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Abstract: The rapid development of intelligent systems has had a significant impact on healthcare, forensics, and medicine, offering 

innovative solutions to critical problems. Breast cancer, which affects a large number of women each year, requires effective methods for 

early detection and accurate diagnosis to improve patient outcomes. This study introduces a hybrid feature selection method based on genetic 

algorithm (GA) and Bucket of Models (BoM) approach to improve breast cancer detection and classification. In the proposed method, GA 

is used to identify the most relevant features from the breast cancer diagnosis data, to improve the efficiency of the classification process. 

BoM is then used to select the optimal classification model from a set of candidates, to further improve the accuracy of diagnosis. The 

support vector machine (SVM) is used as the primary classifier due to its robustness in classifying medical data. The GA feature selection 

process includes encoding chromosomes, initializing the population, evaluating fitness, and iterating through reproduction steps, that 

systematically evaluate and select the most informative features for breast cancer diagnosis. In this study, a breast cancer detection accuracy 

of 97.16 % was achieved, which is a superior performance compared to existing state-of-the-art methods. This study contributes to the 

development of more accurate and efficient breast cancer screening tools to help healthcare providers make informed diagnostic decisions. 
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1. INTRODUCTION 

Breast cancer [1] is one of the most prevalent and 
consequential diseases in the world today, affecting millions 
of people, especially women. Breast cancer is not just a health 
problem or a tumor [2], but a critical disease where early 
detection and necessary treatment are especially important. In 
the early stages, breast cancer does not show any significant 
symptoms [3], but only small lesions on the skin, swelling in 
the breast or armpit, which are highly unlikely to be detected. 
In modern times, advanced methods of treating breast cancer 
have developed, but these treatments require an adequate 
system for early detection. According to a report published 
by the World Health Organization (WHO), 2.3 million new 
cases of breast cancer were registered in 2024, of which 93 % 
of patients are not aware of their infection in the earlier stages, 
as the disease does not show any decisive symptoms.  

The three conventional methods for detecting breast cancer 
are physical examination, mammography, and biopsy. Breast 
cancer is detected using imaging techniques such as 
mammography [4], magnetic resonance imaging (MRI) [5] or 
3-D mammography. Mammography images are a type of X-
ray images [6] of the human breast. 

Advances in technology and the incorporation of machine 

learning (ML) algorithms are helping and contributing to the 

detection of breast cancer at an earlier stage. Some of the 

well-known ML algorithms are k-nearest neighbor (KNN) 

algorithm [7], decision tree (DT) algorithm [8], logistic 

regression (LR), Naive Bayes (NB) algorithm [9], and 

random forest (RF) classifier [10]. The biggest challenge with 

the existing methods for early detection of breast cancer is the 

imbalance dataset. The self-generated imbalance dataset 

consists of a large number of features that may be essential 

and redundant and interfere with the classification process.  

On the other hand, it is not only painful but also expensive, 

invasive, and time-consuming [7]. It is imperative that 

improved methods are used to detect breast cancer [8]. It has 

been mentioned that the chances of successfully treating 

breast cancer are significantly higher if the disease is detected 

at an earlier stage [9]. The optimization of feature selection 

from medical data is achieved by using a hybrid GA, which 

ultimately leads to an improvement in the accuracy of 

detection and classification models [10]. The main contribu-

tions of this proposed work are as follows: 
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• The novel framework performs an optimized feature 
selection and supports a robust classification process.  

• The introduced ensemble model performs breast 
classification with minimal computational cost.  

• The proposed model reduces the redundancy in terms of 
features and exhibits better computational accuracy.  

The manuscript is organized into an analysis of recent 

related work in Section 2 and a detailed description of the 

proposed work in Section 3. The performance analysis and 

comparative analysis are presented in Section 4 with 

conclusive remarks in Section 5. 

