,6;) and (8,,05),
respectively. Then the mapping relationship from the input
vector 8 = (6,4, 6,, 05, 0,,05) to the output variable M can
be established, denoted as W: 8 — M., and the model can be
further defined as My = W (@), which is exactly the system
maintainability model shown in (1) and (2). Since one M,
can be mapped by more than one 8, the model is irreversible.
Take the distribution obtained from expert knowledge or
historical experimental data as the natural prior and let g, (0)
be the natural prior of 6. In (3), M (t) is strictly
monotonically decreasing with respect to ¢,. Therefore, the
following inverse function can be easily determined:

¢1 = h(¢2, M) =Int — ¢, - P71 (My) 11)
where ®~'(-) is the inverse function of the cumulative
distribution function (c.d.f.) of the standard normal
distribution. The natural prior q,(M,) of the system
maintainability can be solved by combining (5) and (11) as

follows:

q2 (Ms) =
|o[Int —

+o0 —1 Ms
= f n'(lnt— ¢y - ©H(M), ¢22)| ( )]l
0

|d¢’22 =

6M

d,”

-
BV VE @ v ore Aeknesse S’
V) eff (¢22) 2 262"
0

r2)

(12)

The integral in (12) does not yield a closed expression and
can be approximated by numerical integration. The structural
model M, = W (@) corresponds to a transformation of 6.
Consequently, a distribution of Mg, called the induced prior
distribution q;(M,) of system maintainability, can be
determined based on ¢q,(@) and Mg = W(8@). Since the
model M; = W (@) is irreversible, numerical calculations are
required to derive q;(M,). To do this, a large number of
random samples of @ are first generated from g,(0). Then,
for each random sample, the model Mg = W(8) is used to
evaluate M, resulting in a large number of random samples
of M. Finally, q;(M,) is estimated based on these random
samples using kernel density estimation (KDE) [24]. In
BMM, qi(M,) and q,(M,) are integrated by geometric
pooling, which is:

q3(M;) = &, q1(Ms)* q, (Ms)l_a (13)
where g3 (M,) is the pooled prior of system maintainability,
a is the weight, and ¢, is a normalization constant. q3(My)
can be further transformed into the updated prior gq(8) of 6:

(14)

XC L[W (8
0(0) = 0504 2 = e (@) [ 20 o

GMy) (W (6)]

The foregoing details show that based on the deterministic
structural model and natural priors, the BMM integrates the
prior information of each maintenance operation to the
system level and further transfers the pooled system
information to the maintenance operation level. The
information integration and updating for different levels is
thus realized. gq(0) integrates the prior information of M
and 6, and also integrates the structural information of the
model M; = W(0).

3.4 Checking and avoiding prior-data conflict

There is a significant discrepancy between the prior
information at system level and the field test data. When
integrated according to (14), there may still be a prior-data
conflict, although this discrepancy is mitigated to some extent
by the structural model M, = W (). It is necessary to avoid
such a conflict while preserving useful information in the
prior.
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3.4.1 Conflict check

In the Bayesian framework, a prior-data conflict arises
whenever the prior concentrates most of its mass in the low-
density region of the likelihood [25], which is then measured
by P(s,) in the following equation:

P(sp) = Fs(ms(s) < ms(so))

ms(s) = [ p(s16) p(®) a6 (15)

where S denotes a minimum sufficient statistic (MSS) for the
parameter 6 in the sampling model, which in a sense
condenses all the information about 8 in the data. s, denotes
the observation of S, p(6) is the prior p.d.f. of 6, and p(s|9)
is the marginal p.d.f. of S. mg(s) is known as the p.d.f. of
the prior predictive distribution. The smaller P(s,) is, the
stronger is the tendency that the main mass of the data is
concentrated in the tails of mg(s), i.e., the stronger is a prior-
data conflict.