2. RELATED WORK 

Basaad et al. (2024) used the characteristics of graph neural 

networks (GNN) [11] for the detection of breast cancer. The 

accuracy of this model is reported to be 83.16 %. Supriya et 

al. (2024) proposed a traditional ML and deep learning (DL) 

model for breast cancer prediction using the federated 

learning (FL) method [12]. The framework used the 

Wisconsin diagnostic breast cancer (WDBC) dataset for 

training the model and for testing purposes. The accuracy of 

this model was measured to be 94.73 %. Chen et al. (2024) 

proposed a modality specific information disentanglement 

(MoSID) method [13] for the earlier prediction of breast 

cancer. The major drawback of this model is that the MRI 

image can only be used for certain women and not for all 

diseased women. 

Furtney et al. (2023) have developed a model for breast 

cancer detection using the multi-relational directed graph 

method [14]. This method accepts the MRI image of the 

patient and evaluates the features using relational graph 

convolutional neural networks for detecting probabilities of 

molecular subtypes. Wang et al. (2023) proposed a novel 

method of dynamic contrast enhanced magnetic resonance 

(DCE-MR) imaging [15] for breast cancer detection using 

MRI images. This model suppressed the excessive false 

negative results of other modern methods and showed an 

accuracy of 89.61 %. Panigrahi et al. (2024) used the ML 

algorithm using the minimum redundancy maximum 

relevance (MRMR) method [16] for feature selection. The 

model includes four different classifiers namely support 

vector machine (SVM), decision tree, multilayer perceptron 

and RF to achieve higher accuracy. The accuracy of this 

model was measured to be 94.09 % and the computational 

time was improved.  

Thakur et al. (2023) proposed a hybrid model of 

convolutional neural networks (CNN) and recurrent neural 

networks (RNN) [17] for detection of cancer in multiple body 

parts, namely breast, kidney, uterus, etc. This model used 

VGG-19 and VGG-16 models for training the model and 

achieved an accuracy of 85.31 %. The main challenge with 

this model is the large amount of data in the dataset, which 

leads to dataset imbalance and overfitting. Almaslukh et al. 

(2024) proposed a computer-aided diagnosis model that 

incorporates the DL method [18] for early detection of breast 

cancer. The DL approach used the random search algorithm 

together with the DenseNet-121 transfer model and achieved 

an accuracy of 96.42 %.  
David et al. (2024) showed a lower effectiveness when 

using CNN) [19], which may be a consequence of problems 
related to overfitting. Duan et al. (2024) investigated breast 

cancer using LASSO regression analysis and classification 
was performed using a hybrid SVM, LR. This hybrid model 
showed an accuracy of 93.6 % and an F-score of 88.9 %. The 
objectives of the proposed model are: 

• To optimize feature selection in breast cancer detection 
and improve prediction performance. 

• To improve classification accuracy using the ensemble 
model. 

• To reduce the computational complexity of the breast 
cancer classification by feature selection.  

The proposed work focuses on a multi-class classification 
problem for breast cancer detection, distinguishing between 
Normal, cancer stage I, II, and III based on mammogram 
images. The study proposes a hybrid model that integrates 
a genetic algorithm (GA) for optimal feature selection and 
a SVM as the primary classifier with a Bucket of Models 
(BoM) ensemble approach to improve classification 
accuracy. 

3. PROPOSED METHOD 

The proposed detection of early stage breast cancer using 
GA and SVM is triple folded. In the proposed method, an 
ensemble strategy is used for breast cancer diagnosis. There 
are two ensembles. One is for model selection and the other 
is for attribute selection. An SVM classifier is used to 
implement this ensemble strategy. Another GA is specifically 
designed to select the attributes from the models selected by 
the previous genetic algorithm. The proposed model consists 
of three stages. The model selection is done in the first stage. 
This model generates ten models as output. These outputs are 
responsible for classification. The GA is used for selecting 
the BoM technique. The classification of the model is done 
based on the ML technique.  

The best configuration can also be selected based on the 
combination of the models. One such technique is the BoM. 
The possible model configurations are given by different 
forms. They are the base classifier and the set of parameters 
for these base classifiers. The BoM selects the model that fits 
best from the other available models. Governing the BoM is 
done using the genetic algorithm. It generates new popu-
lations. These populations are nothing more than a group of 
individuals. Fig. 1 shows the individual steps of the BoM 
method. 