For a sample x = (x4, ...,x,) of maintenance time X,
S =x"1isan MSS for 8, in (2) if X follows an exponential
distribution. Since ™! ~ IG(n,n6;) [26], where IG is an
abbreviation for Inverse Gamma, so:

(6" z—1y-n-1 —%
fy & e

p(x716y) = (16)

Since the prior distribution of 6; is Gamma(a,, B,),
the  posterior  distribution is then given by
0:|x ~ Gamma(a; + n,B; + nx) [27]. Consequently, the

prior predictive density of x~! can be derived according to
Bayes’ theorem:

()2.—1)—11—1
B+ n/zHse

m,(6,)p(x7116,)

mE D == am

7)

where m;(0,|x) is the p.d.f. of Gamma(a; + n, B; + nx).
S = (x,v%) is an MSS for (6,,6s%) in (2) if X follows
a normal distribution, where v? is the sample variance of X.
Then % ~ N(8,,05%/n) is independent  of
v? ~ (05°/(n— 1))?(2(11—1)' so that the marginal density of
(%,v?) is:

v2(n-1) n-3
(@8, o 207 (V(n—D)?
oo, 2 1 265" n—1 65°
p(x,v |64:95 )=——=e [
27 (")

2 952
(18)

2=
n

Actually, the following equation is clearly known from the
form of m5(8,,05%) in (4):

94|952 ~ N(.U3'952/k3)' 952 ~1G(r3/2,23/2) (19)
The posterior distribution of (6,,05%) is then given as:

{94|952,x ~ N, (0 + k3)765%)

5 (20)
0s°|lx  ~1G(3/2+n/2,1,)

where p, = (n + k)™ (usks + nx)

and A, = A3/2+ (n — Dv?/2 + n(x — u3)?/2(n/k; + 1).
The joint prior predictive density of (x,v?) can be derived

according to Bayes’ theorem as:

n-3
e, vty = OO P9, 05) @,
' 73(64, 952|x) (Ax)r32+n

In the above description, P(sqy) in (15) does not yield
a closed analytical expression, whose Monte Carlo estimate
is therefore given here:

» Step 1.

For given a; and f3;[us, ks, 75 and A5],

generate 6, [(6,,685°)] from 1, (6;)[m5(6,4, 65%)].
» Step 2.

For 6, [(6,,65)] generated from step 1,

generate 1 [(x, v2)] from p(27116y) [p(%, v?|64, 6571,

and evaluate m(x~1)[m(x,v?)] according to (17), (18).
» Step 3.

Repeat step 1 and step 2 many times and record the

proportion of

mx™") < m(x ) [m(x,v?) < m(x, v,

where x,71[(%,,v)] is an observation of x~![(x,v?)]

based on the sample x = (xy, ..., x,). This proportion is

a Monte Carlo estimate of P(sy).

The expressions “[-]” in the above three steps correspond
to the case where X follows a normal distribution. If X
follows a lognormal distribution, it is sufficient to set
Y =log(X) and then proceed as in the case of a normal
distribution.

3.4.2 Conflict avoidance

To avoid prior-data conflict, a mixture prior distribution
w(0|Dy, ) with the following form is used in this paper:
7(60|Dp, ¥) = Ym(6) + (1 — P)m(61Dy) (22)
where 1t(0) is the non-informative prior for the parameter 6,
w(6|Dy) is the informative prior constructed from the
historical data D;,, and the weight v is adjusted to incorporate
as much prior information as possible without prior-data
conflict, i.e.,
Y = inf {y|PTEPR¥) (s50) > B} (23)
where PT@IPr¥)(s.) denotes the conflict measure between
the mixture prior mw(0|Dy, ¥ ) and the field test data

calculated according to (15), and B is a tuning parameter
whose setting is related to the degree of flexibility assumed
by the tester.

In this paper, prior-data conflict checks are required for
each of the three maintenance operations. The informative
prior m(6|D;) of (22) should be sequentially replaced by the
corresponding components in the updated prior go(8), i.e.,
q(6,), q(6,,05)and q(6,,0s). As for the choice of the non-
informative prior 7(6), the absence of the possibility of any
prior-data conflict should be considered as a necessary
characteristic of any non-informative prior for our purposes,
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as suggested in [25]. The choice of w(8) is not unique and
should be subjected to a process of trial and error, the result
of which is that the variance of 7 (0) is much larger than that
of m(68|Dy). This choice should be such that p,, = & in (6)
if the maintenance time X follows an exponential distribution.
If X follows a normal distribution, its marginal distribution
is a generalized Student’s t distribution, i.e., [23]:

A;(1 + k3)>

ks (24)

Xlps ks, 13,45 ~ ty, <ﬂ3'

where u; is a mean parameter, r; is a degree of freedom

parameter, and \//13(1 + k3)/(r3k3) is a scale parameter.
The  choice  should result in pu;=x and
As(1 + k3)/r3ks =~ v2. The aforementioned approaches
make prior-data conflict extremely weak when a non-
informative prior is used. If X follows a lognormal
distribution, it is sufficient to set Y =log(X) and then
proceed as in the case of a normal distribution.

3.5 Posterior inference of system maintainability

According to Bayes’ theorem, the posterior distribution
3P can be evaluated on the basis of the mixture prior
distribution and the field test data as follows:

5P o 1(6]Dy, PIL(6) (25)
where L(6) is the likelihood function for the maintenance
time observations. The posterior distribution of the
parameters 6,,80,,65,0, and < can be evaluated according
to (25). By combining (1) and (2), the distribution and the
estimate of the system maintainability can be determined. The
results of the evaluation are determined by simulation
algorithms, which are described later.

3.6 The application of adaptive sampling importance
resampling

Sampling importance resampling (SIR), originally
developed by Rubin [28], was used for posterior inference to
overcome the challenges of sampling from complex priors
and likelihood functions. The basic principle of SIR is to take
a large number of samples from a known distribution, then re-
weight the samples, and finally resample the samples
according to the weights to form the target distribution.
However, the occasional presence of a small number of large
importance weights may dominate the resampling process
during the algorithm run, which may cause the SIR to not
perform well. Liang [29] extended the pruned-enriched
Rosenbluth method by setting upper bounds on the weights
to limit the use of certain samples. The enrichment method
explores a broader range of samples by splitting large weights
into small ones. In this paper, ASIR is used for three contexts:
the first is the updated prior g4(0) in (14), the second is the
mixture prior n(9|Dh, ¥ ) in (22), and the third is the

posterior m3*? in (25). The ASIR procedure for gg(8) is
shown as follows:
» Step 1.
Generate initial random samples. That is, generate a set of
samples {6;,j = 1,...,m} from g, ().

» Step 2.
Calculate resampling weights.
a. Generate a set of samples {M;;,j = 1,...,m} using the
mapping relationship W:8 — M, and calculate the
resampling weight c; as follows:
1-a
_ [qz[W(ej ] 26)
W (8))]

where W (8,) = M;. Based on {M;;,j =1,..,m},
KDE is used to obtain q;[W(8;)], and q,[W ()] is
calculated according to (12).

b. Choose d weights randomly from {c;,j = 1, ..., m} and
sort them in descending order to obtain {c;,j = 1, ..., d}.

c. Define a set {y,, k = 1,...,d} with y, =¥*_ ¢/ and
assign the element y,, 4 as the threshold value, where
y is an empirical threshold percentage, e.g., ¥ = 80 %.
ly x d] is the floor value of y x d.

d. Split any weight ¢, > yjyxq) in {cj,j = 1,..,m} into
gy = [cb/yh,xdj + 1J number of weights ¢,/g, used
for resampling the corresponding 8,,.

e. Repeat (b)-(d) until the predefined condition, such as
a certain standard deviation of the sampling weights, is
met.

» Step 3.

Resample from {6, =1,..,m} with the importance

weights derived in step 2.

The ASIR procedure for m(6|Dy, ) is similar to the
above procedure, where the initial samples are generated
from 7 (6) and w(6|D;) and the initial resampling weights
have only two values, with 1 assigned to the samples from
m(0) and (1 —) assigned to the samples from w(6|D,).
The distribution of the new samples is w(0|Dy,¥).
Furthermore, these new samples are resampled with their
likelihood function values in (25) as initial weights, resulting
in the samples of mg¥?.

G

4, NUMERICAL CASE FOR VALIDATION

In this section, a synthetic dataset is provided for
demonstration purposes. Suppose there are 9 different types
of maintenance operations for a system whose times follow
normal distributions with different parameters. A set of
randomly generated time samples from each of the 9 normal
distributions is combined into a large sample set. The
parameters are set as shown in Table 1. Obviously, the sample
size in Table 1 is also the number of failures corresponding
to the maintenance operation, and therefore can be used to
calculate the weight w; in (1).

Three datasets are generated for demonstration. Dataset 1
was generated using the settings in Table 1 with 834
maintenance time samples. The data in dataset 1 belonging to
maintenance operations 1, 2 and 4 are filtered out and
combined into dataset 2. The time samples for maintenance
operations 1, 2 and 4 are generated again to form dataset 3,
with sample sizes of 20, 4 and 14, respectively. These three
data sets are treated as historical data of the system, historical
data of maintenance operations 1, 2, and 4 and field test data,
whose distribution characteristics are illustrated with
histograms, KDE curves and probability plots, as shown in
Fig. 2.
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Table 1. Parameter settings for maintenance operations.

As can be seen in Fig. 2, dataset 1 shows a clear positive
skewness and fits well with a lognormal distribution. The

Number of Mean Variance Sample .
maintenance parameter parameter  size other datas_ets are multlmodal. Based on datasets 1 and 2, the
operation type natyral prior dlstr[butlon_s of the system and the three
1 33.49 15.07 132 maintenance operations with N-1G forms can be determined
: ' using (9). All hyperparameter estimates are listed in Table 2.
2 75.35 64.59 24 For a given time t = 25, the induced system prior can be
3 17.88 8.33 187 derived based on the structural model M, = W (@) and the
4 44.45 23.13 96 natural prior distributions of maintenance operations 1, 2, and
4. Subsequently, the updated priors of the three operations
> 97.05 16039 12 can be evaluated according to (14), which are also treated as
6 25.29 10.81 172 informative priors in Section 3.4.2. In addition, the non-
7 129.12 942.91 4 informative priors of the maintenance operations can also be
8 11.21 8.98 154 determined according to the method described in
Section 3.4.2, whose hyperparameter settings are listed in
9 58.00 39.06 53
Table 3. The p.d.f. plots for the three maintenance operations
with informative and non-informative priors are shown in
Fig. 3, where the informative priors were determined using
KDE.
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Fig. 2. lllustration of the distribution characteristics of datasets 1, 2 and 3; (a)-(c) Histograms and KDE curves for dataset 1, 2 and 3;
(d) Probability plot for dataset 1.
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Table 2. Hyperparameter estimates for the natural prior Table 3. Hyperparameter settings for the non-informative priors.
distributions.

_ _ Number of maintenance Jii k 7 i
Hyperparameter source Q k 7 A operation type
System 322 1 1306 197 1 3232 0.8 13 41
Maintenance operation 1 3355 1 850 49.87 2 7242 04 1.2 50
Maintenance operation 2 7462 1 421 75.17 4 43.10 0.2 0.1 8
Maintenance operation 4 4490 1 645 4598
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Fig. 3. The p.d.f plots for the prior distributions: (a), (c) and (e) Informative priors for maintenance operations 1, 2 and 4, respectively;
(b), (d) and (f) Non-informative priors for maintenance operations 1, 2 and 4, respectively.
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As can be seen in Fig. 3, the regions of the heat maps in
(b), (d) and (f) are more dispersed and flatter, which is
a characteristic of non-informative priors. Using the methods
described in Section 3.4.2, the mixture posteriors can be
evaluated on the basis of non-informative and informative
priors. In addition, the system maintainability at ¢ = 25 can
be estimated based on the methods described in Section 3.5.
Similarly, by changing the value of t, the system
maintainability at other times can also be estimated. For
comparison purposes, system maintainability is also
estimated using the following three methods:

» Method 1:

Dataset 1 (which is treated as the historical data of the

system) is fitted with a lognormal distribution whose

parameters are estimated using maximum likelihood
estimation (MLE), and the values of its c.d.f. are treated as
the estimates of system maintainability.

» Method 2:

The time samples of each maintenance operation in dataset

3 (which is treated as field test data) are fitted with a normal

distribution whose parameters are estimated using MLE.