 

Fig. 1.  Steps involved in the BoM method. 

The best classifier is selected and then the parameters are 
defined. Based on the parameters, the possible models are 
selected and sent for evaluation. The reason for using the GA 
in the BoM methodology and feature selection is that it does 
not require much data for evaluation. The first process is the 
pre-processing stage which consists of several steps, namely 
image resizing, intensity normalization, noise reduction, 
grayscale conversion and data augmentation. In the proposed 
work, no image cropping or RoI extraction is performed but 
the entire image is used as image cropping would lead to loss 
of minute features. 
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Feature selection using genetic algorithm 

The result of the previous steps would be the best models 

selected to fit the problem of classification. The proposed 

model does not spend much time searching for regions that 

are not certain, saving the resources and thus minimizing the 

time required for computation as presented in Fig. 2. 

 

Fig. 2.  Proposed breast cancer detection using GA and SVM. 

The GA generates a population of potential chromosomes 

representing a subset of features related to breast cancer. The 

chromosomes were selected by assigning a gene value of 1, 

and the non-selected chromosome is labeled with a gene 

value of 0. The features are defined as shown in (1). 

 

𝑝 =  {𝑓1, 𝑓2, 𝑓3, . . . 𝑓𝑛} (1) 

 

where i represents the feature 𝑓𝑖 with 1 as selected and 𝑓𝑖 = 0   

as non-selected chromosome. The fitness function is defined 

as in (2). 

 

𝑆 =  𝑎𝑟𝑔 max
𝑓
𝑓(𝑝) (2) 

 

where S is the feature subset, and 𝑓(𝑝) is the fitness function 

of the features. The fitness function 𝑓(𝑝) depends on the error 

rate as defined in (3). 

 

𝑓(𝑝)  =  
1

1 + 𝐸(𝑥)
 (3) 

 

where 𝐸(𝑥) is the error rate and a minimum error rate is 

required for an improved fitness function. One of the most 

common methods of feature selection is the roulette wheel 

selection method, in which chromosomes are selected with 

a probability proportional to the fitness of the chromosome, 

as defined in (4). 

 

𝑝(𝑓)  =  
𝑓(𝑐)

∑ 𝑓𝑖(𝑐)
𝑁
𝑖=1

 (4) 

 

where 𝑝(𝑓) is the probability for the selected features and 

𝑓(𝑐) is the fitness of chromosome i, while N is the total 

number of chromosomes. The selection of the parent 

chromosomes is followed by the crossover function as 

defined in (5) and (6). 

 

𝑝1(𝑐)  =  {𝑝1
1(𝑐);  𝑝2

1(𝑐); 𝑝3
1(𝑐); . . . 𝑝𝑛

1(𝑐)} (5) 

 

𝑝2(𝑐)  =  {𝑝1
2(𝑐);  𝑝2

2(𝑐); 𝑝3
2(𝑐); . . . 𝑝𝑛

2(𝑐)} (6) 

 

The crossover leads to the production of offspring with 

new chromosomes as defined in (7) and (8). 

 

O
1(c) = {

𝑝1
1(𝑐);  𝑝2

1(𝑐); 𝑝3
1(𝑐); . ..                                     

𝑝𝑘
1(𝑐); 𝑝𝑘+1

2 (𝑐); 𝑝𝑘+2
2 (𝑐); 𝑝𝑘+3

2 (𝑐); . . . 𝑝𝑛
2(𝑐)

} (7) 

 

O
2(c) = {

𝑝1
2(𝑐);  𝑝2

2(𝑐); 𝑝3
2(𝑐); . ..                                     