According to (1), the weighted mean of all normal

distribution c.d.f values is used as an estimate of the system

maintainability.

» Method 3:

In the proposed method, the system-level prior information

is ignored, i.e., dataset 1 is not used.

The three methods and the proposed method for estimating
system maintainability are shown in Fig. 4.

As can be seen from Fig. 4, the estimates of Methods 2 and
3 are not far apart, as the same three normal components were
used to generate datasets 2 and 3. Compared to Method 2, the
estimates of Method 3 are slightly closer to those of Method 1
because Method 3 uses more time samples than Method 2 and
therefore should provide more accurate estimates. The
estimates of the proposed method are closer to those of
Method 1 than to those of Methods 2 and 3 because it takes
into account the system-level prior information compared to
Method 3. Method 1 uses 834 time samples. Without taking
into account the differences in test conditions between current
tests and historical tests, it can be assumed that the estimates
of Method 1 are closest to the true results. However, there are
always differences between the various tests, and some of
these are quite significant. In this study, this is thoroughly
considered. Therefore, the proposed method provides the
most reasonable results.
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Fig. 4. Maintainability curves for four estimation methods based on the synthetic data.

5. APRACTICAL TEST CASE

The data used in this case comes from the performance
tests (PT) and OT for a specific type of wheeled armored
vehicle (WAV) in 2023. There are several differences
between PT and OT, such as those related to vehicle drivers,
road conditions and individual task durations. In addition, the
OT covered a much shorter period of time than the PT. In
addition to several WACs of this type, there was also some
accompanying test equipment that was used to form a tactical
system to complete the planned combat missions. For the
purpose of subsequent demonstrations and to meet the
requirements of proprietary information protection, the actual

data used in this case was modified accordingly. When
analyzing the maintenance operations in the tests, it was
found that some maintenance operations are similar and can
be grouped into the same categories. Overall, the 28
maintenance operations that occurred during the OT are
grouped into three categories and their maintenance times are
found to follow exponential, normal, and lognormal
distributions, respectively. In addition, prior information on
the three maintenance operations was screened in the PT,
including 58 maintenance time samples. Similar to the
method in Section 4, the characteristics of the data are shown
in Fig. 5. The three methods and the proposed method for
estimating system maintainability are shown in Fig. 6.
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Fig. 5. lllustration for the distribution characteristics of practical data; (a)-(c) Histograms and KDE curves for system level data from PT,
the three maintenance operation data from PT, and the data from OT; (d) Probability plot for OT data.

As can be seen from Fig. 5 and Fig. 6, the characteristics
of the datasets are similar to those in Section 4, and the result
of comparing the maintainability estimates is also similar,

although the practical maintenance operation times contain
not only a normal distribution but also an exponential
distribution and a lognormal distribution.

1.0f
0.8r
=
2
—0.6F
=
5]
5
@
S
£0.47
)
=
0.2¢ 78K e Method 1
—®- Method 2
—& = Method 3
0.0F PR —¢— The proposed method

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Maintenance time/min

Fig. 6. Maintainability curves for four estimation methods based on practical data.
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6. CONCLUSION

In some test phases of equipment, due to the limited test
time and conditions, the test data used for the maintainability
evaluation not only faces the problem of small sample size,
but also the problem of insufficient representativeness of
maintenance operations, which may cause the lognormal data
that should have appeared to have a multi-peak state, which
in turn poses a challenge to the maintainability estimation
based on Bayesian information fusion. To overcome this
challenge, two levels of prior information, the system level
and the maintenance operation level, are integrated with the
field test data via BMM. Mixture priors are used to avoid
prior-data conflicts and a Bayesian posterior distribution is
used to estimate system maintainability. The main
conclusions are as follows:

¢ BMM can consider prior information at different levels,
expanding the channels for data sources.

The mixture priors provide a balance between the non-
informative prior and the informative prior, avoiding
prior-data conflicts in the Bayesian framework.
Compared with other traditional methods, the proposed
method can provide more reasonable estimates for
maintainability.

In addition to maintainability, MTTR and maximum repair
time are also important metrics for maintainability
estimation. The next main task will be to investigate the
estimation of other metrics.
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