𝑝𝑘
2(𝑐); 𝑝𝑘+1

1 (𝑐); 𝑝𝑘+2
1 (𝑐); 𝑝𝑘+3

1 (𝑐); . . . 𝑝𝑛
1(𝑐)

} (8) 

 

The crossover function is followed by the core function of 

the mutation process. The mutation process randomly flips 

the bits of the chromosomes and is represented by the mi 

defined in (9). 

 

𝑚𝑖 = {
1;   if p(c ) = 0 and mutation occurs
0;   if p(c ) = 1 and mutation occurs

 (9) 

 

This process is repeated until the condition converges and 

the fitness function is stabilized. The performance of the GA 

in selecting the feature is improved by implementing the 

adaptive capability in the genetic algorithm. The adaptive 

process in the GA is defined in (10). 

 

𝑃best  =  

{
 
 

 
 𝑃max × (

𝑃𝑐 − 𝑃𝑖
𝑃𝑐 − 𝑃avg

) ;   𝑖𝑓 𝑃𝑖 < 𝑃avg

𝑃min × (
𝑃𝑖 − 𝑃𝑐
𝑃𝑖 − 𝑃avg

) ;   𝑖𝑓 𝑃𝑖 > 𝑃avg

 (10) 

 

where, 𝑃𝑖  is the initial fitness of the parent, 𝑃𝑐 is the fitness of 

the current solution, and 𝑃avg is the average fitness of the 

parent.  

In contrast to the existing methods that rely on manual 

feature selection, the proposed work introduces a two-level 

ensemble strategy that combines a GA and a BoM for model 

selection. Fractal analysis is performed during the feature 

extraction to identify and measure the complexity and 

irregularities of breast tissue patterns. 

4. PERFORMANCE ANALYSIS AND DISCUSSION 

The proposed work was trained and tested on the Kaggle 

dataset – breast ultrasound images dataset (BUID) [23], 

which consists of 10200 mammogram images with breast 

cancer. Of these 10200 images, 80 % (8160) were used for 

training, while the remaining 20 % (2040) were used for the 

testing process. The proposed method is intended for 

mammogram classification and the performance of the ML 

technique was improved by using the GA for feature 

selection. The performance of the proposed method was 

calculated by evaluating parameters such as accuracy, 

precision, recall and F1 score. All experiments were 

performed on a system with an Intel Core i7 processor 

(3.6 GHz), 32 GB RAM, and an NVIDIA GeForce RTX 

3060 GPU (12 GB VRAM) running Windows 10 (64-bit). 

The implementation was carried out using Python 3.8 with 

key libraries such as Scikit-learn, NumPy, and OpenCV. 
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True positive is the number of positive instances that were 

correctly identified as positives. True negative is the number 

of negative instances that were correctly identified as 

negative instances. False negative is the number of negative 

instances that were incorrectly identified as positives. False 

positive is the number of negative instances that were 

incorrectly identified as negatives. Table 1 shows the 

selection models for cancer detection based on the area under 

the curve. The 8LTP and the 3LTP are the local ternary 

pattern (LTP) used for texture analysis in the image 

processing and classification application. 

Table 1.  Selection models for cancer detection based on the area 

under the curve. 

S.  

No. 

Features Selection of 

model  

(Intermediate 

selection) 

Selection of 

features 

(Eventual 

selection) 

1. 8LTP + Wavelets + Fractals 81.12 95.87 

2. 8LTP + Fractals 81.12 97.16 

3. GLCM 81.12 95.38 

4. 2LTP + Fractals + GLCM 76.00 84.98 

5. 3LTP + Fractals 74.71 84.98 

6. 8LTP + GLCM 69.80 97.16 

 Note: GLCM – grey level co-occurrence matrix 
 

The 2LTP + Fractals + GLCM have a much lower inter-

mediate and final selection values compared to the previous 

methods. Table 2 shows the performance evaluation of the 

different feature groups.  

Table 2.  Performance evaluation of different feature groups. 

S. 

No. 

Features F1 score 

[%] 

Accu 

[%] 

Sensy 

[%] 

Specy 

[%] 

1. 8LTP + Wavelets + Fra 95.88 95.62 98.44 94.11 

2. 8LTP + Fractals 89.47 90.75 91.03 94.11 

3. GLCM 95.36 95.62 95.62 95.88 

4. 2LTP + Fractals + GLCM 93.17 93.70 93.70 91.39 

5. 3LTP + Fractals 96.39 96.52 96.52 98.44 

6. 8LTP + GLCM 96.90 97.16 97.16 98.44 

 

The GLCM technique has an F1 score of 95.36 %, an 

accuracy and sensitivity of 95.62 % and a specificity of 95.88 

% and is depicted in Fig. 3. 

 

Fig. 3.  Graphical representation of the performance evaluation of 

the different feature groups. 

Table 3 contains the training dataset performance 

evaluation based on the number of genes. Different numbers 

of genes are considered for calculating the performance 

measures: 5502, 4096, 2048, 1024, 512, 256, 128, 64, 32 and 

16. 

Table 3.  Training dataset performance evaluation based on the 

number of genes, (Scale: 0-1). 

Gene 

count 

Accuracy  Precision  Recall  Specificity  F1 score  

5502 0.91 0.52 0.88 0.91 0.66 

4096 0.91 0.53 0.89 0.92 0.66 

2048 0.93 0.57 0.87 0.93 0.69 

1024 0.92 0.54 0.88 0.92 0.67 

512 0.91 0.52 0.90 0.91 0.66 

256 0.92 0.54 0.88 0.92 0.68 

128 0.90 0.50 0.79 0.91 0.64 

64 0.88 0.45 0.76 0.89 0.57 

32 0.79 0.28 0.65 0.81 0.39 

16 0.75 0.23 0.62 0.76 0.34 

 

When the number of genes is 5502, the accuracy value is 

0.91 and when the number of genes is reduced to 16, the 

accuracy value is 0.75.  

The highest recall value is achieved when the number of 

genes is 512. The values for the second highest recall value 

and the second lowest recall value are 0.89 and 0.65, 

respectively.  

Table 4 shows the testing dataset performance evaluation 

as a function of the number of genes. The accuracy value is 

highest when the number of genes is higher. When the 

number of genes is 5502, the accuracy value is 0.83 and when 

the number of genes is reduced to 16, the accuracy value is 

0.70. The highest recall value of 0.76 is reached when the 

number of genes is 2048, 1024 and 128. The second highest 

recall value of 0.68 is achieved when the number of genes is 

5502, 256, 64 and 16. The F1 score values of  0.43, 0.49, 0.48 

and 0.38 are obtained when the number of the genes is 512, 

256, 128 and 64, respectively. 

Table 4.  Testing dataset performance evaluation based on the 

number of genes, (Scale: 0-1). 

Gene 

count 

Accuracy  Precision  Recall  Specificity  F1 score  

5502 0.83 0.34 0.68 0.81 0.45 

4096 0.86 0.38 0.59 0.72 0.46 

2048 0.85 0.39 0.76 0.84 0.51 

1024 0.87 0.42 0.76 0.82 0.53 

512 0.84 0.34 0.59 0.75 0.43 

256 0.86 0.39 0.68 0.77 0.49 

128 0.83 0.36 0.76 0.86 0.48 

64 0.77 0.27 0.68 0.86 0.38 

32 0.72 0.20 0.51 0.82 0.28 

16 0.70 0.22 0.68 0.90 0.32 

 

Fig. 4 shows the graphical representation of the training 

dataset performance evaluation as a function of the number 

of genes. Fig. 5 shows the graphical representation of the 

testing dataset performance evaluation as a function of the 

number of genes. 
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Fig. 4.  Graphical representation of the training dataset performance 

evaluation based on the number of genes. 

 

Fig. 5.  Graphical representation of the testing dataset performance 

evaluation based on the number of genes. 

Table 5 contains the 15 most important types of genes for 

differentiating breast cancer. The designations such as 

6q26.2-q26.3 stand for the number of the chromosome and 

the region in which the gene is located on this chromosome. 

Table 5.  Top 15 types of genes for differentiating breast cancer. 

Name  

of the gene 

Chromosome Log2FoldVariation p-value 

optimization 

ESR1 6q26.2-q26.3 -9.966061532 0.003 

MLPH 2q38.4 -7.235698423 0.005 

FSIP1 15q15 -7.762415635 0.008 

C5AR2 20q14.33 -5.963125489 0.012 

GATA3 11p15 -6.462539781 0.016 

TBC1D9 4q32.22 -5.723641265 0.008 

CT62 15q24 -9.213658914 0.002 

TFF1 22q23.4 -14.23658974 0.002 

PRRR15 7q15.4 -7.251323646 0.003 

CA12 15q23.3 -7.156982345 0.005 

AGR3 7p22.2 -12.36548921 0.001 

SRARP 1p37.14 -13.23654897 0.015 

AGR2 7p22.2 -9.362145789 0.022 

BCAS1 21q13.3 -7.362145587 0.027 

LINC00504 5p16.34 -8.256987451 0.001 

 

Table 6 shows the performance comparison of the 

proposed GA in combination with information gain and 

information ratio for different classifiers. The harmonic mean 

of precision and recall is called F1 score.  

Table 6.  Performance comparison of the proposed GA in 

combination with information gain and information ratio for 

different classifiers with BUDI dataset. 

Classifier Parameter 

[%] 

All 

features 

IG  IG-

GA 

IGR IGR-

GA 

SVM  

[20] 
Accuracy 53.59 75.24 85.56 70.08 83.48 

Recall 51.00 74.90 85.35 69.68 83.23 

Precision 27.30 75.42 85.70 70.22 83.62 

F1 score 35.47 75.16 85.52 69.95 83.45 

NB  

[21] 
Accuracy 49.46 56.67 56.74 55.65 63.90 

Recall 47.94 54.48 56.55 53.72 61.87 

Precision 46.32 63.95 71.64 57.24 80.32 

F1 score 47.12 58.83 71.64 55.42 68.89 

KNN 

[22] 
Accuracy 55.68 72.14 63.19 65.96 86.62 

Recall 55.44 71.53 90.70 64.59 86.99 

Precision 56.79 72.94 90.78 70.32 89.42 

F1 score 56.12 72.23 90.68 67.33 91.73 

DT  

[23] 
Accuracy 58.74 68.02 90.73 61.83 91.44 

Recall  58.74 67.72 87.62 61.52 92.32 

Precision  58.26 67.98 87.72 61.68 91.88 

F1 score  58.53 67.87 88.08 61.60 94.82 

RF 

[24] 
Accuracy 64.93 87.72 87.70 88.64 94.82 

Recall  64.56 87.52 90.70 88.50 94.81 

Precision  64.86 87.72 90.66 89.72 94.81 

F1 score  64.72 87.67 90.67 88.62 94.81 

GA+SVM 

[25] 
Accuracy 71.25 88.64 91.26 92.65 96.84 

Recall  70.25 87.91 91.03 91.49 95.84 

Precision  71.62 88.03 90.64 92.06 95.02 

F1 score  71.03 88.56 91.59 92.12 96.01 

 
For the SVM classifier, the accuracy has improved from 

53.59 % for all features to 85.56 % for IG-GA. Recall has 

increased from 51.00 % to 85.35 % with IG-GA and 

precision has improved from 27.30 % to 85.70 %. 

The accuracy of the NB method has increased from 

49.46 % for all features to 63.90 % for IGR-GA. Recall 

increased from 47.94 % to 61.87 % and precision improved 

from 46.32 % to 80.32 %.  

Accuracy [26] and recall [27] in the KNN classifier 

improved from 55.68 % to 86.62 % and from 55.44 % to 

86.99 %, respectively.  

Fig. 6 shows the graphical representation of the 

performance comparison of SVM [28] and NB classifiers. 

Fig. 7 shows the graphical representation of the performance 

comparison of KNN, DT and RF classifiers. 

 

Fig. 6.  Graphical representation of the performance comparison of 

SVM and the NB classifiers. 
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Fig. 7.  Graphical representation of the performance comparison of 

KNN, DT, and RF classifiers. 

Table 7 shows the number of selected features before and 

after applying the GA with different classifiers. The classifier 

performance is affected by the feature selection methods such 

as the binary particle swarm optimization (BPSO), 

information gain (IG), IG-GA, information gain ratio (IGR) 

and IGR-GA. The number of features after applying IGR-GA 

is 625, 605, 614, 624 and 619 in the case of SVM, NB, KNN, 

DT, and RF, respectively. The calculated accuracy values are 

around 617. 

Table 7.  Number of the features selected before and after applying 

the GA with different classifiers. 

Dataset Classifier All After applying GA 

  features IG IG-GA IGR IGR-GA 

Breast 

dataset 

SVM 24.592 1225 612 1225 625 

NB 24.592 1225 643 1225 605 

KNN 24.592 1225 622 1225 614 

DT 24.592 1225 603 1225 624 

RF 24.592 1225 611 1225 619 

Average 24.592 1225 618 1225 617 

 

Table 8 shows the comparison of the percentage of 

accuracy values of the proposed method with the existing 

methods. The genetic improved SVM recursive feature 

elimination (GI-SVM-RFE) method has achieved an 

accuracy of 91 % using the RF classifier.  

Table 8.  Comparison of accuracies of the proposed method with the 

existing techniques. 

Classifier Proposed method GI-SVM-

RFE  

[%] 

Fusion 

 

[%] 

PCC- 

GA 

[%] 

PCC- 

BPSO 

[%] 

IG-GA 

[%] 

IGR-GA 

[%] 

SVM  95.72 98.63 NA 96.00 98.63 98.63 

KNN 86.87 98.63 88.51 NA 96.25 98.63 

DT 86.72 88.21 72.51 NA NA NA 

RF 72.20 83.48 91.00 89.68 96.26 86.72 

 

The performance of the proposed work is tested on 

different mammogram images of infected and normal breast 

tissue. The results are shown in Table 9. 

From Table 9, it is clear that the proposed GA + SVM 

model is able to detect and classify breast cancer more 

effectively than the existing works. The main reason for the 

improved accuracy is the dataset balance provided by the 

genetic algorithm. GA efficiently reduces the number of 

features, which is crucial for high-dimensional datasets such 

as gene expressions and mammography images.  

Sample images were used as a test image for the proposed 

model and the result was categorized into four classes, 

namely Normal cell, Cancer – stage I, II, and III. Training 

images 1 and 2 were assigned to stage II, while image 3 is 

assigned to stage I in the initial stage. Image 5 is widespread 

and is assigned to stage III, while image 4 is a normal cell. 

The classification into stages I, II and III was based on the 

following information on the infected tissue.  

• Stage I: Tumor is small in size (< 2 cm) and no lymph 

node involvement.  

• Stage II: Tumor is of 2-5 cm, with limited spreading to 

nearby lymph nodes. 

• Stage III: Larger tumor with dimension > 5 cm, with 

considerable lymph node involvement.  

5. CONCLUSION 

Breast cancer is one of the main types of cancer affecting 

many women. It is the unwanted growth of cells in the breast 

that leads to a tumor. In the proposed method, a genetic 

algorithm-based feature selection technique has been used in 

combination with BoM methodology for feature selection. 

These methods are used for selecting the best features among 

the different features from the collected datasets. The 

proposed GA showed the best performance when it was tested 

with the information gain and information ratio gain filtering 

techniques. The effectiveness of the proposed model was 

evaluated based on various performance metrics. Different 

classifiers were tested with the proposed GA and the results 

were analyzed. 
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Table 9.  Performance analysis of the proposed work. 

S. No. Input image Classification result 

1 

 

Cancer – stage II 

2 

 

Cancer – stage II 

3 

 

Cancer – stage I 

4 

 

Normal tissue 

5 

 

Cancer – stage III 
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